05.03.2014 Views

C - Lublin

C - Lublin

C - Lublin

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

0.4<br />

1000<br />

Moisture [Vol.]<br />

0.3<br />

0.2<br />

0.1<br />

moisture - 1 cm<br />

moisture - 2.5 cm<br />

moisture - 4 cm<br />

water potential - 1 cm<br />

water potential- 2.5 cm<br />

water potential - 4 cm<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Water potential [hPa]<br />

0<br />

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000<br />

Time [s]<br />

Fig. 2. Water content and water potential dynamic in soil column<br />

evaporation process<br />

Assuming that the process of water transport takes place under isothermal conditions<br />

and is one-dimensional, the Darcy’s low is valid for the proposed experimental<br />

conditions. The water flow can be described with the use of the following<br />

equation:<br />

⎛ ∂ψ<br />

( z,<br />

t)<br />

⎞<br />

q(<br />

z,<br />

t)<br />

= −k(<br />

ψ ) ⎜ −1⎟<br />

(1)<br />

⎝ ∂z<br />

⎠<br />

Alternatively the flux can be calculated from the equation:<br />

z<br />

∂θ<br />

( z,<br />

t)<br />

q(<br />

z,<br />

t)<br />

= − ∫ dz<br />

(2)<br />

t<br />

∂<br />

z= z<br />

0<br />

Comparing these equations it is possible to calculate the hydraulic conductivity<br />

k(ψ) from the equation:<br />

z<br />

∂θ<br />

( z,<br />

t)<br />

∫ dz<br />

∂t<br />

z=<br />

z0<br />

k( ψ ) =<br />

(3)<br />

⎛ ∂ψ<br />

( z,<br />

t)<br />

⎞<br />

⎜ −1⎟<br />

⎝ ∂z<br />

⎠<br />

Using this method it is possible to determine relationship between hydraulic<br />

conductivity coefficient and water potential (see Fig. 3) and so called dynamic<br />

retention curve (see Fig. 4).<br />

156<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!