04.03.2014 Views

Classical and augmentative biological control against ... - IOBC-WPRS

Classical and augmentative biological control against ... - IOBC-WPRS

Classical and augmentative biological control against ... - IOBC-WPRS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Appendix 8<br />

Mor<strong>and</strong>i-Filho et al.,<br />

2007<br />

Pryke & Samways,<br />

2007<br />

Ruiz-de-Escudero et<br />

al., 2007<br />

subsp. kurstaki<br />

Argyrotaenia<br />

sphaleropa (South<br />

American tortricid<br />

moth)<br />

Epichoristodes<br />

acerbella<br />

(South African<br />

carnation tortrix)<br />

Lobesia botrana<br />

Lepidoptera:<br />

Tortricidae<br />

Lepidoptera:<br />

Tortricidae<br />

Lepidoptera:<br />

Tortricidae<br />

Subic, 2007 subsp. kurstaki Lobesia botrana Lepidoptera:<br />

Tortricidae<br />

Dongiovanni et al., subsp. kurstaki Lobesia botrana Lepidoptera:<br />

2008<br />

Tortricidae<br />

Brazil<br />

Lab<br />

Field<br />

+<br />

+<br />

Lab: reducition of the insect population by more than 90%.<br />

Field: reduced damage between 83.3 <strong>and</strong> 94.4%. The <strong>control</strong><br />

efficacy of B.t was equal to that of chemicals.<br />

South Africa Field + DiPelReg commercial formulation<br />

Lab + The potential of Bt Cry proteins to <strong>control</strong> L. botrana was<br />

explored.<br />

Either Cry1Ia or Cry9C could be used in combination with<br />

Cry1Ab to <strong>control</strong> this pest, either as the active components of<br />

Bt sprays or expressed together in transgenic plants.<br />

Croatia Field + Over 90% <strong>control</strong> was achieved.<br />

Puglia, Italy Field +<br />

References<br />

Abd-Rabou S. 2005. The effect of <strong>augmentative</strong> releases of indigenous parasitoid, Anagyrus kamali (Hymenoptera: Encyrtidae) on populations of Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in<br />

Egypt. Archives of Phytopathology <strong>and</strong> Plant Protection 38: 129-132.<br />

Al Jboory I.J., Ismail I.A. & Al Dahwe S.S. 2006. Evaluation of two isolates of Beauveria bassiana (Bals.) Vuill. <strong>against</strong> some insects <strong>and</strong> mites <strong>and</strong> testing the efficiency of some culture media.<br />

University of Aden, Journal of Natural <strong>and</strong> Applied Sciences 10(1): 23-29.<br />

Anagnou M., Kontodimas V. & Kontodimas D.C. 2003. Laboratory tests of the effect of Bacillus thuringiensis on grape berry moth Lobesia botrana (Lepidoptera: Tortricidae) <strong>and</strong> on the pseudococcids'<br />

predator Nephus includens (Coleoptera: Coccinellidae). Bulletin OILB/SROP 26(8): 117-119.<br />

Bagnoli B. & Lucchi A. 2001. Bionomics of Cryptoblabes gnidiella (Milliere) (Pyralidae Phycitinae) in Tuscan vineyards. Bulletin OILB/SROP 24(7): 79-83.<br />

Bakr H.A. 2004. A feeding stimulant for improving the efficacy of Bacillus thuringiensis var. kurstaki in larval <strong>control</strong> of the grape moth, Lobesia botrana Den. & Schiff. (Lepidoptera: Tortricidae).<br />

Egyptian Journal of Biological Pest Control 14(2): 411-413.<br />

Basso C., Grille G., Pompanon F., Allem<strong>and</strong> R. & Pintureau B. 1998. Comparison of <strong>biological</strong> <strong>and</strong> ethological characters of Trichogramma pretiosum <strong>and</strong> T. exiguum (Hymenoptera: Trichogrammatidae).<br />

Revista Chilena de Entomologia 25: 45-53.<br />

Basso C., Grille G. & Pintureau B. 1999. Efficiency of Trichogramma exiguum Pinto & Platner <strong>and</strong> T. pretiosum Riley to <strong>control</strong> Argyrotaenia sphaleropa (Meyrick) <strong>and</strong> Bonagota cranaodes (Meyrick) in<br />

Uruguayan vineyard. Agrociencia Montevideo 3(1): 20-26<br />

Begum M., Gurr G.M., Wratten S.D., Hedberg P.R. & Nicol H.I. 2006. Using selective food plants to maximize <strong>biological</strong> <strong>control</strong> of vineyard pests. Journal of Applied Ecology 43: 547-554.<br />

Besnard Y. & Boudet M. 2004. Bacillus thuringiensis sp. aizawai? Insecticide <strong>against</strong> grape berry moths <strong>and</strong> noctuids. Phytoma 575: 46-47.<br />

Berner M. & Schnetter W. 2002. Field trials with the entomopathogenic nematode Heterorhabditis bacteriophora <strong>against</strong> white grubs of the European cockchafer (Melolontha melolontha) in the southern<br />

part of Germany. Bulletin OILB/SROP 25(7): 29-34.<br />

Boller E.F., Remund U. & C<strong>and</strong>olfi,-M.P. 1988. Hedges as potential sources of Typhlodromus pyri, the most important predatory mite in vineyards of northern Switzerl<strong>and</strong>. Entomophaga 33: 240-255.<br />

Boselli M.& Scannavini M. 2001. Control of grape moth in Emilia-Romagna. Informatore Agrario 57(19): 97-100.<br />

Boselli M., Scannavini M. & Mel<strong>and</strong>ri M. 2000. Comparison of <strong>control</strong> strategies <strong>against</strong> the grape moth. Informatore Agrario 56(19): 61-65.<br />

Camporese P. & Duso C. 1996. Different colonization patterns of phytophagous <strong>and</strong> predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: a case study. Experimental <strong>and</strong> Applied<br />

Acarology 20: 1-22.<br />

Caroli L. & Boselli M. 1998. Evaluation of efficacy of a new Bacillus thuringiensis aizawai based product <strong>against</strong> the grape moth, Lobesia botrana. Atti Giornate fitopatologiche, Scicli e Ragusa,3-7<br />

maggio,1998: 293-296.<br />

149

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!