28.02.2014 Views

Influence of Stand Age And Structure on the Epiphytic Lichen ...

Influence of Stand Age And Structure on the Epiphytic Lichen ...

Influence of Stand Age And Structure on the Epiphytic Lichen ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Lichen</strong>ologist 24(2): 165-180 (1992)<br />

INFLUENCE OF STAND AGE AND STRUCTURE<br />

ON THE EPIPHYTIC LICHEN VEGETATION IN<br />

THE MIDDLE-BOREAL FORESTS OF FINLAND<br />

M. HYVARINEN*, P. HALONEN* and M. KAUPPI*<br />

Abstract: The epiphytic lichen vegetati<strong>on</strong> <strong>on</strong> <strong>the</strong> trunks <str<strong>on</strong>g>of</str<strong>on</strong>g> Pinus sylvestris and Picea<br />

abies was studied and analysed by can<strong>on</strong>ical corresp<strong>on</strong>dence analysis in relati<strong>on</strong> to a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental variables. The distributi<strong>on</strong> and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic<br />

lichen species proved to be dependent <strong>on</strong> <strong>the</strong> age <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stand, showing divergent<br />

resp<strong>on</strong>ses in relati<strong>on</strong> to phorophyte species and envir<strong>on</strong>mental variables such as<br />

acidity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark and vertical locati<strong>on</strong> <strong>on</strong> <strong>the</strong> trunk. The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> stand age in<br />

<strong>the</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> community variati<strong>on</strong> is c<strong>on</strong>cluded to be an outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong><br />

between changes in <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tree canopy, microclimate and properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> bark. The resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> single lichen species to changes in <strong>the</strong> envir<strong>on</strong>ment seem<br />

to vary c<strong>on</strong>siderably, indicating differences in competitive ability and ecological<br />

strategy between <strong>the</strong> species.<br />

Introducti<strong>on</strong><br />

The dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichens <strong>on</strong> <strong>the</strong>ir habitat and <strong>on</strong><br />

o<strong>the</strong>r epiphytes has been discussed <strong>on</strong> numerous occasi<strong>on</strong>s, but <strong>the</strong> multitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> factors that affect <strong>the</strong> successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichens makes interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> changes difficult. Yarrant<strong>on</strong> (1972) pointed out that changes in epiphytic<br />

lichen communities are primarily dependent <strong>on</strong> changes in <strong>the</strong> envir<strong>on</strong>ment<br />

caused by growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> trees (height-time interacti<strong>on</strong>), and not <strong>on</strong> <strong>the</strong> internal<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> communities. He did not find any evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> direct competiti<strong>on</strong><br />

between epiphytic species, although some kind <str<strong>on</strong>g>of</str<strong>on</strong>g> niche differentiati<strong>on</strong><br />

clearly did exist. However, in studies dealing with successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytes <strong>on</strong><br />

deciduous trees it has sometimes mistakenly been taken as a rule that <strong>the</strong><br />

morphological lichen types succeed each o<strong>the</strong>r from crustose stages through<br />

foliose to fruticose (Barkman 1958; Nakanishi 1960; Hale 1965). Although<br />

successi<strong>on</strong> requires competiti<strong>on</strong> between species, <strong>the</strong> larger, faster-growing<br />

types suppressing <strong>the</strong> preceding stages, <strong>the</strong> successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichens may<br />

not corresp<strong>on</strong>d to a true autogenic successi<strong>on</strong> as defined by Clements (1916).<br />

Many authors c<strong>on</strong>sider interacti<strong>on</strong> between <strong>the</strong> age and morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> trees<br />

(e.g. height and bark structure) to be <strong>the</strong> most important factor influencing<br />

epiphytes (Adams & Risser 1971; Yarrant<strong>on</strong> 1972; McCune & Antos 1982),<br />

while St<strong>on</strong>e (1989), emphasizing <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> biotic factors, suggested that<br />

autogenic factors influence <strong>the</strong> epiphyte successi<strong>on</strong> within <strong>the</strong> framework <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

allogenic factors.<br />

The successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichens is closely related to <strong>the</strong> vertical distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> species. Koskinen (1955) and Oksanen (1988), for example,<br />

c<strong>on</strong>cluded that locati<strong>on</strong> <strong>on</strong> <strong>the</strong> tree bole was <strong>the</strong> most important envir<strong>on</strong>mental<br />

•Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oulu, SF-90570 Oulu, Finland.<br />

0024-2829/92/020165+16 803.00/0 © 1992 The British <strong>Lichen</strong> Society


166 THE LICHENOLOGIST Vol.24<br />

factor for epiphytes. Barkman (1958) divided <strong>the</strong> whole forest stand vertically<br />

into a number <str<strong>on</strong>g>of</str<strong>on</strong>g> microclimatic z<strong>on</strong>es through which trees grow and which<br />

govern <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> epiphytic vegetati<strong>on</strong> in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tree,<br />

while Kershaw (1964) indicated that <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytes <strong>on</strong> young<br />

trees has <strong>the</strong> same kind <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>on</strong>ati<strong>on</strong> as <strong>on</strong> older <strong>on</strong>es but in a more compressed<br />

form. Yarrant<strong>on</strong> (1972) observed that <strong>the</strong> epiphytic species <strong>on</strong> <strong>the</strong> black spruce<br />

{Picea mariana (Mill.) BSP) fall into four main distributi<strong>on</strong>al types: (1) crown<br />

and tree base; (2) base <strong>on</strong>ly; (3) lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> crown; (4) branchless bole and<br />

base. Generally <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> branches and <strong>the</strong> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crown have a<br />

c<strong>on</strong>siderable influence <strong>on</strong> <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichens.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present work was to determine <strong>the</strong> major envir<strong>on</strong>mental<br />

factors influencing <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichen vegetati<strong>on</strong> <strong>on</strong> <strong>the</strong> trunks<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two comm<strong>on</strong>est c<strong>on</strong>ifers in <strong>the</strong> nor<strong>the</strong>rn European boreal z<strong>on</strong>e: <strong>the</strong> Scots<br />

pine (Pinus sylvestris L.) and Norway spruce {Picea abies (L.) Karst.). Special<br />

attenti<strong>on</strong> was paid to differences between' near natural' and' managed' forests<br />

and to changes attributable to ageing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> forests.<br />

Materials and Methods<br />

Area studied<br />

The research was carried out at Muhos in <strong>the</strong> central part <str<strong>on</strong>g>of</str<strong>on</strong>g> Finland, about 30 km SE <str<strong>on</strong>g>of</str<strong>on</strong>g> Oulu<br />

and <strong>the</strong> same distance from <strong>the</strong> coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Bothnia (64°45'N, 26°00'E, Fig. 1). The area is<br />

located in <strong>the</strong> middle boreal subz<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Finland (see Ahti et al. 1968), where Scots pine dominates<br />

<strong>the</strong> drier heath forests and Norway spruce is <strong>the</strong> main tree species in <strong>the</strong> mesic and moist forest<br />

types. According to statistics supplied by <strong>the</strong> Meteorological Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Finland, <strong>the</strong> mean annual<br />

temperature in Muhos for <strong>the</strong> decade 1980-1989 was 1 -7°C (range —0- TC in 1985 to 40°C in 1989)<br />

and mean annual precipitati<strong>on</strong> 549 mm, <str<strong>on</strong>g>of</str<strong>on</strong>g> which 311 mm fell during <strong>the</strong> growing seas<strong>on</strong> (for higher<br />

plants) in May-September. The following climatic parameters are also c<strong>on</strong>sidered important for<br />

<strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichens: durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> growing seas<strong>on</strong> with mean daily temperatures<br />

exceeding 5°C (147 days), annual number <str<strong>on</strong>g>of</str<strong>on</strong>g> days with precipitati<strong>on</strong> >01 mm (160 days), and<br />

mean maximum snow depth in forests (60 cm). The climate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> area is oceanic in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature, but less so regarding humidity c<strong>on</strong>diti<strong>on</strong>s.<br />

Sample plots<br />

The 45 sample plots (see Table 1) make up four age series and were classified as open, managed<br />

(i.e. thinned effectively) pine and spruce stands, and denser, near natural state pine and spruce<br />

stands. The pine-dominated sites were mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Empetrum-V'actinium type (EVT), two <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>m bel<strong>on</strong>ging to <strong>the</strong> Empetrum-Calluna type (ECT) and <strong>the</strong> spruce sites to <strong>the</strong> Vaccinium-<br />

Myrtillus type (VMT) or <strong>the</strong> intermediate type <str<strong>on</strong>g>of</str<strong>on</strong>g> EVT and VMT in <strong>the</strong> Finnish classificati<strong>on</strong><br />

(Kalela 1961). The main criteri<strong>on</strong> for choice was sufficient homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stand and its<br />

surroundings (exposure, etc.). Fur<strong>the</strong>rmore, <strong>the</strong> managed stands selected were required to have<br />

remained undisturbed for a period assessed to be sufficient for <strong>the</strong> epiphytic lichens to resp<strong>on</strong>d to<br />

<strong>the</strong> microclimatic c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>ment (about 15-20 years).<br />

The following variables were determined for each site: forest site type, canopy cover (scale: 1=0-<br />

10%;2 = ll-20%;. .. 10 = 91-100°,,), basal area(m 2 ha ')<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> trees (with a relascope, Bitterlich<br />

1948), age <str<strong>on</strong>g>of</str<strong>on</strong>g> trees (with an increment borer), average height <str<strong>on</strong>g>of</str<strong>on</strong>g> trees (with a hypsometer) and <strong>the</strong><br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample trees. The acidity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark at breast height <strong>on</strong> <strong>the</strong> trunks was analysed by a<br />

method in which powdered bark was suspended in distilled water (1/10 v/v) for 24h, filtered and<br />

measured with a pH meter. The pH value used was <strong>the</strong> average <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> trees studied at each plot.<br />

Five Scots pine trunks <str<strong>on</strong>g>of</str<strong>on</strong>g> medium diameter or three trunks <str<strong>on</strong>g>of</str<strong>on</strong>g> Norway spruce were examined at<br />

each plot. The more heterogeneous epiphytic vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pine was c<strong>on</strong>sidered to need a bigger<br />

sample intensity than spruce to reduce sample variance between <strong>the</strong> plots. The percentage cover <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> lichen species around <strong>the</strong> trunk was estimated <strong>on</strong> a five-pointscale (1 = < 3",,; 2 = 3-10° o ; 3 =<br />

11-25%; 4 = 26-50%; 5= >50%) separately in two height classes, 0-0-7 m and 0-7-20 m. The


1992 <strong>Epiphytic</strong> lichens—Hyvdrinen et al.<br />

167<br />

26°<br />

N<br />

64 °45'<br />

KILOMETRES<br />

FIG. 1. Map <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> area studied. The pine stands are indicated by dots and <strong>the</strong> spruce stands by filled<br />

squares.<br />

medians <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cover values for <strong>the</strong> various species <strong>on</strong> <strong>the</strong> trunks were used as values for <strong>the</strong> whole<br />

plot, except in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a species occurring with <strong>the</strong> lowest degree <str<strong>on</strong>g>of</str<strong>on</strong>g> cover <strong>on</strong> less than half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

trunks, when it was given a cover value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0-5. The following cover percentages corresp<strong>on</strong>ding to<br />

<strong>the</strong> estimates obtained in <strong>the</strong> fieldwere used for <strong>the</strong> ordinati<strong>on</strong>: 0-5 = 0-5; 1 = 1-5; 2 = 7; 3= 18; 4 =<br />

38; 5 = 76. Species occurring <strong>on</strong> <strong>on</strong>ly <strong>on</strong>e sample plot were omitted from <strong>the</strong> data matrix. The cover<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong> macrolichens {Clad<strong>on</strong>ia at genus level <strong>on</strong>ly) were determined and also <str<strong>on</strong>g>of</str<strong>on</strong>g> those microlichens<br />

that can be easily identified in <strong>the</strong> field. C<strong>on</strong>sequently, some crustose groups and related<br />

species, e.g. <strong>the</strong> order Caliciales, are treated in <strong>the</strong> ordinati<strong>on</strong> as if <strong>the</strong>y were <strong>on</strong>e species. The<br />

species identificati<strong>on</strong>s (e.g. for <strong>the</strong> genus Usnea) were complemented with chemical methods such<br />

as TLC in <strong>the</strong> laboratory (Culbers<strong>on</strong> & Kristinss<strong>on</strong> 1970).<br />

Data analysis<br />

The modified data were analysed by can<strong>on</strong>ical corresp<strong>on</strong>dence analysis (CCA), a technique for<br />

direct gradient analysis proposed by ter Braak (1986,1987), which allows <strong>on</strong>e to test whe<strong>the</strong>r all <strong>the</strong><br />

species simultaneously are linearly related to <strong>the</strong> envir<strong>on</strong>mental variables supplied. C<strong>on</strong>sequently,<br />

<strong>the</strong> direct use <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental data makes it possible to combine <strong>the</strong> ordinati<strong>on</strong> and direct gradient


168 THE LICHENOLOGIST<br />

Vol. 24<br />

TABLE 1. Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample plots<br />

Pine stands<br />

Spruce stands<br />

Variable<br />

Managed<br />

(» = 12)<br />

Near natural<br />

(71=13)<br />

Managed<br />

(71=10)<br />

Near natural<br />

(71=10)<br />

<str<strong>on</strong>g>Age</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> trees (years)<br />

(range)<br />

Canopy cover (%)<br />

(range)<br />

Average height (ra)<br />

(range)<br />

Bark pH<br />

Basal area (m 2 ha~')<br />

67 + 27-1*<br />

(20-110)<br />

58+16-4<br />

(40-80)<br />

13-7 + 41<br />

(7-19)<br />

3-73 + 010<br />

25-3 + 6-9<br />

91 + 36-9<br />

(35-150)<br />

73 + 8-5<br />

(50-80)<br />

15-5 + 4-2<br />

(6-20)<br />

3-75 + 0-13<br />

28-9 + 5-9<br />

75 + 33-7<br />

(30-130)<br />

65+14-3<br />

(50-90)<br />

16-1+5-5<br />

(11-19)<br />

3-48 + 014<br />

23-1+8-3<br />

103 + 41-4<br />

(40-170)<br />

80 + 9-9<br />

(70-100)<br />

15-3 + 5-7<br />

(6-22)<br />

3-36 + 0-17<br />

23-8 + 9-3<br />

*The figures are averages with standard deviati<strong>on</strong>s for <strong>the</strong> plots in each group.<br />

analysis, and to observe <strong>the</strong> overall influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>ment by approximating <strong>the</strong> fitting<br />

Gaussian resp<strong>on</strong>se surfaces to <strong>the</strong> species (ter Braak 1986).<br />

In <strong>the</strong> present work certain envir<strong>on</strong>mental variables (Table 1) were chosen a priori according to<br />

<strong>the</strong>ir assumed importance as factors influencing <strong>the</strong> epiphytic lichen vegetati<strong>on</strong>. The multiple<br />

correlati<strong>on</strong>s between envir<strong>on</strong>mental variables (i.e. multicollinearity) were c<strong>on</strong>trolled by a Variance<br />

Inflati<strong>on</strong> Factor given by CCA [VIF = (1—R 2 ,)" 1 , where R ; = multiple correlati<strong>on</strong> between<br />

explanatory variable j and o<strong>the</strong>r variables in <strong>the</strong> analysis]. Large values <str<strong>on</strong>g>of</str<strong>on</strong>g> VIF (>20) indicate<br />

near linear dependences am<strong>on</strong>gst variables and instability <str<strong>on</strong>g>of</str<strong>on</strong>g> can<strong>on</strong>ical coefficients (for details see<br />

M<strong>on</strong>tgomery & Peck 1982; ter Braak 1988).<br />

The regressi<strong>on</strong> coefficients for <strong>the</strong> envir<strong>on</strong>mental variables were tested by means <str<strong>on</strong>g>of</str<strong>on</strong>g> Student's<br />

r-test, for which purpose <strong>the</strong> data matrix was also analysed by reciprocal averaging (Hill 1973), in<br />

which <strong>the</strong> regressi<strong>on</strong> is calculated after extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species and sample scores and not within<br />

<strong>the</strong> iterative ordinati<strong>on</strong> algorithm as in CCA (ter Braak 1988). The direct use <str<strong>on</strong>g>of</str<strong>on</strong>g> Student's r-test<br />

with can<strong>on</strong>ical coefficients is not recommended because <strong>the</strong>y have larger variances than regressi<strong>on</strong><br />

coefficients.<br />

The CANOCO computer programme produces ordinati<strong>on</strong> plots in which <strong>the</strong> envir<strong>on</strong>mental<br />

variables can be combined with species or study sites (ter Braak 1988). C<strong>on</strong>tinuous variables (e.g.<br />

tree age) are shown as arrows, <strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> which indicates <strong>the</strong> correlati<strong>on</strong> between <strong>the</strong> variable and<br />

<strong>the</strong> ordinati<strong>on</strong> axes, and <strong>the</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> which points to <strong>the</strong> maximum change in <strong>the</strong> variable.<br />

Nominal variables (e.g. forest site type) are presented in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> centroids showing <strong>the</strong> weighted<br />

average for <strong>the</strong> species or sites bel<strong>on</strong>ging to that class in relati<strong>on</strong> to <strong>the</strong> ordinati<strong>on</strong> axes.<br />

Results<br />

Sample plots<br />

The ages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> trees in <strong>the</strong> stands varied from 20 to 170 years (Table 1). The<br />

age gradient thus included stages from saplings to old forests. The variati<strong>on</strong> in<br />

stand age is likely to obscure much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variati<strong>on</strong> in o<strong>the</strong>r factors measured<br />

between <strong>the</strong> pine and spruce stands, and to some extent between <strong>the</strong> classes<br />

' managed ' and ' near natural'. The basal area was high in young stands (<strong>the</strong><br />

mean for <strong>the</strong> pine stands under 70 years was 29-9, n = 8), for example, even if<br />

<strong>the</strong>y had been subject to management. Canopy cover shows better <strong>the</strong> idea <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> original divisi<strong>on</strong> into classes. The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark, which fitted into a normal<br />

distributi<strong>on</strong> (Wilk-Shapiro test for pH <str<strong>on</strong>g>of</str<strong>on</strong>g> pines W=0-953, P>0-31 and<br />

spruces H^=0-936, P>0-22), varied to some extent between plots, but <strong>the</strong><br />

difference between <strong>the</strong> Scots pines (x = 3-74, S.D. 011) and Norway spruces


1992 <strong>Epiphytic</strong> lichens—Hyvdrinen et al. 169<br />

TABLE 2. Pears<strong>on</strong> correlati<strong>on</strong> coefficients for <strong>the</strong> envir<strong>on</strong>mental variables measured in pine and spruce<br />

stands<br />

Variable<br />

<str<strong>on</strong>g>Age</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trees<br />

Canopy<br />

cover<br />

Average<br />

height<br />

BarkpH<br />

Basal<br />

area<br />

Spruce stands<br />

<str<strong>on</strong>g>Age</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> trees (years)<br />

Canopy cover (° 0 )<br />

Average height (m)<br />

Bark pH<br />

Basal area (ra'ha" 1 )<br />

-0042<br />

0-805<br />

-0-426<br />

-0-333<br />

^-0-114<br />

-0-203<br />

0062<br />

0-683<br />

0-601<br />

-0-286<br />

-0-315<br />

-0173<br />

-0-773<br />

-0050<br />

-0-463<br />

0-265<br />

-0076<br />

0-534<br />

0130<br />

-0-208<br />

Pine stands<br />

(x = 3-42, S.D. 017) as a whole was ra<strong>the</strong>r small, albeit significant (ANOVA,<br />

F, 44 = 61-099, P< < 0-001). Fur<strong>the</strong>rmore, <strong>the</strong> pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spruces<br />

showed a close negative correlati<strong>on</strong> with stand age (r= —0-773, F 219 = 25-741,<br />

P= 0001) while that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pines did so to a lesser extent (r = — 0-426,<br />

F 424 = 5095, P = 0034, see Table 2). Accordingly, <strong>the</strong> envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

sample plots is heterogeneous within <strong>the</strong> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> a few forest types.<br />

Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species<br />

A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 58 lichen species was found <strong>on</strong> <strong>the</strong> bark <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>ifers, 48 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>m<br />

occurring <strong>on</strong> pine and 38 <strong>on</strong> spruce (Table 3). The macrolichen vegetati<strong>on</strong> <strong>on</strong><br />

<strong>the</strong> trunks <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pines and spruces was relatively uniform, while <strong>the</strong> crustose<br />

lichens were found to be more phorophyte-specific, since ten out <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 13 pinespecific<br />

species (excluding Clad<strong>on</strong>ia species) and nine out <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ten sprucespecific<br />

species were crustose. This is partly a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relatively low<br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> microlichens present. Foliose and fruticose species were more<br />

frequent than crustose species <strong>on</strong> both phorophytes, although some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>m<br />

(e.g. Clad<strong>on</strong>ia and Cladina) represent epigeic lichens generally occurring <strong>on</strong>ly<br />

<strong>on</strong> <strong>the</strong> bases <str<strong>on</strong>g>of</str<strong>on</strong>g> trunks. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species are rare in <strong>the</strong> area and are more<br />

likely to occur <strong>on</strong> pines, for example Alectoria sarmentosa, a comm<strong>on</strong> species <strong>on</strong><br />

both c<strong>on</strong>ifers in eastern Finland (Hal<strong>on</strong>en et al. 1991). Species completely<br />

absent from spruce were Evernia mesomorpha, Calicium parvum, Haematomma<br />

elatinum, Hypocenomyce scalaris, and some species <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> genus Lecanora,<br />

whereas E. prunastri and <strong>the</strong> Caliciaceae, except for C. glaucellum and C.<br />

parvum, were exclusive to spruce. The macrolichens tended to occur more<br />

densely <strong>on</strong> pines.<br />

The frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence <strong>on</strong> boles were used to analyse <strong>the</strong> vertical<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species <strong>on</strong> different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tree bole by testing for chisquare<br />

goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> fit. The null hypo<strong>the</strong>sis was equal rate <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence <strong>on</strong> both<br />

parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> trunk, although <strong>the</strong> upper trunk was 1 1 times larger than <strong>the</strong> lower,<br />

assuming that <strong>the</strong> tree has a c<strong>on</strong>ical shape. The shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lowest part <str<strong>on</strong>g>of</str<strong>on</strong>g> base,<br />

however, equalizes <strong>the</strong> areas perceptibly. Hypogymnia tubulosa was more frequent<br />

<strong>on</strong> <strong>the</strong> upper trunk <str<strong>on</strong>g>of</str<strong>on</strong>g> pine (x 2 = 4-45, P


170 THE LICHENOLOGIST Vol.24<br />

TABLE 3. Percentage frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species occurring <strong>on</strong> <strong>the</strong> trunks <str<strong>on</strong>g>of</str<strong>on</strong>g> pine and spruce<br />

Macrolichens<br />

Pine<br />

Spruce<br />

Crustose lichens<br />

Pine<br />

Spruce<br />

Alectoria sarmentosa<br />

Bryoria capillaris<br />

B. furcellata<br />

B.fuscescens<br />

Cetraria chlorophylla<br />

C. islandica<br />

C. pinastri<br />

C. sepincola<br />

Cladina arbuscula<br />

C. rangiferina<br />

C. stellaris<br />

Clad<strong>on</strong>ia bacilliformis<br />

C. botrytes<br />

C. carneola<br />

C. cenotea<br />

C. chlorophaea coll.<br />

C. c<strong>on</strong>iocraea<br />

C. cornuta<br />

C. crispata<br />

C. digitata<br />

C. fimbriata<br />

Clad<strong>on</strong>ia spp.<br />

Evernia mesomorpha<br />

E. prunastri<br />

Hypogymnia physodes<br />

H. tubulosa<br />

Imshaugia aleurites<br />

Parmelia sulcata<br />

Parmeliopsis ambigua<br />

P. hyperopta<br />

Platismatia glauca<br />

Pseudevernia furfuracea<br />

Usnea hirta<br />

U. filipendulaj subfloridana<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> macrolichen species<br />

0-8<br />

920<br />

51 2<br />

91-2<br />

64-8<br />

10-8<br />

92-8<br />

17-6<br />

1-6<br />

8-8<br />

10-8<br />

1-6<br />

40<br />

—<br />

9-6<br />

6-4<br />

1-6<br />

3-2<br />

0-8<br />

9-6<br />

40<br />

73-6<br />

5-6<br />

—<br />

1000<br />

26-4<br />

800<br />

8-8<br />

95-2<br />

960<br />

43-2<br />

4-8<br />

8-8<br />

20-8<br />

32<br />

_<br />

1000<br />

26-7<br />

950<br />

1000<br />

—<br />

93-3<br />

—<br />

—<br />

—<br />

—<br />

3-3<br />

—<br />

1-6<br />

6-7<br />

50<br />

3-3<br />

—<br />

—<br />

133<br />

3-3<br />

63-3<br />

—<br />

150<br />

1000<br />

23-3<br />

Calicium glaucellum<br />

C. parvum<br />

C. trabinellum<br />

C. viride<br />

Chaeno<strong>the</strong>ca chrysocephala<br />

C. subroscida<br />

C. trichialis<br />

Cyphelium inquinans<br />

Haematomnia elatinum<br />

Hypocenomyce scalaris<br />

Lecanora circumborealis<br />

L.fuscescens<br />

L. hypoptella<br />

L. phaeostigma<br />

L. pulicaris<br />

L. symmicta<br />

Lecidea aeruginosa<br />

L. efflorescens<br />

Lepraria incana<br />

Micarea melanea<br />

Microcalicium disseminatum*<br />

Mycoblastus sanguinarius<br />

Ochrolechia alb<str<strong>on</strong>g>of</str<strong>on</strong>g>iavescens<br />

O. androgyna<br />

Scoliciosporum chlorococcum<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> crustose species<br />

3-2<br />

2-4<br />

—<br />

—<br />

—<br />

—<br />

—<br />

—<br />

9-6<br />

9-6<br />

—<br />

0-8<br />

2-4<br />

10-8<br />

16-8<br />

0-8<br />

0-8<br />

—<br />

49-6<br />

10-8<br />

—<br />

7-2<br />

0-8<br />

680<br />

+<br />

16<br />

3-3<br />

—<br />

1-6<br />

31-7<br />

650<br />

150<br />

13 3<br />

16<br />

—<br />

—<br />

6-7<br />

—<br />

—<br />

—<br />

1-6<br />

—<br />

—<br />

1-6<br />

51-7<br />

—<br />

1-6<br />

6-7<br />

—<br />

21-7<br />

+<br />

15<br />

41-7<br />

21-7<br />

980<br />

1000<br />

600<br />

—<br />

78-3<br />

150<br />

23<br />

Total no. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species<br />

48<br />

38<br />

Pine, n= 125; spruce, « = 60.<br />

* = N<strong>on</strong>-lichenized species; + = comm<strong>on</strong>.<br />

Nomenclature follows Santess<strong>on</strong> (1984).<br />

androgyna (incl. O. alb<str<strong>on</strong>g>of</str<strong>on</strong>g>iavescens) (x 2 = 4-63, P < 0-1, df = 1) and Hypocenomyce<br />

scalaris (x 2 = 2-88, P


1992 <strong>Epiphytic</strong> lichens—Hyvdrinen et al. 171<br />

TABLE 4. Student's t-test values <str<strong>on</strong>g>of</str<strong>on</strong>g> regressi<strong>on</strong> coefficients (reciprocal averaging) and variance inflati<strong>on</strong><br />

factors (VIF, can<strong>on</strong>ical corresp<strong>on</strong>dence analysis) for envir<strong>on</strong>mental parameters in <strong>the</strong> pine, spruce and<br />

combined ordinati<strong>on</strong>s<br />

Pines (df= 14)<br />

Spruces(df=<br />

12)<br />

Combined (df= 37)<br />

Axl<br />

Ax 2<br />

VIF<br />

Axl<br />

Ax2<br />

VIF<br />

Axl<br />

Ax 2<br />

VIF<br />

<str<strong>on</strong>g>Stand</str<strong>on</strong>g> age<br />

Host tree<br />

Bark acidity<br />

Basal area<br />

Canopy cover<br />

Average height<br />

Forest type<br />

ECT<br />

EVT<br />

EVT/VMT<br />

VMT<br />

2-49*<br />

—<br />

0-59<br />

012<br />

0-46<br />

0-83<br />

1-44<br />

0-38<br />

0-38<br />

—<br />

0-93<br />

—<br />

0-58<br />

0-95<br />

100<br />

0-74<br />

002<br />

006<br />

006<br />

—<br />

5-36<br />

—<br />

1-81<br />

3-50<br />

3-07<br />

3-87<br />

1-46<br />

2-42<br />

2-22<br />

—<br />

006<br />

—<br />

1-51<br />

0-63<br />

1-40<br />

002<br />

—<br />

—<br />

0-65<br />

0-65<br />

002<br />

—<br />

0-33<br />

005<br />

0-29<br />

0-25<br />

—<br />

—<br />

0-60<br />

0-60<br />

7-32<br />

—<br />

3-80<br />

2-24<br />

1-92<br />

4-72<br />

—<br />

—<br />

2'22<br />

2-22<br />

2-62*<br />

219*<br />

1-24<br />

0-64<br />

0-74<br />

0-60<br />

—<br />

—<br />

—<br />

—<br />

203*<br />

107<br />

0-42<br />

1-26<br />

077<br />

0-29<br />

—<br />

—<br />

—<br />

—<br />

3-29<br />

3-73<br />

3-47<br />

214<br />

2-28<br />

2-82<br />

—<br />

—<br />

—<br />

—<br />

Degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom (df=n —q—1), where n = number <str<strong>on</strong>g>of</str<strong>on</strong>g> samples and q = number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental variables.<br />

* = Critical values <str<strong>on</strong>g>of</str<strong>on</strong>g> r-distributi<strong>on</strong> between 005 and 001.<br />

ECT = Empetrum—Calluna type; EVT = Empetrum— Vaccinium type; VMT = Vaccinium—Myrtillus<br />

type; EVT/VMT = intermediate type <str<strong>on</strong>g>of</str<strong>on</strong>g> EVT and VMT. Forest site types according to Kalela<br />

(1961).<br />

spruces and pines to <strong>the</strong> age factor. In <strong>the</strong> combined pine-spruce ordinati<strong>on</strong> <strong>the</strong><br />

age <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stand c<strong>on</strong>tributes even more to <strong>the</strong> regressi<strong>on</strong> than does <strong>the</strong> host tree.<br />

In general, <strong>the</strong> largely different r-values for age in <strong>the</strong> separate pine and spruce<br />

ordinati<strong>on</strong>s indicate differential changes in <strong>the</strong> trees as substrata during <strong>the</strong>ir<br />

growth and/or in pine and spruce stands as envir<strong>on</strong>mental entities.<br />

It is also significant that <strong>the</strong> Variance Inflati<strong>on</strong> Factors in all <strong>the</strong> ordinati<strong>on</strong>s<br />

were fairly low (Table 4). The occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> highest VIF values, which are<br />

still well below <strong>the</strong> limit value <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 proposed by ter Braak (1988), in <strong>the</strong> pine<br />

and spruce ordinati<strong>on</strong>s for <strong>the</strong> age <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stand never<strong>the</strong>less do not show multicollinearity<br />

with <strong>the</strong> o<strong>the</strong>r envir<strong>on</strong>mental variables included in <strong>the</strong> ordinati<strong>on</strong>.<br />

C<strong>on</strong>sequently, all <strong>the</strong> variables c<strong>on</strong>tribute to <strong>the</strong> regressi<strong>on</strong> equati<strong>on</strong> and <strong>the</strong><br />

regressi<strong>on</strong> coefficients merit interpretati<strong>on</strong>. The interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> two pairs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variables in <strong>the</strong> pine ordinati<strong>on</strong> (Fig. 2), stand age and height and basal area and<br />

canopy cover, which seemed to form closely related factors (Table 2), were<br />

tested by c<strong>on</strong>structing product variables. These variables did not appreciably<br />

affect <strong>the</strong> first eigenvalue (0127 versus 0131), and thus were not used in <strong>the</strong><br />

final ordinati<strong>on</strong>. In <strong>the</strong> ordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species living <strong>on</strong> pine (Fig. 2), <strong>the</strong> first<br />

two CCA axes accounted for 74-3% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variance in <strong>the</strong> weighted averages<br />

with respect to each envir<strong>on</strong>mental variable used here.<br />

The species <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pine stands could be classified by joint plot projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

weighted averages as those more abundant in young forest and those favouring<br />

old forests. Typical species <str<strong>on</strong>g>of</str<strong>on</strong>g> young forests are Cetraria sepincola, <strong>the</strong> genus<br />

Lecanora (L. pulicaris and L. fuscescens being most frequent) and also


172<br />

^r H. sea<br />

THE LICHENOLOGIST<br />

AX 2<br />

Vol. 24<br />

1 Calic.<br />

Lecidea spp.<br />

P. fur<br />

-- 3.0<br />

P. amb<br />

Ochrol. spp.<br />

• B. fur<br />

# - I. ale<br />

P. hyp<br />

C. pin<br />

VU. hir<br />

• • P. sul<br />

E. mes • H. tub<br />

Lecanora spp.<br />

3.0<br />

C. sep<br />

HEIGHT<br />

Clad<strong>on</strong>ia spp.<br />

B. fus<br />

P. gla<br />

JD. chl<br />

CANOPY<br />

COVER<br />

AX1<br />

BASAL<br />

AREA<br />

--2.0 • B. cap<br />

U. fil/sub<br />

FIG. 2. Ordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species <strong>on</strong> pine by can<strong>on</strong>ical corresp<strong>on</strong>dence analysis (CCA). The<br />

eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first and sec<strong>on</strong>d ordinati<strong>on</strong> axes are 0127 and 0033, respectively. B. cap =<br />

Bryoria capillaris, B. fur = B. furcellata, B. fus = B. fuscescens, Calic. = Calicium glaucellumlC.<br />

parvum, C. chl = Cetraria chlorophylla, C. pin = C. pinastri, C. sep = C. sepincola, E. mes = Evernia<br />

mesomorpha, H. sea = Hypocenomyce scalaris, H. phy = Hypogymnia physodes, H. tub = H. tubulosa,<br />

I. ale = Imshaugia aleurites, Ochrol. = Ochrolechia androgyna (incl. O. alb<str<strong>on</strong>g>of</str<strong>on</strong>g>lavescens), P. amb =<br />

Parmeliopsis ambigua, P. hyp = P. hyperopta, P. gla = Platismatia glauca, P. fur = Pseudevernia<br />

furfuracea, U. fil/sub = UsneafilipendulajU. subfloridana, U. hir= U. hirta.<br />

Hypogymnia tubulosa. In c<strong>on</strong>trast, Hypocenomyce scalaris, Lecidea species and<br />

<strong>the</strong> genus Calicium (C. glaucellum and C. parvum) formed a distinct group<br />

occurring more abundantly in old forests. Usneafilipendula (and U. subftoridana)<br />

and Clad<strong>on</strong>ia species <strong>on</strong> <strong>the</strong> upper trunk also favoured old forests, but seemed<br />

to differ from <strong>the</strong> previous group in <strong>the</strong>ir resp<strong>on</strong>ses to <strong>the</strong> o<strong>the</strong>r envir<strong>on</strong>mental<br />

factors measured.


1992 <strong>Epiphytic</strong> lichens—Hyvdrinen et al.<br />

173<br />

AX 2<br />

• 25<br />

-- 0.75<br />

24 10<br />

• 6<br />

EVT<br />

• 14<br />

5 V 7 13<br />

2 H.o<br />

CANOPY<br />

COVER<br />

AX1<br />

18<br />

BASAL<br />

AREA<br />

-. 0.75<br />

FIG. 3. Site ordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pine stands by CCA. The centroids <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nominal variables are<br />

indicated by squares. The ' managed ' stands are nos. 1-12 and <strong>the</strong> ' near natural' <strong>on</strong>es nos. 13-25,<br />

<strong>the</strong> numbers running according to ascending age <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stands. The eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first and<br />

sec<strong>on</strong>d ordinati<strong>on</strong> axes are 0-127 and 0033, respectively. ECT = Empetrum-Calluna type; EVT =<br />

Empetrum-Vactinium type; VMT = Vaccinium-Myrtillus type; EVT/VMT = intermediate type <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

EVT and VMT.<br />

Some difficulty is encountered in interpreting <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> acidity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark<br />

(presented in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> pH values in <strong>the</strong> figures) and forest density (basal area<br />

and canopy cover). Usneafilipendula could also be classified as a species typical<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dense, old forests and showed a preference for less acid bark, and Bryoria<br />

capillaris seemed to act in <strong>the</strong> same way regarding pH. The high density <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

young, n<strong>on</strong>-thinned forests markedly affects <strong>the</strong> distributi<strong>on</strong> pattern. Cetraria<br />

sepincola and <strong>the</strong> genus Lecanora, for example, which are comm<strong>on</strong> in young<br />

forests, also tend to prefer a higher basal area and a larger canopy cover.<br />

The young stands did not show any grouping into <strong>the</strong> classes' managed ' and<br />

' near natural' in <strong>the</strong> ordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples (Fig. 3), and <strong>the</strong> older dense<br />

forests (stands 17-23) formed a cluster loaded close to <strong>the</strong> origin from which<br />

stand 24, and above all stand 25, are distinct. The latter represents an extremely<br />

old, naturally open stand surrounded by fens and <strong>the</strong> pines present had a bark <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

very high acidity (pH = 3-43). The variati<strong>on</strong> between <strong>the</strong> stands can also be<br />

related to <strong>the</strong> different forest types to some extent, although much <str<strong>on</strong>g>of</str<strong>on</strong>g> this effect<br />

is included in such stand characteristics as basal area.


174 THE LICHENOLOGIST Vol. 24<br />

A> :2<br />

- 1 0<br />

# E. pru<br />

pH<br />

1.6<br />

B. fur #<br />

P. gla<br />

B. fus<br />

,U .hir<br />

I. ale<br />

C. chi/<br />

P. hyp<br />

P. amb \ .<br />

Ochrol. spp.<br />

HEIGHT<br />

^ ^ ^<br />

STAND AGE<br />

Calic.<br />

•<br />

U. fil/sub<br />

B. cap<br />

X \ \<br />

C. pin<br />

P. sul<br />

1.6<br />

\<br />

\<br />

- 1<br />

\<br />

tub<br />

\<br />

BASAL<br />

AREA<br />

H*phy ^<br />

Lecanora spp.<br />

CANOPY<br />

\. COVER<br />

AX<br />

1<br />

FIG. 4. Ordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species <strong>on</strong> spruce by CCA. The eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first and sec<strong>on</strong>d<br />

ordinati<strong>on</strong> axes are 0187 and 0078, respectively. Calic. = Caliciales species {Chaeno<strong>the</strong>ca<br />

chrysocephala, C. subroscida and Calicium viride as <strong>the</strong> most frequent), E. pru = Evernia prunastri,<br />

P. sul = Parmelia sulcata.<br />

N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> envir<strong>on</strong>mental variables used in <strong>the</strong> CCA ordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

spruce data (Fig. 4) reached such a dominant positi<strong>on</strong> as did stand age with <strong>the</strong><br />

pines. Bark acidity and stand age showed <strong>the</strong> closest correlati<strong>on</strong> with axis <strong>on</strong>e<br />

and basal area with axis two. These first two axes accounted for 72-9% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

variance in <strong>the</strong> envir<strong>on</strong>mental variables used, with eigenvalues little higher<br />

than in <strong>the</strong> pine ordinati<strong>on</strong>. The most interesting feature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species distributi<strong>on</strong><br />

was <strong>the</strong> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> family Caliciaceae (Calicium viride, Chaeno<strong>the</strong>ca<br />

chrysocephala and C. subroscida as <strong>the</strong> most frequent species). This group,<br />

characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> spruces, seemed to be more abundant <strong>on</strong> acid bark in <strong>the</strong> same<br />

way as <strong>the</strong> two Calicium species in <strong>the</strong> pine ordinati<strong>on</strong>, but <strong>the</strong>y also favoured<br />

shady habitats, in c<strong>on</strong>trast to <strong>the</strong> pine ordinati<strong>on</strong>.<br />

The combined pine-spruce ordinati<strong>on</strong> enabled <strong>the</strong> epiphytic lichen species<br />

to be grouped according to phorophyte specificity and <strong>the</strong>ir resp<strong>on</strong>se to stand<br />

age. Although <strong>the</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pH gradient in Fig. 5 indicates <strong>the</strong> divisi<strong>on</strong><br />

between pines and spruces, <strong>the</strong> nominal variables ' spruce' and ' pine' (see<br />

Table 4) were still included in <strong>the</strong> analysis. The centroids <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se variables<br />

are not presented because <strong>on</strong> this scale <strong>the</strong>y would be situated near <strong>the</strong> centre<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> axes. The species occurring almost solely <strong>on</strong> pines were distributed all<br />

al<strong>on</strong>g <strong>the</strong> age gradient. Thus Cetraria sepincola, Hypogymnia tubulosa, Evernia


1992 <strong>Epiphytic</strong> lichens—Hyvarinen et al. 175<br />

P. sul<br />

AX 2<br />

_L 4.0<br />

CANOPY<br />

COVER<br />

Calic.<br />

• C.sep<br />

Lecanoraspp.<br />

BASAL<br />

AREA<br />

C. pin<br />

B. cap<br />

• C.chl<br />

• E. pru<br />

4.0<br />

H. tub*<br />

U. hir<br />

H. phy<br />

P. hy>-<br />

I. ale<br />

B. fur<br />

B.fus<br />

P. amb<br />

P. gla<br />

4.0<br />

AX 1<br />

• Ochrol. spp.<br />

U. "/sub<br />

Clad<strong>on</strong>ia spp.<br />

HEIGHT<br />

Lecidea spp.<br />

STAN D AG E<br />

_. 4.0<br />

H. sea<br />

FIG. 5. Ordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species <strong>on</strong> pines and spruces combined by CCA. The eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

first and sec<strong>on</strong>d ordinati<strong>on</strong> axes are 0-132 and 0090, respectively.<br />

mesomorpha and Hypocenomyce scalaris formed a group characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> pines<br />

with changing preference from young stands to old <strong>on</strong>es. Parmeliopsis ambigua,<br />

Ochrolechia spp. and U. filipendula were more abundant in old stands and<br />

slightly <strong>on</strong> pines, while Bryoria capillaris and C. chlorophylla are age generalists<br />

with a slight preference for spruce. Bryoria fuscescens and Platismatia glauca<br />

fall between <strong>the</strong>se two groups. The core species <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lichen vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

pines and spruces were Hypogymnia physodes, Parmeliopsis hyperopta, U. hirta,<br />

C. pinastri, Imshaugia aleurites and B. furcellata, <strong>the</strong> last two being more<br />

abundant <strong>on</strong> pines. The family Caliciaceae as a whole was more comm<strong>on</strong> in


176 THE LICHENOLOGIST Vol.24<br />

older forest, phorophyte specificity being a more important factor for it than<br />

stand age.<br />

Discussi<strong>on</strong><br />

Although <strong>the</strong> lichen vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boreal forests has been surveyed quite<br />

extensively in Nor<strong>the</strong>rn Europe (e.g. Ahlner 1948; Koskinen 1955; Somermaa<br />

1972; Esseen 1981) and North America (e.g. Ahti 1964; Kalgutkar & Bird 1969;<br />

Yarrant<strong>on</strong> 1972; Jesberger & Sheard 1973; Eversman et al. 1987), floristic<br />

research has mostly c<strong>on</strong>cerned <strong>the</strong> sou<strong>the</strong>rn subz<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boreal forests and<br />

includes little data with which <strong>the</strong> present results can be compared. Esseen<br />

(1981) found 24 macrolichens <strong>on</strong> Norway spruce and 18 <strong>on</strong> Scots pine in<br />

Central Sweden (middle and sou<strong>the</strong>rn boreal subz<strong>on</strong>es), <strong>the</strong>se figures being<br />

comparable to <strong>the</strong> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> macrolichens observed here when <strong>the</strong> genus<br />

Clad<strong>on</strong>ia is excluded. Moreover, Somermaa (1972) surveyed <strong>the</strong> epiphytic<br />

lichen vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several forest types in Est<strong>on</strong>ia (hemiboreal z<strong>on</strong>e, Ahti et al.<br />

1968), where <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichen species <strong>on</strong> Scots pines varied from<br />

33 to 50 depending <strong>on</strong> <strong>the</strong> forest type. The differences between <strong>the</strong> total<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichen species found by Somermaa (69 <strong>on</strong> Scots pines and<br />

74 <strong>on</strong> Norway spruces) and <strong>the</strong> present figures are surprisingly small c<strong>on</strong>sidering<br />

<strong>the</strong> much more favourable macroclimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hemiboreal z<strong>on</strong>e and <strong>the</strong><br />

higher number <str<strong>on</strong>g>of</str<strong>on</strong>g> forest types surveyed by Somermaa.<br />

The differences in lichen vegetati<strong>on</strong> between <strong>the</strong> end-points <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> age gradient<br />

are based <strong>on</strong> differences in species abundance ra<strong>the</strong>r than species compositi<strong>on</strong>.<br />

The species dominating young stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pine stands, o<strong>the</strong>r than those<br />

menti<strong>on</strong>ed in <strong>the</strong> results, seemed mostly to have wide ecological amplitudes and<br />

occurred quite uniformly throughout <strong>the</strong> age series. A direct visual survey <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species revealed some interacti<strong>on</strong>s between age and o<strong>the</strong>r<br />

envir<strong>on</strong>mental parameters that did not emerge from <strong>the</strong> species ordinati<strong>on</strong>s.<br />

For example, <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> B. furcellata increased al<strong>on</strong>g <strong>the</strong> age gradient in<br />

those stands classified as ' managed ' but decrease in <strong>the</strong> ' near natural' stands.<br />

The positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B. furcellata in <strong>the</strong> pine ordinati<strong>on</strong> thus indicated indifference<br />

ra<strong>the</strong>r than a preference for young stands. In general, <strong>the</strong> slightly increasing<br />

total cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> epiphytic lichens with age was mostly caused by <strong>the</strong> increasing<br />

cover <str<strong>on</strong>g>of</str<strong>on</strong>g> P. ambigua, which was sec<strong>on</strong>d in abundance to H. physodes <strong>on</strong> both <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> phorophytes.<br />

The observed pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> vertical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> epiphytes can<br />

best be explained by <strong>the</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark. According to Koskinen (1955),<br />

<strong>the</strong> bark at <strong>the</strong> base <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> trunk is moister and less acid because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> proximity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> soil, and it may have a greater water-holding capacity (Kalgutkar & Bird<br />

1969). The leprose growth forms <str<strong>on</strong>g>of</str<strong>on</strong>g> Pertusariaceae at least are known to be<br />

adapted to moist c<strong>on</strong>diti<strong>on</strong>s (Hal<strong>on</strong>en et al. 1991). Ochrolechia androgyna,<br />

which was more frequent <strong>on</strong> <strong>the</strong> lower trunk and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten grows <strong>on</strong> moss, provides<br />

a good example <str<strong>on</strong>g>of</str<strong>on</strong>g> this feature. The winter snow cover, giving shelter from cold<br />

temperatures, could be a fur<strong>the</strong>r explanati<strong>on</strong> (Barkman 1958). Wirth (1987)<br />

argues that P. hyperopta, which is a relatively weak competitor <strong>on</strong> <strong>the</strong> upper<br />

parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> trunk, is highly abundant <strong>on</strong> <strong>the</strong> base because it is well adapted to


1992 <strong>Epiphytic</strong> lichens—Hyvdrinen et al. 177<br />

snow cover. The closely related species P. ambigua did not show this kind<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vertical distributi<strong>on</strong> in <strong>the</strong> present results, however, in c<strong>on</strong>trast to <strong>the</strong><br />

observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Somermaa (1972) in Est<strong>on</strong>ia and S<strong>on</strong>ess<strong>on</strong> (1989) in Swedish<br />

Lapland.<br />

The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> stand age <strong>on</strong> <strong>the</strong> epiphytic lichen vegetati<strong>on</strong> <strong>on</strong> pines is<br />

based not <strong>on</strong>ly <strong>on</strong> changes in microclimate but also <strong>on</strong> changes in <strong>the</strong> physical<br />

and chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark. The scaly, peeling bark <str<strong>on</strong>g>of</str<strong>on</strong>g> young pines<br />

changes to <strong>the</strong> thick, rough shield bark <str<strong>on</strong>g>of</str<strong>on</strong>g> old trees, providing sheltered microhabitats<br />

(cracks, etc.), which are reported to be very important for trapping<br />

lichen propagules prior to germinati<strong>on</strong> (Armstr<strong>on</strong>g 1990). The bark <str<strong>on</strong>g>of</str<strong>on</strong>g> spruce<br />

peels more easily and has a finer texture than that <str<strong>on</strong>g>of</str<strong>on</strong>g> pine, and it does not change<br />

much with age, which could explain <strong>the</strong> more homogeneous epiphytic vegetati<strong>on</strong><br />

<strong>on</strong> <strong>the</strong> spruces. According to Eversman et al. (1987) a scaly bark surface could<br />

effectively prevent <strong>the</strong> attachment <str<strong>on</strong>g>of</str<strong>on</strong>g> diaspores to <strong>the</strong> trunk and thus be a major<br />

reas<strong>on</strong> for <strong>the</strong> differences in epiphyte vegetati<strong>on</strong> observed between <strong>the</strong> three<br />

c<strong>on</strong>ifer species <strong>the</strong>y studied. Corresp<strong>on</strong>dingly, we have found a close negative<br />

correlati<strong>on</strong> between <strong>the</strong> growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> pine saplings and <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphyte<br />

species using <strong>the</strong>m as a substratum, which is presumed to be due to <strong>the</strong> more<br />

marked exfoliati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark <str<strong>on</strong>g>of</str<strong>on</strong>g> faster-growing saplings (Hyvarinen et al.<br />

unpublished data). Kalgutkar & Bird (1969) also stated that <strong>the</strong> differences in<br />

epiphyte successi<strong>on</strong> between Larix lyallii and Pinus albicaulis are caused by<br />

divergent changes in bark texture and water-holding capacity.<br />

According to Barkman (1958) bark changes to become more acid during<br />

stand successi<strong>on</strong>. The bark <str<strong>on</strong>g>of</str<strong>on</strong>g> spruce seemed to act in a similar way, as can be<br />

seen in <strong>the</strong> present spruce ordinati<strong>on</strong>, where <strong>the</strong> pH <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark carries a higher<br />

weighting than stand age as an envir<strong>on</strong>mental factor. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

higher acidity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bark <str<strong>on</strong>g>of</str<strong>on</strong>g> spruce <strong>on</strong> <strong>the</strong> differences between <strong>the</strong> epiphytic<br />

lichen vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se two c<strong>on</strong>ifers seems to be obvious, however, especially<br />

since those spruce stands with lichen vegetati<strong>on</strong> most closely resembling that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pine stands are <strong>the</strong> <strong>on</strong>es with <strong>the</strong> highest pH values measured. For example, <strong>the</strong><br />

family Caliciaceae, which is <strong>the</strong> key group differentiating between <strong>the</strong> lichen<br />

floras <strong>on</strong> <strong>the</strong>se two c<strong>on</strong>ifers, c<strong>on</strong>sistently occurs more frequently <strong>on</strong> acid bark.<br />

This group, or at least some <str<strong>on</strong>g>of</str<strong>on</strong>g> its most abundant species (e.g. Chaeno<strong>the</strong>ca<br />

chrysocephala and C. subroscida), may have a good tolerance to acidity, which<br />

may be a decisive factor in competiti<strong>on</strong> with macrolichens for space.<br />

Shade tolerance could be ano<strong>the</strong>r factor that makes it possible for crustose<br />

lichens to receive more space <strong>on</strong> <strong>the</strong> trunks <str<strong>on</strong>g>of</str<strong>on</strong>g> spruces. The shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spruce<br />

canopy causes quite different microclimatic c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> its trunk from those<br />

<strong>on</strong> <strong>the</strong> trunks <str<strong>on</strong>g>of</str<strong>on</strong>g> pines. Fur<strong>the</strong>rmore, <strong>the</strong> epiphyte lichen vegetati<strong>on</strong> is known to<br />

differ greatly between <strong>the</strong> branches and trunks <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>ifers (Pike et al. 1975,<br />

1977). The trunks <str<strong>on</strong>g>of</str<strong>on</strong>g> spruces receive less light, which could be <strong>the</strong> main reas<strong>on</strong><br />

for <strong>the</strong> greater abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> macrolichens <strong>on</strong> <strong>the</strong>ir branches than <strong>on</strong> <strong>the</strong> trunk,<br />

whereas, since <strong>the</strong> stem flow is presumed to depend <strong>on</strong> <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tree<br />

canopy (Seppanen 1964), <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water that reaches <strong>the</strong> bark <str<strong>on</strong>g>of</str<strong>on</strong>g> spruces<br />

can be far less than in pines. However, <strong>the</strong> l<strong>on</strong>ger desiccati<strong>on</strong> time after precipitati<strong>on</strong><br />

may have a compensating effect. In additi<strong>on</strong>, lichens can effectively gain<br />

moisture by water vapour uptake (Kershaw 1985; Rundel 1988), and particularly<br />

<strong>the</strong> species with green algae (all <strong>the</strong> species here) can maintain a positive


178 THE LICHENOLOGIST Vol.24<br />

net photosyn<strong>the</strong>sis even without liquid water (Lange et al. 1986,1988). C<strong>on</strong>sequently<br />

stem flow is likely to be <str<strong>on</strong>g>of</str<strong>on</strong>g> more importance for nutrient availability<br />

than for <strong>the</strong> water balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lichen thallus. The occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> crustose<br />

species more frequently <strong>on</strong> spruce trunks could be a compromise between<br />

competitive pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> faster-growing growth forms and unfavourable light<br />

c<strong>on</strong>diti<strong>on</strong>s, analogous to <strong>the</strong> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Jesberger & Sheard (1973) and<br />

Kantvilas & Minchin (1989), who proposed <strong>the</strong> roughness and dryness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

bark as envir<strong>on</strong>mental factors creating room for crustose species.<br />

Time and height-time interacti<strong>on</strong> were found to be c<strong>on</strong>sistently important<br />

for <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macrolichens <strong>on</strong> black spruce by Yarrant<strong>on</strong> (1972), who<br />

stated that <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> absolute age is merely a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> increasing height<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> trees, which alters <strong>the</strong> microclimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stand. In <strong>the</strong> present work <strong>the</strong><br />

average height <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stand, as indicated by <strong>the</strong> length and close proximity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> arrow to <strong>the</strong> first axis in <strong>the</strong> pine ordinati<strong>on</strong> (Fig. 2), is closely related to <strong>the</strong><br />

pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> community variati<strong>on</strong>, although <strong>the</strong> distincti<strong>on</strong> between <strong>the</strong> stand age<br />

and <strong>the</strong> average height is too small to permit separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se<br />

variables <strong>on</strong> <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual species by visual interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> plot pattern. Overall, <strong>the</strong> r-values for <strong>the</strong> regressi<strong>on</strong> coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se<br />

variables (Table 4) clearly indicate that average height has <strong>on</strong>ly a small<br />

independent functi<strong>on</strong> with respect to community variati<strong>on</strong> and that it fuses into<br />

<strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> stand age and o<strong>the</strong>r changes in <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stand and<br />

individual trees.<br />

Interspecific morphological variability, especially in <strong>the</strong> surface area to<br />

weight ratio, is known to be significant for <strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> lichens through its<br />

direct influence <strong>on</strong> water balance (Lars<strong>on</strong> & Kershaw 1976; Kershaw 1985).<br />

Usnea filipendula and B. capillaris, which represent slender and pendulous<br />

growth forms, clearly prefer denser stands than <strong>the</strong> more shrub-like, robust<br />

species B.furcellata and U. hirta. Bryoriafuscescens, which is quite comm<strong>on</strong> in<br />

all kind <str<strong>on</strong>g>of</str<strong>on</strong>g> stands, could be c<strong>on</strong>sidered indifferent in this respect. The tax<strong>on</strong>omy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> B. fuscescens is not clear, however, and it is c<strong>on</strong>sidered to be a tax<strong>on</strong><br />

c<strong>on</strong>taining several forms (Brodo & Hawksworth 1977) that may have different<br />

ecological demands.<br />

The growth form <str<strong>on</strong>g>of</str<strong>on</strong>g> a species is closely linked to <strong>the</strong> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological<br />

strategy am<strong>on</strong>g epiphytes. Rogers (1988,1990) classified lichen species according<br />

to Grime's (1979) triangular ordinati<strong>on</strong> model, linking fruticose and foliose<br />

growth forms with a competitive strategy and crustose <strong>on</strong>es with stress-tolerant<br />

and ruderal strategies. As suggested by Rogers & Barnes (1986), <strong>the</strong> ecological<br />

strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> a lichen is related to <strong>the</strong> substratum type, with short-term substrata<br />

open to col<strong>on</strong>izati<strong>on</strong> <strong>on</strong>ly by ruderal species. In <strong>the</strong> present material a ruderal<br />

strategy c<strong>on</strong>cerning successi<strong>on</strong>al change in <strong>the</strong> epiphytic lichen communities<br />

could <strong>on</strong>ly be associated with such species as Cetraria sepincola and Lecanora<br />

spp., which give way to o<strong>the</strong>rs after col<strong>on</strong>izing a new surface <strong>on</strong> <strong>the</strong> bark <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pines.<br />

Overall, <strong>the</strong> mean strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lichen species with increasing stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> substratum and envir<strong>on</strong>ment during natural successi<strong>on</strong> could be assumed<br />

to shift slightly from ruderality towards <strong>the</strong> competitive pole (Rogers 1988).<br />

C<strong>on</strong>sequently, species such as Clad<strong>on</strong>ia spp. and U. filipendula, which are<br />

abundant in dense, old pine-stands, are c<strong>on</strong>sidered to be good competitors


1992 <strong>Epiphytic</strong> lichens—Hyvdrinen et al. 179<br />

owing to <strong>the</strong>ir growth form, while <strong>the</strong> crustose species preferring acidity, such<br />

as <strong>the</strong> family Caliciaceae and Lecidea spp., could be classified as stress-tolerant.<br />

Special thanks are extended to Mr O. Vitikainen and Dr L. Tibell for <strong>the</strong>ir help in identifying some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lichen specimens. We also wish to thank Dr J. Oksanen and Mr T. Muotka for reading <strong>the</strong><br />

manuscript and making c<strong>on</strong>structive suggesti<strong>on</strong>s and Mr Malcolm Hicks, M.A. for revising <strong>the</strong><br />

language. The research was supported by <strong>the</strong> Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Finland.<br />

REFERENCES<br />

Adams, D. B. & Risser, P. G. (1971) Some factors influencing <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> bark lichens in north<br />

central Oklahoma. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 58: 752-757.<br />

Ahlner, S. (1948) Utbredningstyper bland nordiska barrtradslavar. Acta Phytogeographica Suecica<br />

22: 1-257.<br />

Ahti, T. (1964) Macrolichens and <strong>the</strong>ir z<strong>on</strong>al distributi<strong>on</strong> in boreal and arctic Ontario, Canada.<br />

Annales Botanici Fennici 1: 1-35.<br />

Ahti, T., Hamet-Ahti, L. & Jalas, J. (1968) Vegetati<strong>on</strong> z<strong>on</strong>es and <strong>the</strong>ir secti<strong>on</strong>s in northwestern<br />

Europe. Annales Botanici Fennici 5: 169—211.<br />

Armstr<strong>on</strong>g, R. A. (1990) Dispersal, establishment and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> soredia and fragments <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

lichen Hypogymniaphysodes (L.) Nyl. New Phytologist 114:239—245.<br />

Barkman, J. J. (1958) Phytosociology and Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Cryptogamic Epiphytes. Assen: VanGorcum.<br />

Bitterlich, W. (1948) Die Winkelzahlprobe. Allgemeine Forst und Holzwirtschaft Zeitung 59:<br />

4-5.<br />

Brodo, I. M. & Hawksworth, D. L. (1977) Alectoria and allied genera in North America. Opera<br />

BotanicaAl: 1-161.<br />

Clements, F. E. (1916) Plant successi<strong>on</strong>: an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>. Washingt<strong>on</strong>:<br />

Carnegie Institute.<br />

Culbers<strong>on</strong>, C. F. & Kristinss<strong>on</strong>, H.-D. (1970) A standardised method for <strong>the</strong> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lichen products. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chromatography 46:85—93.<br />

Esseen, P.-A. (1981) Host specificity and ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic macrolichens in some central<br />

Swedish spruce forests. Wahlenbergia 7: 73—70.<br />

Eversman, S., Johns<strong>on</strong>, C. & Gustafs<strong>on</strong>, D. (1987) Vertical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichens <strong>on</strong><br />

three tree species in Yellowst<strong>on</strong>e nati<strong>on</strong>al park. Bryologist 90:212-216.<br />

Grime, J. P. (1979) Plant Strategies and Vegetati<strong>on</strong>al Processes. L<strong>on</strong>d<strong>on</strong>: Wiley.<br />

Hale, M. E. (1965) Vertical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cryptogams in a Red Maple Swamp in C<strong>on</strong>necticut.<br />

Bryologist 68: 193-197.<br />

Hal<strong>on</strong>en, P., Hyvarinen, M. & Kauppi, M. (1991) <strong>Epiphytic</strong> lichens in relati<strong>on</strong> to climate in mesic<br />

heath forests <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> middle boreal subz<strong>on</strong>e. <strong>Lichen</strong>ologist 23: 61-72.<br />

Hill, M. O. (1973) Reciprocal averaging: an eigenvector method <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology<br />

61:237-249.<br />

Jesberger, J. A. & Sheard, J. W. (1973) A quantitative study and multivariate analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> corticolous<br />

lichen communities in sou<strong>the</strong>rn boreal forests <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany<br />

51:185-201.<br />

Kalela, A. (1961) Waldvegetati<strong>on</strong>sz<strong>on</strong>en Finnlands und ihre klimatischen Paralleltypen. Archivum<br />

Societatis Zoologicae Botanicae Fennicae Vanamo 16 (Suppl): 65—83.<br />

Kalgutkar, R. M. & Bird, C. D. (1969) <strong>Lichen</strong>s found <strong>on</strong> Larix lyallii and Pinus albicaulis in<br />

southwestern Alberta, Canada. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 47:627-648.<br />

Kantvilas, G. & Minchin, P. (1989) An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichen communities inTasmanian cool<br />

temperate rain forest. Vegetatio 84: 99-112.<br />

Kershaw, K. A. (1964) Preliminary observati<strong>on</strong>s <strong>on</strong> <strong>the</strong> distributi<strong>on</strong> and ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic<br />

lichens in Wales. <strong>Lichen</strong>ologist 2: 263-276.<br />

Kershaw, K. A. (1985) Physiological Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Lichen</strong>s. Cambridge: Cambridge University Press.<br />

Koskinen, A. (1955) Uber die Kryptogamen der Bdume, bes<strong>on</strong>ders die Flechten, im Gewdssergebiet des<br />

Pdijdnne sowie an den Flussen Kalajoki, Lestijoki und Pyhdjoki, Floristische, soziologische und<br />

okologische studie I. Helsinki: author's editi<strong>on</strong>.<br />

Lange, O. L., Kilian, E. & Ziegler, H. (1986) Water vapour uptake and photosyn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> lichens:<br />

performance differences in species with green and blue-green algae as phycobi<strong>on</strong>ts. Oecologia<br />

71:104-110.


180 THE LICHENOLOGIST Vol.24<br />

Lange, O. L., Kilian, E. & Ziegler, H. (1988) Water status related photosyn<strong>the</strong>sis and carb<strong>on</strong><br />

isotope discriminati<strong>on</strong> in species <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lichen genus Pseudocyphellaria with green or bluegreen<br />

photobi<strong>on</strong>ts and its photosymbiodemes. Oecologia 75: 494-501.<br />

Lars<strong>on</strong>, D. W. & Kershaw, K. A. (1976) Studies <strong>on</strong> lichen-dominated systems. XVIII. Morphological<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> in lichens. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 54: 2061-2073.<br />

McCune, B. & Antos, J. A. (1982) Epiphyte communities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan valley, M<strong>on</strong>tana. Bryologist<br />

85: 1-12.<br />

M<strong>on</strong>tgomery, D. C. & Peck, E. A. (1982) Introducti<strong>on</strong> to Linear Regressi<strong>on</strong> Analysis. New York:<br />

Wiley.<br />

Nakanishi, S. (1960) Phytosociological studies <strong>on</strong> <strong>the</strong> epiphytic plant community. II. On <strong>the</strong><br />

epiphytic plant community <str<strong>on</strong>g>of</str<strong>on</strong>g> Pinus pumila. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong> Kobe<br />

University 24:45-51.<br />

Oksanen, J. (1988) Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat, substrate and microsite classes <strong>on</strong> <strong>the</strong> epiphyte vegetati<strong>on</strong>:<br />

Interpretati<strong>on</strong> using exploratory and can<strong>on</strong>ical corresp<strong>on</strong>dence analysis. Annales Botanici<br />

Fennici 25: 59-71.<br />

Pike, L. H., Denis<strong>on</strong>, W. C, Tracy, D., Sherwood, M. & Rhoades, F. (1975) Floristic survey <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epiphytic lichens and bryophytes growing <strong>on</strong> living, old-growth c<strong>on</strong>ifers in western Oreg<strong>on</strong>.<br />

Bryologist 78: 391^104.<br />

Pike, L. H., Rydell, R. A. & Denis<strong>on</strong>, W. C. (1977) A 400-year-old Douglas fir tree and its<br />

epiphytes: biomass, surface area and <strong>the</strong>ir distributi<strong>on</strong>. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forest Research 7:<br />

680-699.<br />

Rogers, R. W. (1988) Successi<strong>on</strong> and survival strategies in lichen populati<strong>on</strong>s <strong>on</strong> a palm trunk.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 76: 759-776.<br />

Rogers, R. W. (1990) Ecological strategies <str<strong>on</strong>g>of</str<strong>on</strong>g> lichens. <strong>Lichen</strong>ologist 22: 149-162.<br />

Rogers, R. W. & Barnes (1986) Leaf demography <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> rain forest shrub Wilkiea macrophylla and<br />

its implicati<strong>on</strong>s for <strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> foliicolous lichens. Australian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 11:<br />

341-345.<br />

Rundel, P. W. (1988) Water relati<strong>on</strong>s. In Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Lichen</strong>ology vol. II. (M. Galun, ed.): 17-36.<br />

Boca Rat<strong>on</strong>, Florida: CRC Press.<br />

Santess<strong>on</strong>, R. (1984) The lichens <str<strong>on</strong>g>of</str<strong>on</strong>g> Sweden and Norway. Stockholm and Uppsala: Swedish<br />

Museum <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural History.<br />

Seppanen, M. (1964) On <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall in <strong>the</strong> pine stands. Acta Forestalia Fennica<br />

76:8.<br />

Somermaa, A. (1972) The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichens in main Est<strong>on</strong>ian forest types. Scripta<br />

Mycologica 4: 1-117.<br />

S<strong>on</strong>ess<strong>on</strong>, M. (1989) Water, light and temperature relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> epiphytic lichens Parmelia<br />

olivacea and Parmeliopsis ambigua in nor<strong>the</strong>rn Swedish Lapland. Oikos 56: 402-415.<br />

St<strong>on</strong>e, D. (1989) Epiphyte successi<strong>on</strong> <strong>on</strong> Quercus garryana branches in <strong>the</strong> Willamette valley <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

western Oreg<strong>on</strong>. Bryologist 92: 81-94.<br />

ter Braak, C. J. F. (1986) Can<strong>on</strong>ical corresp<strong>on</strong>dence analysis: a new eigenvector technique for<br />

multivariate direct gradient analysis. Ecology 67: 1167-1179.<br />

ter Braak, C. J. F. (1987) The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>-envir<strong>on</strong>ment relati<strong>on</strong>ships by can<strong>on</strong>ical<br />

corresp<strong>on</strong>dence analysis. Vegetatio 69: 69-77.<br />

ter Braak, C. J. F. (1988) CANOCO-a FOR TRAN program for can<strong>on</strong>ical community ordinati<strong>on</strong>s by<br />

partial' detrended * can<strong>on</strong>ical •' corresp<strong>on</strong>dence analysis, principal comp<strong>on</strong>ents analysis and<br />

redundancy analysis (versi<strong>on</strong> 2.1). Wageningen: Agricultural Ma<strong>the</strong>matics Group.<br />

Wirth, V. (1987) Die Flechten Baden-Wurttembergs: Verbreitungsatlas. Stuttgart: Eugen Ulmer.<br />

Yarrant<strong>on</strong>, G. A. (1972) Distributi<strong>on</strong> and successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epiphytic lichens <strong>on</strong> Black Spruce near<br />

Cochrane, Ontario. Bryologist 75: 462-480.<br />

Accepted for publicati<strong>on</strong> 15 September 1991

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!