28.02.2014 Views

Selective assessment of judgemental inconsistencies in pairwise ...

Selective assessment of judgemental inconsistencies in pairwise ...

Selective assessment of judgemental inconsistencies in pairwise ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Author manuscript, published <strong>in</strong> "Computers and Operations Research 34, 6 (2007) 1824-1841"<br />

DOI : 10.1016/j.cor.2005.05.037<br />

<strong>Selective</strong> <strong>assessment</strong> <strong>of</strong> judgmental<br />

<strong><strong>in</strong>consistencies</strong> <strong>in</strong> <strong>pairwise</strong> comparisons for group decision<br />

rat<strong>in</strong>g<br />

Frej Limayem a , Bernard Yannou b *<br />

a,b<br />

Laboratoire Génie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92295,<br />

Châtenay-Malabry, France<br />

Abstract<br />

hal-00748731, version 1 - 16 Mar 2013<br />

Pairwise comparison methods are convenient procedures for provid<strong>in</strong>g a sound weight<br />

vector from a set <strong>of</strong> b<strong>in</strong>ary comparisons between elements to be rated. In such procedures,<br />

each decision maker is asked to separately consider pairs <strong>of</strong> elements which are not<br />

necessarily <strong>in</strong>dependent from each other. For this reason the votes collected are liable to<br />

conta<strong>in</strong> <strong><strong>in</strong>consistencies</strong>. In this paper we are provid<strong>in</strong>g a selective <strong>in</strong>dicator that focuses on the<br />

<strong><strong>in</strong>consistencies</strong> the decision group is will<strong>in</strong>g to correct <strong>in</strong> conformity with its vote strategy.<br />

Keywords: <strong>pairwise</strong> comparison, decision mak<strong>in</strong>g, logarithmic least squares regression, <strong>in</strong>consistency.<br />

1. Introduction<br />

Rat<strong>in</strong>g a set <strong>of</strong> n elements (e 1 ,…,e n ) can be a demand<strong>in</strong>g task even when a unique<br />

criterion is considered. A convenient class <strong>of</strong> methods called <strong>pairwise</strong> comparison<br />

methods (PCM) notably simplifies the problem by focus<strong>in</strong>g the attention on pairs <strong>of</strong><br />

elements to be compared under a given property or criterion. The comparison matrix<br />

(see figure 1) represents all possible comb<strong>in</strong>ations.<br />

More generally, the theory <strong>of</strong> preference 1 representation addresses such mapp<strong>in</strong>gs<br />

from local comparisons to global rat<strong>in</strong>gs/rank<strong>in</strong>gs. It proposes a general multi-criteria<br />

decision-mak<strong>in</strong>g framework where variable grades <strong>of</strong> preference are considered <strong>in</strong><br />

comb<strong>in</strong>ation with importance coefficients and even hierarchical structures on the<br />

criteria <strong>in</strong> order to assess, from a comprehensive po<strong>in</strong>t <strong>of</strong> view, the correspond<strong>in</strong>g<br />

system <strong>of</strong> order on the elements set [17].<br />

The different approaches articulate on common components [3]:<br />

- elements (alternatives or sub-objectives) to be compared;<br />

- criteria to assess them;<br />

- aggregation methods;<br />

- criteria-based evaluations <strong>of</strong> elements or alternatives;<br />

- <strong>in</strong>ter-criteria <strong>in</strong>formation such as for example weights.<br />

* E-mail address: @hotmail.com<br />

1 The <strong>in</strong>tangible nature <strong>of</strong> preference <strong>in</strong>duces different approaches among exist<strong>in</strong>g PCM schools. For<br />

example, the Multi-Attribute Value Theory (MAVT) measures preferences through an orig<strong>in</strong>/unit scale<br />

(p=u+) by compar<strong>in</strong>g differences <strong>of</strong> preference <strong>of</strong> the form (p i -p j )/(p k -p h ), while the AHP school<br />

directly compares preferences <strong>of</strong> the form p i /p j , assum<strong>in</strong>g more <strong>in</strong>tuitive the existence <strong>of</strong> an absolute<br />

orig<strong>in</strong> for preference (=0) [2]. Despite the criticism it is subject to, the later hypothesis is adopted <strong>in</strong><br />

an important part <strong>of</strong> the literature and numerous applications [20].<br />

1


hal-00748731, version 1 - 16 Mar 2013<br />

In group decision mak<strong>in</strong>g, the three first po<strong>in</strong>ts are generally common to all the<br />

participants. The group can enclose several roles (ex: decision makers, facilitators,<br />

experts), different pr<strong>of</strong>iles (degree <strong>of</strong> power/<strong>in</strong>fluence, degree <strong>of</strong> expertise, etc.) and<br />

several po<strong>in</strong>ts <strong>of</strong> view 2 . Three generic modes are proposed <strong>in</strong> the literature to deal<br />

with the differences:<br />

- consensual merg<strong>in</strong>g <strong>of</strong> views through a causal analysis <strong>of</strong> their divergence <strong>in</strong><br />

order to reduce it;<br />

- f<strong>in</strong>d<strong>in</strong>g a compromise through a vote or the calculation <strong>of</strong> a representative value;<br />

- compar<strong>in</strong>g <strong>in</strong>dependent results <strong>in</strong> order to negotiate a consensual view without<br />

necessarily reduc<strong>in</strong>g the underly<strong>in</strong>g divergences [3].<br />

A vote strategy can be perceived as a particular mapp<strong>in</strong>g between the group<br />

structure and the five components above.<br />

This paper considers a mono-criteria decision mak<strong>in</strong>g framework where <strong>pairwise</strong><br />

comparisons are associated, through a given ratio scale 3 , to numerical values c ij <strong>in</strong><br />

order to estimate the ratio <strong>of</strong> element weights w i /w j (note 1).<br />

Chronologically, the first applications [11] addressed basic comparison matrices<br />

with exactly one determ<strong>in</strong>istic (precise) op<strong>in</strong>ion per comparison. In parallel to the<br />

<strong>in</strong>troduction <strong>of</strong> imprecision and uncerta<strong>in</strong>ty (ex: [4;10]), <strong>pairwise</strong> comparison methods<br />

have lately evolved to tackle abstentions or situations where the presence <strong>of</strong> several<br />

decision makers (DMs) can lead to more than one op<strong>in</strong>ion per b<strong>in</strong>ary comparison. The<br />

concept <strong>of</strong> comparison matrix can then be extended to a comparison cube.<br />

Let c ihx represent the op<strong>in</strong>ion <strong>of</strong> the DM <strong>of</strong> <strong>in</strong>dex x when estimat<strong>in</strong>g the importance<br />

ratio <strong>of</strong> e i over e h . S<strong>in</strong>ce there are n unknown weights and up to dn² different<br />

equations (if each DM expresses n² comparisons), the system is likely to be overconstra<strong>in</strong>ed<br />

with no a priori best set <strong>of</strong> weights. This is why different optimization<br />

logics may be considered.<br />

This redundancy generally results <strong>in</strong> a card<strong>in</strong>al <strong>in</strong>transitivity (if at least one <strong>of</strong> the<br />

follow<strong>in</strong>g equalities do not hold: c ijx c jhy c hiz =1; i,j,h=1,2,…,n; x,y,z=1,2,…,d) 4 . An<br />

even more severe form (because illogical), called ord<strong>in</strong>al <strong>in</strong>transitivity, occurs <strong>in</strong><br />

presence <strong>of</strong> cyclic b<strong>in</strong>ary comparisons (ex: c ihx >1 and c hjy >1 but c ijz 3 (ex: <strong>of</strong> the form c ij c jk c kh<br />

c hi 1, for l=4). In general the longer the path the more excusable the <strong>in</strong>transitivity s<strong>in</strong>ce more difficult<br />

to trace for DMs.<br />

2


hal-00748731, version 1 - 16 Mar 2013<br />

where the decision group is not necessarily seek<strong>in</strong>g a unique po<strong>in</strong>t <strong>of</strong> view shared by<br />

all the participants but a solution that could be representative <strong>of</strong> divergent op<strong>in</strong>ions,<br />

for <strong>in</strong>stance the barycenter <strong>of</strong> group’s judgments. In such a case, the violation <strong>of</strong> the<br />

transitivity condition should be allowed for op<strong>in</strong>ions expressed by different DMs and<br />

no corrective actions 5 should be <strong>in</strong>itiated towards the outliers. Beyond the redundancy<br />

<strong>of</strong> op<strong>in</strong>ions with<strong>in</strong> the group, other properties can be questioned at DMs’ scale such as<br />

for example the reciprocity <strong>of</strong> the comparison matrix, i.e. the fact that symmetrical<br />

op<strong>in</strong>ions are <strong>in</strong>verse <strong>of</strong> each other; one also speaks about reciprocal op<strong>in</strong>ions. Indeed,<br />

<strong>in</strong> a bl<strong>in</strong>d test <strong>in</strong>volv<strong>in</strong>g sensorial evaluations (ex: beverage/food tast<strong>in</strong>g or perfume<br />

smell<strong>in</strong>g), the order<strong>in</strong>g <strong>in</strong> which each <strong>of</strong> the two elements is considered can<br />

significantly <strong>in</strong>fluence the appreciation. In such a case it is quite normal to expect<br />

from a same DM non reciprocal op<strong>in</strong>ions (between c ijk and c jik ) and thus tolerate the<br />

correspond<strong>in</strong>g part <strong>of</strong> <strong>in</strong>consistency.<br />

More generally, at different vot<strong>in</strong>g levels (ex: isolate DMs versus DMs’ clusters) 2 ,<br />

consistency measures should be able to reflect the conformity <strong>of</strong> the decision mak<strong>in</strong>g<br />

process to the vote strategy. Among the exist<strong>in</strong>g <strong>in</strong>dicators, just a few are able to<br />

tackle such nuances.<br />

This paper attempts to provide a more selective approach that helps <strong>in</strong> focus<strong>in</strong>g on<br />

<strong><strong>in</strong>consistencies</strong> that the decision group is will<strong>in</strong>g to correct. As it opens <strong>in</strong>terest<strong>in</strong>g<br />

perspectives, it also highlights some limits <strong>of</strong> this concept <strong>of</strong> « selective <strong>assessment</strong> <strong>of</strong><br />

<strong><strong>in</strong>consistencies</strong> ».<br />

In the follow<strong>in</strong>g section, a brief literature review sets the focus on <strong>in</strong>dicators that<br />

have addressed the issue <strong>of</strong> group decision mak<strong>in</strong>g. Next, section 3 <strong>in</strong>troduces a new<br />

consistency <strong>in</strong>dicator based on a logarithmic regression approach. The perspective <strong>of</strong><br />

a selective <strong>assessment</strong> <strong>of</strong> <strong>in</strong>consistency is then developed <strong>in</strong> section 4. Before<br />

conclud<strong>in</strong>g, an illustrative example is presented <strong>in</strong> section 5.<br />

2. Exist<strong>in</strong>g <strong>in</strong>dicators<br />

Table 1 classifies some <strong>of</strong> the <strong>in</strong>dicators published <strong>in</strong> the literature accord<strong>in</strong>g to<br />

two criteria: their sensitivity to rat<strong>in</strong>g scales and the underly<strong>in</strong>g <strong>pairwise</strong> comparison<br />

method (EV for Eigenvector, GM for geometric mean, MP for mathematical<br />

programm<strong>in</strong>g and LLSR for logarithmic least squares regression)<br />

5 Inconsistency measures are usually associated to threshold values ([10], [18], [12]) and/or followed<br />

by corrective actions that can take the form <strong>of</strong> iterative feedback loops between <strong>in</strong>dividuals consistency<br />

[5] and overall group’s consistency ([13], [15]).<br />

3


No specific<br />

method<br />

EV GM MP LLSR<br />

Scale<br />

dependent<br />

Golden and<br />

Wang’s<br />

<strong>in</strong>dicator [12]<br />

Saaty’s<br />

<strong>in</strong>dicator [19]<br />

Takeda’s <strong>in</strong>dicator<br />

[21]<br />

Bryson and<br />

Joseph’s<br />

<strong>in</strong>dicator [5]<br />

Crawford and<br />

Williams’<br />

<strong>in</strong>dicator [7]<br />

Scale<br />

<strong>in</strong>dependent<br />

Salo’s<br />

<strong>in</strong>dicator [20]<br />

Tab. 1: Some <strong>in</strong>dicators published <strong>in</strong> the literature<br />

In the rema<strong>in</strong>der <strong>of</strong> this section one reviews more <strong>in</strong> detail <strong>in</strong>dicators that have<br />

addressed the issue <strong>of</strong> group decision mak<strong>in</strong>g.<br />

hal-00748731, version 1 - 16 Mar 2013<br />

2.1. Saaty’s <strong>in</strong>dicator<br />

Saaty’s consistency <strong>in</strong>dicator is based on the well known eigenvector method [18]<br />

and requires, <strong>in</strong> addition to exactly one op<strong>in</strong>ion per comparison, a reciprocal<br />

comparison matrix, where all symmetrical b<strong>in</strong>ary comparisons are <strong>in</strong>verse <strong>of</strong> each<br />

other (i.e. c ij =1/c ji ; i,j = 1,2,…,n). In the formula hereafter, the largest eigenvalue max<br />

equals n for perfectly consistent comparison matrices (C.I. Saaty =0) and take large<br />

values 6 for very <strong>in</strong>consistent ones.<br />

C.<br />

I.<br />

with<br />

Saaty<br />

max<br />

max<br />

n<br />

,<br />

n 1<br />

:largest eigen value associated to the comparison matrix,<br />

n :number <strong>of</strong><br />

elements to be weighted.<br />

When exactly one op<strong>in</strong>ion is required, four vote strategies seem to prevail for the<br />

group [6]: prelim<strong>in</strong>ary consensus on each entry, vote compromise on each entry,<br />

average <strong>of</strong> the <strong>in</strong>dividual judgments on each entry or weighted average <strong>of</strong> the<br />

<strong>in</strong>dividual judgments on each entry. In such a context an alternative form called<br />

relative departure from consistency [19] has been used to estimate the relative<br />

divergence between a given decision maker and the group (formula 2).<br />

C.<br />

I.<br />

C.<br />

I.<br />

C.<br />

I.<br />

Saaty , group<br />

Saaty , DM k<br />

<br />

<br />

Saaty , DM k / group<br />

max<br />

n 1 n<br />

c<br />

n<br />

2<br />

n<br />

<br />

i,j 1<br />

ij<br />

w<br />

w<br />

j<br />

i<br />

- n<br />

<br />

<br />

, with c<br />

<br />

2<br />

ij<br />

<br />

d<br />

<br />

c<br />

k 1<br />

k<br />

1 w<br />

k<br />

max<br />

n n<br />

<br />

j 2 wi<br />

, i 1,2,..., n,<br />

the weights deduced<br />

c - n ,<br />

with<br />

n<br />

2<br />

n ijk<br />

(2)<br />

k<br />

1 w <br />

i,j <br />

<br />

i <br />

from DM k ' s comparison matrix.<br />

th<br />

1 n w j 2<br />

relative departure <strong>of</strong> the k <strong>in</strong>dividual' s<br />

c - n :<br />

2 ijk<br />

n<br />

<br />

i,j 1 w<br />

i judgements from those<strong>of</strong> the groupe.<br />

ijk<br />

<br />

<br />

<br />

1/ d<br />

.<br />

(1)<br />

6 In order to rescale his <strong>in</strong>dicator between 0 and 1, Saaty proposes a l<strong>in</strong>ear transformation divid<strong>in</strong>g his<br />

<strong>in</strong>dicator by the quantity n(g-1)/(n-1), with g the number <strong>of</strong> values compos<strong>in</strong>g the notation scale. He<br />

has also considered the sensitivity <strong>of</strong> his <strong>in</strong>dicator to the number <strong>of</strong> elements to be weighted. The<br />

statistical study shows that, whatever the notation scale, his <strong>in</strong>dicator strongly decreases when the<br />

number <strong>of</strong> elements to be weighted <strong>in</strong>creases.<br />

4


2.2. Bryson and Joseph’s <strong>in</strong>dicator<br />

Bryson and Joseph’s method [5] formulates the mapp<strong>in</strong>g from a non necessarily<br />

reciprocal vote cube C to a suitable set <strong>of</strong> weights <strong>in</strong> a mathematical programm<strong>in</strong>g<br />

approach. S<strong>in</strong>ce there is no need to limit the number <strong>of</strong> entries per b<strong>in</strong>ary comparison,<br />

no prelim<strong>in</strong>ary synthesis <strong>of</strong> the <strong>in</strong>dividual judgments is required. Up to a logarithmic<br />

transformation, their approach is presented <strong>in</strong> formula 3.<br />

C.<br />

I.<br />

with<br />

Bryson and Joseph<br />

<br />

m<strong>in</strong><br />

<br />

w p<br />

i ijk<br />

cijk<br />

w j qijk<br />

m<strong>in</strong>( p , q ) 1<br />

ijk<br />

1<br />

<br />

ijk<br />

d<br />

n<br />

n<br />

<br />

k 1 i1 j1<br />

p<br />

ijk<br />

q<br />

ijk<br />

<br />

<br />

<br />

1<br />

dn<br />

n1<br />

i,<br />

j 1,2,..., n;<br />

k 1,2,..., d.<br />

<br />

<br />

,<br />

(3)<br />

hal-00748731, version 1 - 16 Mar 2013<br />

In the associated constra<strong>in</strong>ts each ratio <strong>of</strong> weights w i /w j is multiplied by a ratio <strong>of</strong><br />

real numbers p ijk /q ijk (p ijk 1 and q ijk =1 or p ijk =1 and q ijk 1) <strong>in</strong> order to co<strong>in</strong>cide with the<br />

vote c ijk <strong>of</strong> decision maker k. The geometric mean <strong>of</strong> the products p ijk q ijk constitutes<br />

the objective function to m<strong>in</strong>imize. The optimum represents the m<strong>in</strong>imum average<br />

value that each entry <strong>in</strong> the vote cube would have to be multiplied or divided by <strong>in</strong><br />

order to reach consistency. The <strong>in</strong>verse <strong>of</strong> this quantity has been chosen as<br />

consistency <strong>in</strong>dicator by Bryson and Joseph. It ranges between 0 (maximal<br />

<strong>in</strong>consistency) and 1 (perfect consistency). In their illustrative example, Bryson and<br />

Joseph adopt an arbitrary cut-<strong>of</strong>f value (80%) and assess the consistency <strong>of</strong> both the<br />

group and the <strong>in</strong>dividual DMs.<br />

3. An <strong>in</strong>dicator based on the logarithmic least squares regression approach<br />

3.1. The l<strong>in</strong>ear regression approach<br />

A regression model may be considered as an optimized approximation <strong>of</strong> the<br />

relation between a random variable said to be dependent and a set <strong>of</strong> prediction<br />

variables assumed not to be random.<br />

In l<strong>in</strong>ear regression [8], an observation Y i <strong>of</strong> the dependent variable y is related to<br />

values taken by prediction variables x 1 ,...,x n through equations <strong>of</strong> the form<br />

Y i 0 1 X 1,i ... n X n,i i 7 . The constant coefficients 0 , 1 ,... n are parameters to be<br />

estimated for complet<strong>in</strong>g the model. Coefficient i is a random coefficient <strong>of</strong> error<br />

represent<strong>in</strong>g the difference between the l<strong>in</strong>ear model’s estimation and the observation<br />

i. In matricial notation, the equation set may be expressed as:<br />

7 For example, if one assumes that the size S <strong>of</strong> a person (dependent variable) is l<strong>in</strong>early related to his<br />

or her age A (prediction variable), a l<strong>in</strong>ear regression approach consists <strong>in</strong> f<strong>in</strong>d<strong>in</strong>g the straight l<strong>in</strong>e, <strong>of</strong><br />

the form S i 0 1 A i , model<strong>in</strong>g at best a set <strong>of</strong> (age, size) measurements performed on a sample <strong>of</strong><br />

representative <strong>in</strong>dividuals.<br />

5


Y=X+, with<br />

Y1<br />

<br />

Y2<br />

Y .<br />

:<br />

<br />

Ym<br />

<br />

<br />

<br />

, X<br />

<br />

<br />

<br />

X<br />

<br />

X<br />

.<br />

:<br />

<br />

X m<br />

1,1<br />

2,1<br />

,1<br />

X<br />

X<br />

.<br />

:<br />

X<br />

1,2<br />

2,2<br />

m,2<br />

...<br />

...<br />

.<br />

.<br />

.<br />

...<br />

X<br />

X<br />

X<br />

1, n<br />

2, n<br />

.<br />

:<br />

m,<br />

n<br />

<br />

<br />

<br />

,<br />

<br />

<br />

<br />

1<br />

<br />

<br />

2<br />

<br />

H . ,<br />

: <br />

<br />

n<br />

<br />

1<br />

<br />

<br />

2 <br />

E . .<br />

: <br />

<br />

<br />

m <br />

hal-00748731, version 1 - 16 Mar 2013<br />

In this framework, the least squares estimator <strong>of</strong> , represented <strong>in</strong> the follow<strong>in</strong>g by<br />

, corresponds to the m<strong>in</strong>imal sum <strong>of</strong> error squares (Y i -Ŷ i ) 2 between the measured<br />

values <strong>of</strong> the dependent variable (Y) and the estimated ones (Ŷ=X). When exists it<br />

is the solution <strong>of</strong> the normal equation set: X t Y=X t X. If the errors follow a<br />

probabilistic distribution with a mean equal to zero, is considered as a non biased<br />

estimator <strong>of</strong> ([7], [8]).<br />

3.2. Application to the <strong>pairwise</strong> comparison framework<br />

In order to discuss the application <strong>of</strong> the l<strong>in</strong>ear regression approach to the context<br />

<strong>of</strong> <strong>pairwise</strong> comparison, let us first, <strong>in</strong>troduce the b<strong>in</strong>ary parameter ijk<br />

ijk<br />

<br />

1, if DM k expresses an op<strong>in</strong>ion on comparison cij<br />

,<br />

<br />

<br />

0, otherwise and cijk<br />

c 0 0 (arbitrary positive constant).<br />

If one considers Y ijk = ijk log(c ijk ) i,j=1,...,n, ij as the observations <strong>of</strong> the<br />

dependent variable, the equation ijk log(c ijk ) ijk (log(w i )-log(w j )+ ijk ) 8 l<strong>in</strong>ks <strong>in</strong> a<br />

l<strong>in</strong>ear manner Y ijk to the set <strong>of</strong> prediction variables:<br />

(X ijk ,1 0, ..., X ijk ,i ijk , X ijk ,i+1 0, ..., X ijk, j - ijk ,X ijk, j+1 0, ..., X ijk, n 0),<br />

with the constant coefficients to be estimated:<br />

0 =0, 1 log(w 1 ), ..., i log(w i ), ..., j log(w j ), ..., n log(w n )).<br />

Via this logarithmic transformation, the l<strong>in</strong>ear regression has been applied to the<br />

<strong>pairwise</strong> comparison field s<strong>in</strong>ce the eighties by De Graan [9] and Lootsma [15], <strong>in</strong><br />

order to handle <strong>in</strong>complete comparison matrices 9 . As illustrated <strong>in</strong> [14], this technique<br />

called Logarithmic Least Squares Regression (LLSR) generalizes the geometric mean<br />

based <strong>pairwise</strong> comparison approach and provides, at least from a probabilistic po<strong>in</strong>t<br />

<strong>of</strong> view, a pert<strong>in</strong>ent estimator <strong>of</strong> the weights’ vector [7].<br />

3.3. Consistency <strong>in</strong>dicator<br />

In a regression model, the estimated sum <strong>of</strong> squares is always lower than the sum<br />

<strong>of</strong> squares <strong>of</strong> the observations. The difference, called residual sum <strong>of</strong> squares or errors<br />

sum <strong>of</strong> squares, corresponds to the <strong>in</strong>formation the model is unable to expla<strong>in</strong>. This is<br />

a classical result <strong>in</strong> the literature on regression (see for example [8]). A short pro<strong>of</strong> is<br />

given <strong>in</strong> formula 4.<br />

8 With equations <strong>of</strong> the type ijk log(c ijk ) ijk (log(w i )-log(w j )+ ijk ), the regression approach is unable<br />

to represent the reflexive op<strong>in</strong>ions (c iik , i=1,2,…,n; k=1,2,…,d) which are assumed equal to 1. This<br />

assumption does not deteriorate the quality <strong>of</strong> the optimal weight vector and the <strong>in</strong>duced comparison<br />

matrix is reciprocal by construction.<br />

9 The lack <strong>of</strong> op<strong>in</strong>ions can be tolerated so long the rank <strong>of</strong> the normal equations system rema<strong>in</strong>s equal<br />

to n-1. To fulfill this condition each element to rate/weight must be represented <strong>in</strong> at least one op<strong>in</strong>ion<br />

and no pair <strong>of</strong> elements (e i ,e j ) must be disjo<strong>in</strong>ted by transitivity (i.e. ihk hjk =0, h=1,2,...,n; k=1,2,...,d).<br />

6


t<br />

Ε Ε (Y<br />

Yˆ<br />

)<br />

i<br />

i<br />

i<br />

2<br />

( Y XΘ)<br />

( Y XΘ)<br />

Y Y 2Θ<br />

X Y Θ X XΘ<br />

us<strong>in</strong>g the normalequations equality : X XΘ X Y,<br />

t t t t t<br />

one obta<strong>in</strong>s<br />

ˆ t<br />

Ε Ε Y Y Θ X XΘ Y Y Y Yˆ<br />

t t t t t<br />

or Ε Ε Y Y Θ X Y Y Y Yˆ<br />

t<br />

Y,<br />

t<br />

thus Y Y Yˆ<br />

t<br />

Yˆ<br />

t<br />

Ε Ε and Yˆ<br />

t<br />

Yˆ<br />

Yˆ<br />

t t t<br />

<br />

Y Θ X Y<br />

t<br />

t<br />

t<br />

t<br />

t<br />

t<br />

t<br />

t<br />

with<br />

t<br />

Y Y Y<br />

ˆ t<br />

Y Yˆ<br />

Y<br />

ˆ<br />

t<br />

Ε Ε :<br />

Y :<br />

i<br />

i<br />

vector <strong>of</strong><br />

X : matrix <strong>of</strong> the different set <strong>of</strong> valuesassociated to the parameters<strong>of</strong> the model,<br />

Θ<br />

Yˆ<br />

XΘ<br />

2<br />

i<br />

2<br />

i<br />

: observations sum <strong>of</strong> squares,<br />

ˆ t<br />

: estimated sum <strong>of</strong> squares Y Y Y ˆ Y : estimated cross poduct,<br />

errorssum <strong>of</strong> squares, also called residual sum <strong>of</strong><br />

the observations <strong>of</strong> the dependent variable,<br />

: vector <strong>of</strong> the optimal parametersassociated to the regression model,<br />

: vector <strong>of</strong><br />

squares,<br />

the estimated valuesfor thedependent variable.<br />

i<br />

i<br />

i<br />

(4)<br />

hal-00748731, version 1 - 16 Mar 2013<br />

The ratio: (estimated sum <strong>of</strong> squares) / (sum <strong>of</strong> squares <strong>of</strong> the observations) is<br />

given by: (Ŷ t Ŷ / Y t Y) = ( t X t Y/ Y t Y). This quantity is an alternative form <strong>of</strong> the well<br />

known R 2 determ<strong>in</strong>ation factor for models with no constant term 10 . The ratio<br />

represents the Expla<strong>in</strong>ed Fraction <strong>of</strong> the Observation sum <strong>of</strong> Squares. In this paper, it<br />

is named EFOS to avoid confusion with the canonical form <strong>of</strong> the R 2 determ<strong>in</strong>ation<br />

factor. For reciprocal comparison cubes, EFOS’ value is identical to the R 2<br />

determ<strong>in</strong>ation factor and expresses the fraction <strong>of</strong> the orig<strong>in</strong>al variance expla<strong>in</strong>ed by<br />

the regression model.<br />

In the context <strong>of</strong> <strong>pairwise</strong> comparisons this ratio constitutes a consistency <strong>in</strong>dicator<br />

s<strong>in</strong>ce it measures the adequacy between the consistent matrix <strong>in</strong>duced by the<br />

estimated weights and the orig<strong>in</strong>al comparison cube 11 . EFOS ranges between 0 when<br />

the orig<strong>in</strong>al comparison cube is extremely <strong>in</strong>consistent and 1 when estimations and<br />

observations fully co<strong>in</strong>cide. The more consistent the orig<strong>in</strong>al cube, the higher the<br />

explicative power <strong>of</strong> the LLSR model.<br />

In the follow<strong>in</strong>g section, EFOS is extended towards a more selective <strong>assessment</strong> <strong>of</strong><br />

<strong>in</strong>consistency <strong>in</strong> order to take several vote strategies <strong>in</strong>to account with<strong>in</strong> a group<br />

decision-mak<strong>in</strong>g framework.<br />

4. <strong>Selective</strong> <strong>assessment</strong> <strong>of</strong> <strong>in</strong>consistency<br />

As illustrated <strong>in</strong> section 1, the notion <strong>of</strong> group <strong>in</strong>consistency should not be<br />

restricted to the notion <strong>of</strong> card<strong>in</strong>al or ord<strong>in</strong>al <strong>in</strong>consistency. More generally, <strong>in</strong>dicators<br />

should be able to reflect the rules underly<strong>in</strong>g the vote strategy and po<strong>in</strong>t out the<br />

<strong>in</strong>consistency that the decision group is will<strong>in</strong>g to correct.<br />

10 Typically, the R 2 correlation factor requires the presence <strong>of</strong> an 0 among the parameters <strong>of</strong> the<br />

model before optimization. However, <strong>in</strong> the regression model associated to the general <strong>pairwise</strong><br />

comparison problem, there is no 0 parameter: 0 is, <strong>in</strong>tr<strong>in</strong>sically, set to 0. The addition <strong>of</strong> an 0<br />

parameter is only possible if one assumes the vote cube to be reciprocal. In such a case the least squares<br />

optimum corresponds to 0 =0.<br />

11 Crawford and Williams’ <strong>in</strong>dicator [7] is also <strong>in</strong>spired from the LLSR approach. They suggested the<br />

use <strong>of</strong> the residual mean square to measure consistency. This quantity (E t E/ number <strong>of</strong> degrees <strong>of</strong><br />

freedom) is an unbiased estimator <strong>of</strong> the variance <strong>of</strong> the errors. Aguarón and Moreno- Jiménez [1] showed a<br />

l<strong>in</strong>ear correlation between Crawford and Williams’ <strong>in</strong>dicator and Saaty’s one.<br />

7


4.1. A selective <strong>in</strong>dicator<br />

In this section, the denom<strong>in</strong>ator <strong>of</strong> the <strong>in</strong>dicator EFOS (Y t Y= t X t Y+E t E) is<br />

adjusted by relax<strong>in</strong>g from the error sum <strong>of</strong> squares (E t E) quantities that are tolerated<br />

and that should not be part <strong>of</strong> the <strong>in</strong>formation the model is expected to expla<strong>in</strong> (as<br />

showed hereafter by formula 5).<br />

hal-00748731, version 1 - 16 Mar 2013<br />

EROS<br />

i<br />

<br />

<br />

t t<br />

Θ X Y<br />

, if cijk<br />

1, 1 , i,j 1,2,..., n;<br />

i j;<br />

k 1,2,..., d;<br />

t<br />

ijk<br />

Y<br />

Y vs<br />

<br />

1,<br />

otherwise.<br />

n1<br />

n d<br />

t t<br />

<br />

Θ X Y <br />

<br />

i<br />

αijk<br />

log ijk<br />

i1 j ik<br />

1<br />

log( w ), i 1,2,..., n,<br />

0,<br />

with Y Y Θ X Y Ε Ε <br />

v<br />

i<br />

t<br />

<br />

s<br />

t<br />

i<br />

t<br />

t<br />

<br />

n1<br />

n<br />

n<br />

<br />

c<br />

<br />

α logc<br />

<br />

d<br />

<br />

<br />

i1 j ik<br />

1<br />

2<br />

α<br />

logc<br />

α<br />

logc<br />

<br />

part <strong>of</strong> the observations sum <strong>of</strong> squares not expla<strong>in</strong>ed by themodel<br />

but tolerated by thedecision group for votestrategy s.<br />

ijk<br />

jik<br />

4.2. Relaxed errors<br />

In the context <strong>of</strong> <strong>pairwise</strong> comparisons, the presence <strong>of</strong> different op<strong>in</strong>ions for a<br />

same b<strong>in</strong>ary comparison c ij is a non avoidable source <strong>of</strong> errors which are called pure<br />

errors. At best any LLSR model will predict the average value<br />

Y*=( k Y ijk )/( k ijk .).<br />

In contrast, the presence <strong>of</strong> non reciprocal op<strong>in</strong>ions ( ijx c ijx jiy 1/c jiy ;<br />

i,j=1,2,…,n; x,y=1,2,…,d) generates fitt<strong>in</strong>g errors. For such symmetrical op<strong>in</strong>ions, the<br />

best a l<strong>in</strong>ear model <strong>of</strong> the form ŷ=x 1 -x 2 12 can locally predict (ignor<strong>in</strong>g the op<strong>in</strong>ions <strong>of</strong><br />

other DMs) is Y ij * =(Y ijk -Y jik )/2 and Y ji * = -(Y ijk -Y jik )/2= -Y ij * . Figures 2 and 3 illustrate<br />

the concept <strong>of</strong> pure and fitt<strong>in</strong>g errors 13 .<br />

Based on such local reason<strong>in</strong>gs, several alternatives are proposed for the quantity<br />

v by formula 6. They represent errors that the l<strong>in</strong>ear model is enable to expla<strong>in</strong> and<br />

that will be partly relaxed from the observations’ sum <strong>of</strong> squares each time they<br />

contribute to <strong><strong>in</strong>consistencies</strong> the decision group tolerates.<br />

ijk<br />

jik<br />

<br />

<br />

,<br />

<br />

jik<br />

jik<br />

2<br />

<br />

,<br />

(5)<br />

12 In the <strong>pairwise</strong> comparison framework the logarithmic transform <strong>of</strong> the estimated b<strong>in</strong>ary<br />

comparison ĉ ij is l<strong>in</strong>ked to the logarithmic transforms <strong>of</strong> the weights by the l<strong>in</strong>ear equation:<br />

log(ĉ ij ) = log(w i )-log(w j ).<br />

13 See [16] for a detailed presentation <strong>of</strong> the concept <strong>of</strong> pure errors and fitt<strong>in</strong>g errors.<br />

8


hal-00748731, version 1 - 16 Mar 2013<br />

v<br />

0<br />

v<br />

1<br />

v<br />

2<br />

v<br />

3<br />

0<br />

n1<br />

n<br />

<br />

<br />

i1 ji<br />

k1<br />

n1<br />

n<br />

<br />

<br />

<br />

d<br />

d<br />

i1 ji<br />

k1<br />

<br />

<br />

c<br />

ijk <br />

mi,<br />

j<br />

<br />

<br />

c<br />

ijk <br />

mi,<br />

j,<br />

k <br />

n1<br />

n d<br />

2<br />

<br />

ijk log<br />

c<br />

ijk <br />

mi,<br />

j,<br />

k<br />

<br />

i1 ji<br />

k1<br />

ijk<br />

ijk<br />

log<br />

log<br />

Each v i is computed as a sum <strong>of</strong> squared logarithmic differences between the considered<br />

op<strong>in</strong>ions and local averages. These averages represent the LLSR model estimation when a subset<br />

<strong>of</strong> the op<strong>in</strong>ions (constra<strong>in</strong>ts) is considered. For a given v i , the considered subsets <strong>of</strong> op<strong>in</strong>ions are<br />

disjo<strong>in</strong>ted, which justifies an additive aggregation <strong>of</strong> the different squared differences.<br />

- m (i,j) : logarithmic average express<strong>in</strong>g the absolute value <strong>of</strong> the LLSR’s local estimation for all<br />

the op<strong>in</strong>ions concern<strong>in</strong>g the comparison c ij and its symmetrical c ji .<br />

- m (i,j),k : logarithmic average express<strong>in</strong>g the absolute value <strong>of</strong> the LLSR’s local estimation for the<br />

op<strong>in</strong>ion c ijk and its symmetrical c jik .<br />

- m (i,j),k : logarithmic average express<strong>in</strong>g the absolute value <strong>of</strong> the LLSR’s local estimation for the<br />

set <strong>of</strong> op<strong>in</strong>ions correspond<strong>in</strong>g to the comparison c ij and its symmetrical c ji except the<br />

op<strong>in</strong>ion c jik replaced by 1/c ijk . With this substitution, when c jik 1/c ijk , the quantity v 3<br />

deduced from the sum <strong>of</strong> squares is smaller than v 1 , the one produced with m (i,j) (see the<br />

pro<strong>of</strong> <strong>in</strong> the appendix). This procedure helps po<strong>in</strong>t<strong>in</strong>g out eventual <strong><strong>in</strong>consistencies</strong> on c jik .<br />

with<br />

d<br />

ij<br />

d<br />

<br />

ijk<br />

k1<br />

mi,j<br />

,k<br />

m j,<br />

i,<br />

: number <strong>of</strong> op<strong>in</strong>ions expressed on the b<strong>in</strong>ary comparison<br />

k<br />

ijk<br />

log ijk<br />

<br />

<br />

<br />

0,<br />

otherwise.<br />

<br />

d<br />

<br />

ijl<br />

log c<br />

l1<br />

mi,<br />

j m j,<br />

i<br />

<br />

d<br />

<br />

<br />

0,<br />

otherwise.<br />

c<br />

<br />

logc<br />

<br />

d<br />

<br />

logc<br />

m <br />

<br />

<br />

d<br />

<br />

<br />

jik log cijk<br />

<br />

jik log c<br />

mi,<br />

j<br />

<br />

<br />

mi,j<br />

,<br />

k <br />

dij<br />

d<br />

<br />

<br />

ji <br />

dij<br />

d ji<br />

<br />

0,<br />

otherwise.<br />

for i,<br />

j 1,2,..., n;i j; k 1,2,..., d.<br />

ijl<br />

ij<br />

ijk<br />

<br />

ji<br />

jik<br />

jik<br />

jil<br />

jik<br />

jil<br />

, if <br />

jik<br />

<br />

<br />

l1<br />

ijk<br />

2<br />

<br />

,<br />

if d<br />

<br />

2<br />

<br />

<br />

i,<br />

j , l<br />

ij<br />

d<br />

ij<br />

jik<br />

d<br />

0<br />

d<br />

ji<br />

ijl<br />

c<br />

ji<br />

ij<br />

0<br />

.<br />

jil<br />

, if d<br />

ij<br />

d<br />

ji<br />

0<br />

(6)<br />

The local reason<strong>in</strong>gs support<strong>in</strong>g the deduced part <strong>of</strong> errors v i are schematically<br />

illustrated <strong>in</strong> figure 3. For the po<strong>in</strong>ts represent<strong>in</strong>g the op<strong>in</strong>ions <strong>of</strong> DM 2 , the global<br />

optimum (black l<strong>in</strong>e) <strong>in</strong>duces higher fitt<strong>in</strong>g errors than the local optimum represented<br />

by the gray l<strong>in</strong>e.<br />

It is easy to demonstrate that v 1 v 2 and v 1 v 3 (see appendix). If the comparison<br />

cube is reciprocal ( ijx c ijx = jiy /c jiy ; i,j=1,2,…,n; x,y=1,2,…,d), one gets the follow<strong>in</strong>g<br />

equalities: v 2 = v 0 =0 and v 3 = v 1 (<strong>in</strong> this case v 3 v 2 ). If the comparison cube reduces<br />

to a matrix 14 (maximum one op<strong>in</strong>ion per b<strong>in</strong>ary comparison), one gets v 2 = v 1 and<br />

v 3 = v 0 =0 (<strong>in</strong> this case v 2 v 3 ). If the comparison cube reduces to a reciprocal matrix,<br />

one gets v 3 = v 2 = v 1 = v 0 =0.<br />

14 For example, <strong>in</strong> a group where each DM is associated to a disjo<strong>in</strong>ted set <strong>of</strong> b<strong>in</strong>ary comparisons, the<br />

group’s comparison cube reduces to a matrix.<br />

9


The part <strong>of</strong> errors v 1 , v 2 and v 3 are not disjo<strong>in</strong>ted s<strong>in</strong>ce they <strong>in</strong>volve common<br />

subsets <strong>of</strong> op<strong>in</strong>ions. For this reason, it does not make sense to comb<strong>in</strong>e them<br />

additively. They express three different vote strategies presented <strong>in</strong> the follow<strong>in</strong>g<br />

section.<br />

hal-00748731, version 1 - 16 Mar 2013<br />

4.3. Implications <strong>in</strong> terms <strong>of</strong> tolerated <strong><strong>in</strong>consistencies</strong><br />

For the group:<br />

‣ under v 0 , no specific <strong>in</strong>consistency is tolerated;<br />

‣ under v 1 , the decision group tolerates all <strong><strong>in</strong>consistencies</strong> <strong>in</strong>duced by multiple or<br />

non reciprocal op<strong>in</strong>ions on a b<strong>in</strong>ary comparison and its symmetrical (c ij and c ji );<br />

‣ under v 2 , the decision group tolerates only fitt<strong>in</strong>g errors relative to non<br />

reciprocal op<strong>in</strong>ions expressed by a same DM k (when ijk c ijk jik 1/c jik );<br />

‣ under v 3 the decision group considers (like for v ) each b<strong>in</strong>ary comparison and<br />

its symmetrical (c ij and c ji ). In contrast with v 2 , it tolerates all <strong><strong>in</strong>consistencies</strong><br />

<strong>in</strong>duced by multiple or non reciprocal op<strong>in</strong>ions except fitt<strong>in</strong>g errors caused by non<br />

reciprocal op<strong>in</strong>ions expressed by a same DM k.<br />

At <strong>in</strong>dividual DMs level (comparison matrices):<br />

‣ v 2 as v 1 (v 2 =v 1 ) expresses a tolerance towards <strong>in</strong>consistent symmetrical<br />

op<strong>in</strong>ions,<br />

‣ while, v 3 as v 0 (v 3 =v 0 =0) expresses a full consistency expectation.<br />

4.4. Limitations and perspectives<br />

The selective power <strong>of</strong> EFOS covers two basic situations: the non reciprocity <strong>of</strong><br />

the symmetrical comparisons (c ij c ji 1) and the <strong><strong>in</strong>consistencies</strong> <strong>in</strong>duced by the<br />

presence <strong>of</strong> multiple op<strong>in</strong>ions per b<strong>in</strong>ary comparison (c ijx c ijy ). For non reciprocal<br />

comparison cubes, EFOS does not take <strong>in</strong>to account the notion <strong>of</strong> “<strong>in</strong>direct<br />

<strong>in</strong>transitivity” <strong>in</strong>duced by paths <strong>of</strong> length 2 (see note 4). Moreover, because it is<br />

based on local reason<strong>in</strong>gs (see section 4.2), EFOS relaxes only partially the tolerated<br />

<strong><strong>in</strong>consistencies</strong>.<br />

In addition, as any <strong>in</strong>dicator us<strong>in</strong>g the regression approach (ex: [7]), EFOS does<br />

not consider the consistency <strong>of</strong> the diagonal comparisons (see note 8). The<br />

consistency <strong>of</strong> the diagonal comparisons can be <strong>of</strong> <strong>in</strong>terest for some bl<strong>in</strong>d test<strong>in</strong>g<br />

procedures.<br />

Despite these limitations, EFOS is still able to qualitatively adjust its response to<br />

different vote strategies and different levels with<strong>in</strong> the group structure.<br />

4.5. Applicative field<br />

To illustrate the applicative aspect <strong>of</strong> these different alternatives let us consider a<br />

bl<strong>in</strong>d test <strong>in</strong>volv<strong>in</strong>g b<strong>in</strong>ary comparisons where the order<strong>in</strong>g for consider<strong>in</strong>g each <strong>of</strong> the<br />

two elements can significantly <strong>in</strong>fluence the result. This is true for sensorial<br />

evaluations as for example food and beverage tast<strong>in</strong>g. In such a case it is quite normal<br />

to expect from a same DM non reciprocal op<strong>in</strong>ions ( ijk c ijk jik 1/c jik ), especially if<br />

the decision group <strong>in</strong>cludes non experts.<br />

‣ If, <strong>in</strong> addition, the decision group is will<strong>in</strong>g to figure out the diversity <strong>of</strong><br />

op<strong>in</strong>ions (not a common op<strong>in</strong>ion strategy), different appreciations should be<br />

tolerated for a given b<strong>in</strong>ary comparison (c ij ). Under such conditions, v 1 is the<br />

alternative to choose.<br />

10


‣ On the contrary, if the decision group seeks one common op<strong>in</strong>ion (identical<br />

votes), it is important for the consistency <strong>in</strong>dicator to po<strong>in</strong>t out <strong><strong>in</strong>consistencies</strong> due<br />

to non convergent op<strong>in</strong>ions <strong>in</strong> the perspective <strong>of</strong> a compromise. In such case, v 2 is<br />

the option to choose.<br />

For a different context, where b<strong>in</strong>ary comparisons are not sensitive to the order<strong>in</strong>g<br />

<strong>of</strong> elements to be compared or where DMs’ expertise is high, <strong><strong>in</strong>consistencies</strong> <strong>in</strong>duced<br />

by non reciprocal op<strong>in</strong>ions expressed by a same DM are less acceptable.<br />

‣ If the decision group’s strategy is not common op<strong>in</strong>ion oriented, v 3 is the<br />

alternative to choose.<br />

‣ Otherwise, the coefficient v 0 must be preferred.<br />

Tables 2 and 3 respectively summarize the different strategies mentioned above, at<br />

both group and <strong>in</strong>dividual DMs’ levels.<br />

hal-00748731, version 1 - 16 Mar 2013<br />

Bl<strong>in</strong>d test<strong>in</strong>g or<br />

Low expertise<br />

Uniform vote<br />

v 2<br />

Non uniform vote<br />

High expertise v 0 v 3<br />

Tab. 2: Correspondence between the i factors and group’s vot<strong>in</strong>g strategies<br />

No tolerance<br />

v 3 =v 0<br />

5. Illustrative example<br />

v 1<br />

Tolerance for symmetrical <strong><strong>in</strong>consistencies</strong><br />

v 2 =v 1<br />

Tab. 3: Correspondence between the i factors and DMs vot<strong>in</strong>g strategies<br />

The follow<strong>in</strong>g example consists <strong>in</strong> a bl<strong>in</strong>d quality test <strong>of</strong> three different olive oils.<br />

This example has been constructed <strong>in</strong> order to illustrate the consistency <strong>in</strong>dicator and<br />

the different scenarios presented <strong>in</strong> the previous sections.<br />

The test is achieved by 2 DMs <strong>in</strong>vited to taste all possible comb<strong>in</strong>ations <strong>of</strong><br />

different olive oils <strong>in</strong> different orders and without reveal<strong>in</strong>g samples’ identity. When<br />

available, the estimations <strong>of</strong> the ratios c ij are expressed through the follow<strong>in</strong>g<br />

qualitative rat<strong>in</strong>g scale: {4 : extremely week; 3 : very week;<br />

2: week; : moderately week; = : equal; + : moderately strong;<br />

2+ : strong; 3+ : very strong; 4+ : extremely strong}. The comparison matrices are<br />

presented <strong>in</strong> table 4.<br />

11


DM1<br />

o 1 o 2 o 3<br />

o 1 + + <br />

o 2 = <br />

o 3 +<br />

DM2<br />

o 1 o 2 o 3<br />

o 1 + <br />

o 2 <br />

o 3 + + + + +<br />

Tab. 4: DMs’ comparison matrices<br />

Table 5 summarizes consistency and weights’ estimations for the different vote<br />

strategies presented <strong>in</strong> this paper both at DMs and group’s level. In order to illustrate<br />

the rat<strong>in</strong>g scale’s effect [20], the qualitative rat<strong>in</strong>g levels have been numerically<br />

translated accord<strong>in</strong>g to two different ratio scales, respectively <strong>in</strong>spired from Saaty’s<br />

[18] and Lootsma’s [16] ones:<br />

1 1 1 1<br />

1 1 1 1<br />

Sc. 1 { , , , ,1, 2, 4, 6, 9} and Sc. 2 { , , , ,1, 2, 4,8, 16} .<br />

9 6 4 2<br />

16 8 4 2<br />

hal-00748731, version 1 - 16 Mar 2013<br />

Group DM1 DM2<br />

EFOS 3 0.927 0.906<br />

EFOS 0 0.911 0.891<br />

0.829 0.833 0.967 0.931<br />

EFOS 1 0.977 0.948<br />

EFOS 2 0.975 0.945<br />

0.984 0.961 0.975 0.947<br />

Sc. 1 Sc. 2 Sc. 1 Sc. 2 Sc. 1 Sc. 2<br />

w 1 w 2 w 3 w 1 w 2 w 3 w 1 w 2 w 3 w 1 w 2 w 3 w 1 w 2 w 3 w 1 w 2 w 3<br />

26.5 11.2 62.3 24.9 9.4 65.7 27.3 12.3 60.4 26.3 11.1 62.6 25.9 10.6 63.5 23.9 8.5 67.6<br />

Tab. 5: Results for the different vote strategies<br />

For the two alternative scales, the numerical results confirm the <strong>in</strong>cidence <strong>of</strong> the<br />

selective <strong>assessment</strong> <strong>of</strong> <strong>in</strong>consistency and the ability <strong>of</strong> EFOS to handle the four vote<br />

strategies detailed <strong>in</strong> section 4.5. As expected the relaxed variants <strong>of</strong> the <strong>in</strong>dicator<br />

(<strong>in</strong>dexes{1,2,3}) provide higher consistency rates 15 . At DMs’ level, the differences<br />

between selective versions and non selective ones are higher for DM1 who has<br />

provided a more <strong>in</strong>consistent comparison matrix and has taken bigger advantage <strong>of</strong><br />

the relaxation <strong>of</strong> reciprocal <strong><strong>in</strong>consistencies</strong>. Furthermore, this example illustrates the<br />

ability <strong>of</strong> the <strong>in</strong>dicator to tackle <strong>in</strong>complete comparison matrices and cubes.<br />

In order to compare EFOS to the two other <strong>in</strong>dicators dedicated to group decision<br />

mak<strong>in</strong>g, presented <strong>in</strong> the literature review, the previous comparison matrices <strong>of</strong> table 4<br />

has been transformed <strong>in</strong>to symmetrical ones by keep<strong>in</strong>g unchanged the upper<br />

triangular half-matrices.<br />

15 Theoretically EFOS 1 refers to more local optimums and thus relaxes higher sums <strong>of</strong> errors than<br />

EFOS 2 or EFOS 3 (see the pro<strong>of</strong> <strong>in</strong> the appendix).<br />

12


Group DM1 DM2<br />

EFOS 0<br />

EFOS 2<br />

0.975 0.973<br />

EFOS 1<br />

EFOS 3<br />

1.000 0.993<br />

0.995 1.000 0.987 0.970<br />

CI Saaty 0.0001 0.0045 0.0031 0.0000 0.0061 0.0179<br />

CI Saaty DM / group 0.0121 0.0089 0.0152 0.0271<br />

CI Bryson and Joseph 0.891 0.889 0.909 1.000 0.874 0.794<br />

Sc. 1 Sc. 2 Sc. 1 Sc. 2 Sc. 1 Sc. 2<br />

w 1 w 2 w 3 w 1 w 2 w 3 w 1 w 2 w 3 w 1 w 2 w 3 w 1 w 2 w 3 w 1 w 2 w 3<br />

LLSR<br />

EV<br />

29.5 10.3 60.2 28.1 8.8 63.1 32.3 8.9 58.8 30.8 7.7 61.5 26.9 11.7 61.4 25.5 10.1 64.4<br />

MP 30 10 60 30.7 7.8 61.5 32.3 8.9 58.8 30.8 7.7 61.5 26.5 11.2 62.3 24.9 9.4 65.7<br />

Tab. 6: Results <strong>of</strong> the consistency <strong>in</strong>dicators EFOS, CI Saaty and CI Bryson and Joseph<br />

hal-00748731, version 1 - 16 Mar 2013<br />

Table 6 presents the different results, detail<strong>in</strong>g the weights for the three methods:<br />

LLSR, EV 16 and the MP model <strong>of</strong> Bryson and Joseph. Unlike Saaty’s <strong>in</strong>dicator that<br />

varies <strong>in</strong> the range [0, +[ to <strong>in</strong>dicate a decreas<strong>in</strong>g consistency, the two others<br />

<strong>in</strong>dicates an <strong>in</strong>creas<strong>in</strong>g consistency from 0 to 1.<br />

Bryson and Joseph’s <strong>in</strong>dicator is the only one that restricts to the dist<strong>in</strong>ction<br />

between DM’s level and group’s level. In addition, Saaty’s <strong>in</strong>dicator is able to merge<br />

the two levels. It measures both the consistency and the deviation <strong>of</strong> DM’s judgments<br />

from those <strong>of</strong> the group 17 . For such reciprocal comparison cubes, EFOS’ selective<br />

power restricts to the <strong>in</strong>consistency <strong>in</strong>troduced by the multiplicity <strong>of</strong> the op<strong>in</strong>ions.<br />

EFOS is still the only <strong>in</strong>dicator that allows the dist<strong>in</strong>ction between several vote<br />

strategies (two <strong>in</strong> this case, as detailed <strong>in</strong> section 4.5).<br />

6. Conclusion<br />

The concept <strong>of</strong> selective <strong>assessment</strong> <strong>of</strong> consistency, <strong>in</strong>troduced by this paper, is<br />

quite <strong>in</strong>novative and complementary <strong>of</strong> aspects addressed by previous approaches.<br />

Compared to its benchmarks with<strong>in</strong> a mono-criteria group decision mak<strong>in</strong>g<br />

framework, the consistency <strong>in</strong>dicator EFOS, <strong>in</strong>troduced <strong>in</strong> this paper, has the<br />

advantage <strong>of</strong> deliver<strong>in</strong>g consistency measures that take several group’s strategies <strong>in</strong>to<br />

account.<br />

Despite the fact that the selective power <strong>of</strong> EFOS is still partial, such a flexibility<br />

allows a more realistic model<strong>in</strong>g <strong>of</strong> <strong>pairwise</strong> comparisons <strong>in</strong> group decision mak<strong>in</strong>g.<br />

16 For n=3 and a comparison matrix with exactly one op<strong>in</strong>ion per comparison EV and LLSR produce<br />

equivalent weight vectors [7].<br />

17 A similar approach could be applied with EFOS. This can be illustrated <strong>in</strong> formula 5 by<br />

consider<strong>in</strong>g the case <strong>of</strong> <strong>in</strong>dividual DMs and substitut<strong>in</strong>g the weights (<strong>in</strong> ) by those <strong>of</strong> the group.<br />

13


References<br />

hal-00748731, version 1 - 16 Mar 2013<br />

[1] Aguarón J., Moreno-Jiménez J. M. (2003), The geometric consistency <strong>in</strong>dex:<br />

Approximated thresholds. European Journal <strong>of</strong> Operational Research, vol. (147): p.137-145.<br />

[2] Barzilai J., (1998), Measurement Foundations for Preference Function Modell<strong>in</strong>g. IEEE<br />

International Conference on Systems, Man and Cybernetics, San Diego, California, October<br />

1998.<br />

[3] Belton V. and Pictet J., (1997), A Framework for Group Decision Us<strong>in</strong>g a MCDA Model<br />

: Shar<strong>in</strong>g, Aggregat<strong>in</strong>g or Compar<strong>in</strong>g Individual Information? Revue des systèmes de<br />

décision, vol. (6) - n°3: p. 283 - 303.<br />

[4] Boender C.G.E., de Graan J.G., Lootsma F.A., (1989), Multi-criteria decision analysis<br />

with fuzzy <strong>pairwise</strong> comparisons. Fuzzy Sets and Systems, vol. (29): p. 133 - 143.<br />

[5] Bryson N.K.-M., Joseph A., (1999), Generat<strong>in</strong>g consensus priority po<strong>in</strong>t vectors: a<br />

logarithmic goal programm<strong>in</strong>g approach. Computers & Operations Research, vol. (26): p.<br />

637-643.<br />

[6] Condon E., Golden B., Wasil E. (2003), Visualiz<strong>in</strong>g group decision <strong>in</strong> the analytic<br />

hierarchy process. Computers & Operations Research, vol. (30): p. 1435-1445.<br />

[7] Crawford G., Williams C., (1985), A Note on the Analysis <strong>of</strong> Subjective Judgments<br />

Matrices. Journal <strong>of</strong> Mathematical Psychology, vol. (29): p. 387-405.<br />

[8] Draper N.R., Smith H., (1980), Applied Regression Analysis. second ed. Willey series <strong>in</strong><br />

probability and mathematical statistics, ed. Sons J.W., New York.<br />

[9] de Graan J.G., (1980), Extensions to the multiple criteria analysis <strong>of</strong> T. L. Saaty. Report<br />

National Institute <strong>of</strong> Water Supply.<br />

[10] Escobar M.T., Moreno-Jiménez J.M., (2000), Reciprocal distributions <strong>in</strong> the analytic<br />

hierarchy process. European Journal <strong>of</strong> Operational Research, vol. (123): p. 154-174.<br />

[11] Fechner G.T., Elements <strong>of</strong> Psychophysics. Vol. volume 1, Holt, R<strong>in</strong>ehart & W<strong>in</strong>ston,<br />

New-York, 1965; translation by H. E. Adler <strong>of</strong> Elemente der Psychophysik, Breitkopf und<br />

Härtel, Leipzig, (1860).<br />

[12] Golden B.L., Wang Q., (1989), An alternate measure <strong>of</strong> consistency, <strong>in</strong>: The Analytic<br />

Hierarchy Process: Application and Studies. Golden B., Wasil E. Editors, Spr<strong>in</strong>ger, New<br />

York, p. 68-81.<br />

[13] Limayem F., (2001), Modèles de pondération par les méthodes de tri croisé pour l'aide<br />

à la décision collaborative en projet. Ph. D. thesis, November 23 th 2001, Ecole Centrale Paris.<br />

[14] Limayem F., Yannou B., (2004), Generalization <strong>of</strong> the RCGM and LSLR Pairwise<br />

Comparison Methods. Computes and Mathematics with Applications, vol. (48): p. 539-548.<br />

[15] Lootsma F.A., (1982), Performance evaluation <strong>of</strong> nonl<strong>in</strong>ear optimization methods via<br />

multi-criteria decision analysis and via l<strong>in</strong>ear model analysis, <strong>in</strong> Nonl<strong>in</strong>ear Optimization,<br />

Powell M.J.D. Editor, Academic Press: London, vol. (1): p. 419-453.<br />

[16] Lootsma F. A., (1996), A model for the relative importance <strong>of</strong> the criteria <strong>in</strong> the<br />

multiplicative AHP and SMART. European Journal <strong>of</strong> Operational Research, vol. (94): p. 467-<br />

476.<br />

[17] Roy B. and Mousseau V., (1996), A theoretical framework for Analys<strong>in</strong>g the Notion <strong>of</strong><br />

Relative Importance <strong>of</strong> Criteria. Journal <strong>of</strong> Multi-Criteria Decision Analysis, vol. (5): p. 145-<br />

159.<br />

[18] Saaty T.L., (1977), A scal<strong>in</strong>g method for priorities <strong>in</strong> hierarchical structures. Journal <strong>of</strong><br />

Mathematical Psychology, vol. 15(3): p. 234-281.<br />

[19] Saaty T.L., (1989) Group decision-mak<strong>in</strong>g and the AHP, <strong>in</strong>: The Analytic Hierarchy<br />

Process: Applications and Studies. Golden B., Wasil E. Editors, Spr<strong>in</strong>ger, New York, p. 59-<br />

67.<br />

[20] Salo A. A. and Hämälä<strong>in</strong>en R. P., (1997), On the Measurement <strong>of</strong> Preferences <strong>in</strong> the<br />

Analytic Hierarchy Process. Journal <strong>of</strong> Multi-Criteria Decision Analysis, vol. (6): p. 309-319.<br />

[21] Takeda E., (1992), A note on consistent adjustments <strong>of</strong> <strong>pairwise</strong> comparison judgments.<br />

Mathematical and Computer Modell<strong>in</strong>g, vol. (17): p. 29-35.<br />

14


Appendix<br />

1- v 1 v 3<br />

hal-00748731, version 1 - 16 Mar 2013<br />

Pro<strong>of</strong><br />

if d<br />

Let<br />

<br />

<br />

<br />

c<br />

<br />

logc<br />

<br />

2<br />

b<br />

ijk mi,<br />

j b<br />

ijk mi,<br />

j,<br />

By us<strong>in</strong>g the equalitiy mi,<br />

j,<br />

k<br />

mi,<br />

j<br />

jik t,<br />

one obta<strong>in</strong>s :<br />

n1<br />

n d<br />

2<br />

2<br />

1<br />

3<br />

ijk<br />

<br />

bijk<br />

mi,<br />

j b<br />

ijk mi,<br />

j<br />

<br />

jik t<br />

<br />

By us<strong>in</strong>g the equalitiy <br />

1<br />

if d<br />

0,<br />

log c<br />

<br />

<br />

<br />

<br />

<br />

0,<br />

<br />

2<br />

b<br />

ijk mi,<br />

j bijk<br />

mi,<br />

j<br />

<br />

<br />

<br />

0.<br />

<br />

<br />

2 2 2<br />

<br />

jik t 2<br />

jik t b<br />

ijk mi,<br />

j<br />

mi,<br />

j b jik m j,<br />

i<br />

t<br />

By us<strong>in</strong>g the equalities mi,<br />

j m j,<br />

i<br />

and b<br />

1<br />

1<br />

ij<br />

b<br />

3<br />

3<br />

ijk<br />

3<br />

d<br />

i1 jik1<br />

<br />

<br />

i1 jik1<br />

2<br />

<br />

i1 jik1<br />

2<br />

<br />

ij<br />

n1<br />

n d<br />

ijk<br />

i1 jik1<br />

n1<br />

n d<br />

ijk<br />

i1 jik1<br />

n1<br />

n d<br />

n1<br />

n d<br />

n1<br />

n d<br />

i1 jik1<br />

n1<br />

n d<br />

2<br />

<br />

i1 jik1<br />

d<br />

ji<br />

ji<br />

2- v 1 v 2<br />

ijk<br />

log ijk<br />

and t <br />

d<br />

ijk<br />

ijk<br />

ijk<br />

ijk<br />

1<br />

jik<br />

2<br />

jik<br />

3<br />

<br />

2<br />

b<br />

d<br />

d<br />

and distiguish <strong>in</strong>g the cases ( j i)<br />

and ( j i)<br />

,<br />

t 2<br />

b<br />

ijk mi,<br />

j<br />

t<br />

2<br />

b<br />

jik m j,<br />

i<br />

t<br />

jik<br />

jik<br />

jik<br />

t b<br />

t b<br />

t<br />

ijk<br />

ijk<br />

d<br />

ij<br />

jik<br />

ij<br />

jik<br />

ji<br />

ji<br />

t<br />

<br />

<br />

jik<br />

ijk<br />

1<br />

0.<br />

b<br />

<br />

d<br />

k<br />

ijk<br />

ij<br />

2<br />

b<br />

b<br />

d<br />

jik<br />

jik<br />

ji<br />

<br />

.<br />

t ( d<br />

ij<br />

<br />

<br />

d<br />

ji<br />

),<br />

<br />

one obta<strong>in</strong>s :<br />

one obta<strong>in</strong>s :<br />

Pro<strong>of</strong><br />

if dij<br />

Let b<br />

ijk<br />

d<br />

ji<br />

0,<br />

<br />

log c<br />

ijk<br />

<br />

the equalities mi,<br />

j m j,<br />

i and mi,<br />

j,<br />

k m j,<br />

i,<br />

k , one obta<strong>in</strong>s :<br />

<br />

2<br />

2<br />

n 1 n d <br />

<br />

<br />

ijk<br />

bijk<br />

m i,<br />

j <br />

jik b jik m j,<br />

i<br />

<br />

<br />

1 2 <br />

2<br />

2 <br />

i1 j ik<br />

1<br />

<br />

ijk<br />

b<br />

ijk mi,<br />

j,<br />

k <br />

jik b<br />

jik m j,<br />

i,<br />

k <br />

<br />

2<br />

2<br />

1<br />

<br />

2 2<br />

n n d<br />

ijk<br />

b<br />

ijk 2bijk<br />

mi<br />

, j mi<br />

, j<br />

jik b<br />

jik 2b<br />

jik m j , i m j , i<br />

<br />

2<br />

2<br />

i j ik<br />

<br />

2<br />

<br />

ijk<br />

bijk<br />

2bijk<br />

mi,<br />

j,<br />

k mi,<br />

j,<br />

k <br />

jik b<br />

jik 2b<br />

jik m j,<br />

i , k m<br />

n1<br />

n d <br />

<br />

m<br />

<br />

i1 j ik<br />

1<br />

<br />

<br />

, by distiguish <strong>in</strong>g the cases ( j i)<br />

and ( j i) , and us<strong>in</strong>g<br />

j,<br />

i,<br />

k <br />

1 1 2<br />

2<br />

i,<br />

j<br />

ijk <br />

jik <br />

2mi,<br />

j<br />

ijk bijk<br />

<br />

jik b jik <br />

2<br />

mi,<br />

j,<br />

k <br />

ijk <br />

jik <br />

2mi,<br />

j,<br />

k <br />

ijk bijk<br />

<br />

jik b jik <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

15


hal-00748731, version 1 - 16 Mar 2013<br />

Vitae<br />

and mi,<br />

j,<br />

if d<br />

<br />

m<br />

n1<br />

n<br />

<br />

<br />

<br />

d<br />

i1<br />

ji<br />

<br />

m<br />

k1<br />

n1<br />

n<br />

i1<br />

ji<br />

<br />

n1<br />

n<br />

<br />

m<br />

<br />

s<strong>in</strong>ce d<br />

0,<br />

d<br />

d<br />

2<br />

i,<br />

j <br />

ijk jik <br />

2mi,<br />

j <br />

ijk bijk<br />

<br />

jik b jik <br />

k1<br />

By us<strong>in</strong>g the equalities : d<br />

<br />

m<br />

n1<br />

n<br />

<br />

<br />

1 2 <br />

d<br />

i1<br />

ji<br />

<br />

m<br />

k1<br />

ij<br />

k<br />

d<br />

2<br />

i,<br />

j,<br />

k <br />

ijk jik <br />

2mi,<br />

j,<br />

k <br />

ijk bijk<br />

<br />

jik b jik <br />

<br />

d<br />

2<br />

i<br />

, jd<br />

ij d ji <br />

2mi,<br />

j mi,<br />

j,<br />

k <br />

ijk jik <br />

d<br />

2<br />

2<br />

i,<br />

j,<br />

k <br />

ijk jik <br />

2mi,<br />

j,<br />

k <br />

ijk jik <br />

i,<br />

j,<br />

k <br />

ijk jik <br />

d<br />

2<br />

2 2<br />

i,<br />

j d<br />

ij d ji <br />

2mi<br />

, jd<br />

ij d ji <br />

mi,<br />

j,<br />

k <br />

ijk jik <br />

d<br />

2<br />

2<br />

i,<br />

jd<br />

ij d ji <br />

mi,<br />

j,<br />

k <br />

ijk jik <br />

i1 ji<br />

k1<br />

d<br />

2,<br />

mi<br />

j i<br />

jd<br />

ij d ji <br />

<br />

d<br />

ij d ji <br />

2<br />

i<br />

, jd<br />

ij d ji <br />

<br />

<br />

<br />

1<br />

<br />

<br />

<br />

0.<br />

1<br />

h1<br />

2<br />

,<br />

one obta<strong>in</strong>s :<br />

<br />

m<br />

k1<br />

, mi,<br />

j<br />

<br />

k1<br />

k1<br />

k1<br />

k1<br />

i1 ji<br />

k1<br />

n1<br />

n<br />

<br />

<br />

m<br />

<br />

<br />

n1<br />

n <br />

<br />

m<br />

i1<br />

ji<br />

<br />

m<br />

d<br />

ji<br />

ijk<br />

b<br />

<br />

<br />

ij<br />

d<br />

ijk<br />

ijk<br />

ji<br />

<br />

d<br />

jik<br />

jik<br />

ij<br />

<br />

b<br />

<br />

ijh<br />

<br />

jik<br />

d<br />

ijk<br />

k1<br />

<br />

k1<br />

kl<br />

if αijlα<br />

jil0<br />

<br />

k1<br />

kl<br />

if αijlα<br />

jil0<br />

jih<br />

d<br />

<br />

ijk<br />

<br />

<br />

<br />

ijk<br />

d<br />

ijk<br />

jik<br />

d<br />

ij<br />

2<br />

,<br />

<br />

d<br />

<br />

<br />

<br />

jik<br />

<br />

ji<br />

jik<br />

d<br />

ij<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

<br />

<br />

ji<br />

, k 1,2,..., d.<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Frej Limayem received a M. Sc. (1995) <strong>in</strong> Industrial Eng<strong>in</strong>eer<strong>in</strong>g from Ecole Nationale d’Ingénieurs<br />

de Tunis, and received a Ph.D. (2001) <strong>in</strong> <strong>in</strong>dustrial eng<strong>in</strong>eer<strong>in</strong>g from Ecole Centrale Paris. His Ph.D.<br />

was directed by Dr. Bernard Yannou and focused on the use <strong>of</strong> weight<strong>in</strong>g models, based on <strong>pairwise</strong><br />

comparison methods, for collaborative decision aid <strong>in</strong> project. More generally, his research <strong>in</strong>terests<br />

concern decision mak<strong>in</strong>g <strong>in</strong> product design and development.<br />

Dr Bernard Yannou is an assistant Pr<strong>of</strong>essor <strong>of</strong> Industrial and Mechanical Eng<strong>in</strong>eer<strong>in</strong>g at the<br />

Laboratoire Génie Industriel <strong>of</strong> Ecole Centrale <strong>of</strong> Paris, France. He received a M. Sc. (1988) <strong>in</strong><br />

Mechanical Eng<strong>in</strong>eer<strong>in</strong>g from Ecole Normale Supérieure <strong>of</strong> Cachan, and a second M. Sc. (1989) <strong>in</strong><br />

Computer Science from Paris-6 University. He received a Ph. D. (1994) <strong>in</strong> Industrial Eng<strong>in</strong>eer<strong>in</strong>g from<br />

Ecole Normale Supérieure <strong>of</strong> Cachan. His research <strong>in</strong>terests are centered on the prelim<strong>in</strong>ary stages <strong>of</strong><br />

the product design: def<strong>in</strong><strong>in</strong>g the design requirements, synthesiz<strong>in</strong>g product concepts, rapid <strong>assessment</strong><br />

<strong>of</strong> product performances, preference aggregation <strong>of</strong> the product and the project performances for the<br />

supervision <strong>of</strong> the design process.<br />

16


e<br />

e2<br />

.<br />

:<br />

e<br />

1<br />

n<br />

( e , e )<br />

1<br />

( e<br />

( e<br />

, e<br />

.<br />

:<br />

2<br />

n<br />

e<br />

1<br />

1<br />

1<br />

)<br />

, e )<br />

1<br />

( e , e<br />

1<br />

( e<br />

( e<br />

, e<br />

.<br />

:<br />

2<br />

n<br />

e<br />

2<br />

2<br />

2<br />

, e<br />

2<br />

)<br />

)<br />

)<br />

...<br />

...<br />

...<br />

.<br />

.<br />

.<br />

...<br />

( e , e<br />

1<br />

( e<br />

( e<br />

, e<br />

.<br />

:<br />

2<br />

n<br />

e<br />

n<br />

n<br />

n<br />

, e<br />

n<br />

)<br />

)<br />

)<br />

Fig. 1. The comparison matrix<br />

y<br />

Y 121<br />

DM 1<br />

DM 2<br />

(X 1 =-1, X 2 =1)<br />

a<br />

c<br />

non l<strong>in</strong>ear model ( 0 =0)<br />

b<br />

l<strong>in</strong>ear model ( 0 =0)<br />

hal-00748731, version 1 - 16 Mar 2013<br />

(X 1 =-1, X 2 =1)<br />

Y 122<br />

Y 212<br />

(X 1 =1, X 2 =-1)<br />

pure errors<br />

fitt<strong>in</strong>g errors<br />

c 2 + d 2 = 2 a 2 + 2 b 2<br />

Fig. 2. Graphical illustration <strong>of</strong> pure and fitt<strong>in</strong>g errors on the case <strong>of</strong> a 2 x 2 comparison matrix where<br />

18 19 20<br />

Y ijk represents the logarithm <strong>of</strong> the op<strong>in</strong>ion <strong>of</strong> DM k for the b<strong>in</strong>ary comparison (e i ,e j ).<br />

Y 121<br />

Optimal l<strong>in</strong>ear trajectory for<br />

m<strong>in</strong>imiz<strong>in</strong>g fitt<strong>in</strong>g errors on DM 2 ’s<br />

op<strong>in</strong>ions : (X 1 =1, X 2 =-1; Y 122 ) and<br />

(X 1 =-1, X 2 =1; Y 212 ). It is always true<br />

that a 2 +b 2 a’ 2 + b’ 2 .<br />

Y 122<br />

(X 1 =1, X 2 =-1)<br />

b'<br />

b<br />

y<br />

Y 212<br />

d<br />

x<br />

l<strong>in</strong>ear model ( 0 =0)<br />

a'<br />

x<br />

a<br />

DM 1<br />

DM 2<br />

Fig. 3. Graphical illustration <strong>of</strong> the fact that local estimations generate less errors than global ones on<br />

18 20<br />

the case <strong>of</strong> a 2 x 2 comparison matrix<br />

18 The 2x2 comparison matrix corresponds to a 2-variable-regression. The symmetry <strong>of</strong> the<br />

comparison matrix model allows a 2 dimensional representation on the plan (x 1 +x 2 =0).<br />

19 Unlike the l<strong>in</strong>ear model the non l<strong>in</strong>ear one produces no fitt<strong>in</strong>g errors but none <strong>of</strong> them can avoid<br />

the pure errors. As illustrated by the equality c 2 + d 2 = 2 a 2 + 2 b 2 , the sum <strong>of</strong> errors’ squares is<br />

equivalent to a sum <strong>of</strong> pure errors and fitt<strong>in</strong>g errors.<br />

20 In this example DM 1 expresses no op<strong>in</strong>ion on the b<strong>in</strong>ary comparison (e 2 ,e 1 ).<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!