24.02.2014 Views

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

12 V. Girault <strong>and</strong> M.F. Wheeler<br />

[ ∑<br />

|||K 1 2 ∇v|||L 2 (E h ) = ‖K 1 2 ∇v‖<br />

2<br />

L 2 (E)<br />

E∈E h<br />

<strong>and</strong> norm (for which it is a Hilbert space)<br />

|||v||| H1 (E h ) =<br />

] 1<br />

2<br />

(<br />

)<br />

‖v‖ 2 L 2 (Ω) + |||K 1 1<br />

2 ∇v|||<br />

2 2<br />

L2 (E h ) .<br />

In view of (9), we define the jump bilinear form<br />

, (28)<br />

∑ σ e<br />

J 0 (u, v) =<br />

[u] e [v] e dσ, (29)<br />

h e<br />

e∈Γ h ∪Γ<br />

∫e<br />

h,D<br />

where h e denotes the diameter of e, <strong>and</strong>eachσ e is a suitable non-negative<br />

parameter. It is convenient to define also the mesh-dependent semi-norm<br />

(<br />

)<br />

[|v|] H1 (E h ) = |||K 1 1<br />

2 ∇v|||<br />

2<br />

L2 (E h ) + J 2<br />

0(v, v) . (30)<br />

Now, we choose an integer k ≥ 1 <strong>and</strong> we discretize H 1 (E h ) with the finite<br />

element space<br />

X h = {v ∈ L 2 (Ω) :∀E ∈E h , v| E ∈ P k (E)}. (31)<br />

It is possible to let k vary from one element to the next, but for simplicity we<br />

keep the same k. Then, keeping in mind (10), we discretize (24)–(26) by the<br />

following discrete system: Find p h ∈ X h such that for all q h ∈ X h ,<br />

∑<br />

K∇p h ·∇q h dx<br />

E∈E h<br />

∫E<br />

−<br />

∫<br />

=<br />

∑<br />

e∈Γ h ∪Γ h,D<br />

∫e<br />

Ω<br />

(<br />

{K∇ph · n e } e [q h ] e + ε{K∇q h · n e } e [p h ] e<br />

)<br />

dσ + J0 (p h ,q h )<br />

∫<br />

fq h dx + g 2 q h dσ − ε<br />

Γ N<br />

+ ∑<br />

σ e<br />

h e<br />

e∈Γ<br />

∫e<br />

h,D<br />

∑<br />

e∈Γ h,D<br />

∫e<br />

g 1 (K∇q h · n Ω ) dσ<br />

g 1 q h dσ, (32)<br />

with ε = 1 for SIPG, ε = 0 for IIPG <strong>and</strong> ε = −1 for NIPG <strong>and</strong> OBB-DG;<br />

<strong>and</strong> for each e, σ e = 1 for NIPG, σ e = 0 for OBB-DG <strong>and</strong> again σ e is a well<br />

chosen positive parameter for IIPG <strong>and</strong> SIPG.<br />

Remark 3. Let E be an element of E h with no edge (or face) e on ∂Ω. Taking<br />

q h = χ E , the characteristic function of E in (32), we easily derive the discrete<br />

mass balance relation where n E denotes the unit normal exterior to E:<br />

− ∑<br />

e∈∂E<br />

∫<br />

{K∇p h }·n E dσ + ∑<br />

e<br />

e∈∂E<br />

σ e<br />

(p<br />

h e<br />

∫e<br />

int<br />

h − p ext<br />

h ) dσ =<br />

∫<br />

E<br />

fdx.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!