Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate Partial Differential Equations - Modelling and ... - ResearchGate

24.02.2014 Views

Cell Adhesion and Detachment in Shear Flow 221 (a) 10 8 6 y 4 2 0 0 5 10 15 20 x (b) 10 8 6 y 4 2 0 0 5 10 15 20 x (c) 10 8 6 y 4 2 0 0 5 10 15 20 x (d) 10 8 6 y 4 2 0 0 5 10 15 20 x (e) 10 8 6 y 4 2 0 0 5 10 15 20 x (f) 10 8 6 y 4 2 0 0 5 10 15 20 x Fig. 6. Snapshots of 20 cells at t =0.0 s (a), 5.0 s (b), 5.35 s (c), 6.06 s (d), 9.49 s (e), and 10.0 s (f) (viscosity = 0.01 g/cm-s, shear rate = 30/s). The percentage of detached cells is 10% at t =10.0s.

222 J. Hao et al. References [ASS80] J. Adams, P. Swarztrauber, and R. Sweet. FISHPAK: A package of Fortran subprograms for the solution of separable elliptic partial differential equations. The National Center for Atmospheric Research, Boulder, CO, 1980. [BGP87] M. O. Bristeau, R. Glowinski, and J. Periaux. Numerical methods for the Navier–Stokes equations. Applications to the simulation of compressible and incompressible viscous flow. Comput. Phys. Reports, 6:73–187, 1987. [CH96] K. Chang and D. Hammer. Influence of direction and type of applied force on the detachment of macromolecularly-bound particles from surfaces. Langmuir, 12:2271–2282, 1996. [CHMM78] A. J. Chorin, T. J. R. Hughes, J. E. Marsden, and M. McCracken. Product formulas and numerical algorithms. Comm. Pure Appl. Math., 31:205–256, 1978. [CKGA03] M. Cohen, E. Klein, B. Geiger, and L. Addadi. Organization and adhesive properties of the hyaluronan pericellular coat of chondrocytes and epithelial cells. Biophys. J., 85:1996–2005, 2003. [DG97] E. J. Dean and R. Glowinski. A wave equation approach to the numerical solution of the Navier–Stokes equations for incompressible viscous flow. C. R. Acad. Sci. Paris Sér. I Math., 325(7):783–791, 1997. [GHR04] U. R. Goessler, K. Hörmann, and F. Riedel. Tissue engineering with chondrocytes and function of the extracellular matrix (review). Int. J. Mol. Med., 13:505–513, 2004. [GPH + 01] R. Glowinski, T.-W. Pan, T. I. Hesla, D. D. Joseph, and J. Périaux. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comput. Phys., 169(2):363–426, 2001. [GPHJ99] R. Glowinski, T.-W. Pan, T. Hesla, and D. D. Joseph. A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow, 25(5):755–794, 1999. [GPP98] R. Glowinski, T.-W. Pan, and J. Périaux. Distributed Lagrange multiplier methods for incompressible flow around moving rigid bodies. Comput. Methods Appl. Mech. Engrg., 151(1–2):181–194, 1998. [JGP02] L. H. Juarez, R. Glowinski, and T.-W. Pan. Numerical simulation of the sedimentation of rigid bodies in an incompressible viscous fluid by Lagrange multiplier/fictitious domain methods combined with the Taylor–Hood finite element approximation. J. Sci. Comput., 17:683– 694, 2002. [KH01] M. R. King and D. A. Hammer. Multiparticle adhesive dynamics. interactions between stably rolling cells. Biophys. J., 81:799–813, 2001. [KS06] C. Korn and U. S. Schwarz. Efficiency of initiating cell adhesion in hydrodynamic flow. Phys. Rev. Lett., 97, 2006. 138103. [Loe93] R. F. Loeser. Integrin-mediated attachment of articular chondrocytes to extracellular matrix proteins. Arthritis Rheum., 36:1103–1110, 1993. [PG02] T.-W. Pan and R. Glowinski. Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow. J. Comput. Phys., 181:260–279, 2002.

222 J. Hao et al.<br />

References<br />

[ASS80] J. Adams, P. Swarztrauber, <strong>and</strong> R. Sweet. FISHPAK: A package of<br />

Fortran subprograms for the solution of separable elliptic partial differential<br />

equations. The National Center for Atmospheric Research,<br />

Boulder, CO, 1980.<br />

[BGP87] M. O. Bristeau, R. Glowinski, <strong>and</strong> J. Periaux. Numerical methods for<br />

the Navier–Stokes equations. Applications to the simulation of compressible<br />

<strong>and</strong> incompressible viscous flow. Comput. Phys. Reports,<br />

6:73–187, 1987.<br />

[CH96] K. Chang <strong>and</strong> D. Hammer. Influence of direction <strong>and</strong> type of applied<br />

force on the detachment of macromolecularly-bound particles from surfaces.<br />

Langmuir, 12:2271–2282, 1996.<br />

[CHMM78] A. J. Chorin, T. J. R. Hughes, J. E. Marsden, <strong>and</strong> M. McCracken.<br />

Product formulas <strong>and</strong> numerical algorithms. Comm. Pure Appl. Math.,<br />

31:205–256, 1978.<br />

[CKGA03] M. Cohen, E. Klein, B. Geiger, <strong>and</strong> L. Addadi. Organization <strong>and</strong><br />

adhesive properties of the hyaluronan pericellular coat of chondrocytes<br />

<strong>and</strong> epithelial cells. Biophys. J., 85:1996–2005, 2003.<br />

[DG97] E. J. Dean <strong>and</strong> R. Glowinski. A wave equation approach to the numerical<br />

solution of the Navier–Stokes equations for incompressible viscous<br />

flow. C. R. Acad. Sci. Paris Sér. I Math., 325(7):783–791, 1997.<br />

[GHR04] U. R. Goessler, K. Hörmann, <strong>and</strong> F. Riedel. Tissue engineering with<br />

chondrocytes <strong>and</strong> function of the extracellular matrix (review). Int. J.<br />

Mol. Med., 13:505–513, 2004.<br />

[GPH + 01] R. Glowinski, T.-W. Pan, T. I. Hesla, D. D. Joseph, <strong>and</strong> J. Périaux.<br />

A fictitious domain approach to the direct numerical simulation of incompressible<br />

viscous flow past moving rigid bodies: Application to particulate<br />

flow. J. Comput. Phys., 169(2):363–426, 2001.<br />

[GPHJ99] R. Glowinski, T.-W. Pan, T. Hesla, <strong>and</strong> D. D. Joseph. A distributed<br />

Lagrange multiplier/fictitious domain method for particulate flows. Int.<br />

J. Multiph. Flow, 25(5):755–794, 1999.<br />

[GPP98] R. Glowinski, T.-W. Pan, <strong>and</strong> J. Périaux. Distributed Lagrange multiplier<br />

methods for incompressible flow around moving rigid bodies.<br />

Comput. Methods Appl. Mech. Engrg., 151(1–2):181–194, 1998.<br />

[JGP02] L. H. Juarez, R. Glowinski, <strong>and</strong> T.-W. Pan. Numerical simulation of<br />

the sedimentation of rigid bodies in an incompressible viscous fluid<br />

by Lagrange multiplier/fictitious domain methods combined with the<br />

Taylor–Hood finite element approximation. J. Sci. Comput., 17:683–<br />

694, 2002.<br />

[KH01] M. R. King <strong>and</strong> D. A. Hammer. Multiparticle adhesive dynamics.<br />

interactions between stably rolling cells. Biophys. J., 81:799–813, 2001.<br />

[KS06] C. Korn <strong>and</strong> U. S. Schwarz. Efficiency of initiating cell adhesion in<br />

hydrodynamic flow. Phys. Rev. Lett., 97, 2006. 138103.<br />

[Loe93] R. F. Loeser. Integrin-mediated attachment of articular chondrocytes<br />

to extracellular matrix proteins. Arthritis Rheum., 36:1103–1110, 1993.<br />

[PG02] T.-W. Pan <strong>and</strong> R. Glowinski. Direct simulation of the motion of neutrally<br />

buoyant circular cylinders in plane Poiseuille flow. J. Comput.<br />

Phys., 181:260–279, 2002.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!