24.02.2014 Views

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Cell Adhesion <strong>and</strong> Detachment in Shear Flow 217<br />

⎧ ∫<br />

u ⎪⎨<br />

n+1/6 − u n ∫<br />

ρ f · v dx − p n+1/6 ∇ · v dx =0, ∀v ∈ W 0,h ,<br />

∫ Ω △t<br />

Ω<br />

⎪⎩ q∇ · u n+1/6 dx =0, ∀q ∈ L 2 h; u n+1/6 ∈ W n+1<br />

g , 0,h pn+1/6 ∈ L 2 0,h.<br />

Ω<br />

(21)<br />

Step 3. Compute u n+2/6 via the solution of<br />

⎧∫<br />

∂u<br />

⎪⎨<br />

Ω ∂t · v dx + (u<br />

∫Ω<br />

n+1/6 · ∇)u · v dx =0,<br />

∀v ∈ W 0,h , on (t<br />

⎪⎩<br />

n ,t n+1 ),<br />

(22)<br />

u(t n )=u n+1/6 ; u(t) ∈ W n+1<br />

g , 0,h<br />

u n+2/6 = u(t n+1 ). (23)<br />

Step 4. Compute u n+3/6 via the solution of<br />

⎧ ∫<br />

⎨ u n+3/6 − u n+2/6<br />

∫<br />

ρ f · v dx + αµ f ∇u n+3/6 · ∇v dx =0,<br />

Ω △t<br />

Ω<br />

⎩<br />

∀v ∈ W 0,h ; u n+3/6 ∈ W n+1<br />

g . 0,h<br />

(24)<br />

Step 5. Predict the position <strong>and</strong> the translation velocity of the center of mass<br />

of the particles as follows: Take V n+ 4 6 ,0<br />

G<br />

= V n G <strong>and</strong> Gn+ 4 6 ,0 = G n .<br />

Then predict the new position of the particle via the following subcycling<br />

<strong>and</strong> predicting-correcting technique:<br />

For k =1,...,N,<br />

Call Adhesive Dynamics Algorithm,<br />

̂V n+ 4 6 ,k<br />

G<br />

= V n+ 4 6 ,k−1<br />

G<br />

+ F r (G n+ 4 6 ,k−1 )△t/2N, (25)<br />

Ĝ n+ 4 6 ,k = G n+ 4 6 ,k−1 +(̂V n+ 4 6 ,k<br />

G<br />

V n+ 4 6 ,k<br />

G<br />

+ V n+ 4 6 ,k−1<br />

G<br />

)△t/4N, (26)<br />

= V n+ 4 6 ,k−1<br />

G<br />

+(F r 4 (Ĝn+ 6 ,k )<br />

+ F r (G n+ 4 6 ,k−1 ))△t/4N, (27)<br />

G n+ 4 6 ,k = G n+ 4 6 ,k−1 +(V n+ 4 6 ,k<br />

G<br />

+ V n+ 4 6 ,k−1<br />

G<br />

)△t/4N, (28)<br />

enddo;<br />

<strong>and</strong> let V n+ 4 6<br />

G = 4 Vn+ 6 ,N<br />

G<br />

, G n+ 4 6 = G n+ 4 6 ,N .<br />

Step 6. Now, compute u n+5/6 , λ n+5/6 , V n+5/6 ,<strong>and</strong>ω n+5/6 via the solution<br />

G<br />

of<br />

⎧<br />

⎪ ⎨<br />

⎪ ⎩<br />

ρ f<br />

∫<br />

Ω<br />

u n+5/6 − u n+3/6<br />

∫<br />

· v dx + βµ f<br />

△t<br />

, ∀v ∈ W 0,h ,<br />

=0,<br />

= 〈λ, v〉 B<br />

n+4/6<br />

h<br />

〈µ, u n+5/6 〉 B<br />

n+4/6<br />

h<br />

Ω<br />

∇u n+5/6 · ∇v dx<br />

∀µ ∈ Λ n+4/6<br />

0,h<br />

; u n+5/6 ∈ W n+1<br />

g , 0,h λn+5/6 ∈ Λ n+4/6<br />

0,h<br />

,<br />

(29)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!