Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate Partial Differential Equations - Modelling and ... - ResearchGate

24.02.2014 Views

Cell Adhesion and Detachment in Shear Flow 215 Fig. 3. Subdivision of a triangle of T 2h . W g0,h(t) ={v h | v h ∈ (C 0 (Ω)) 2 , v h | T ∈ P 1 × P 1 , ∀T ∈T h , v h = g 0 (t) on the top and bottom of Ω and v is periodic at Γ in the x 1 -direction}, (8) W 0,h = {v h | v h ∈ (C 0 (Ω)) 2 , v h | T ∈ P 1 × P 1 , ∀T ∈T h , v h = 0 on the top and bottom of Ω and v is periodic at Γ in the x 1 -direction}, (9) L 2 h = {q h | q h ∈ C 0 (Ω), q h | T ∈ P 1 , ∀T ∈T 2h ,q h is periodic at Γ in the x 1 -direction}, (10) ∫ L 2 0,h = {q h | q h ∈ L 2 h, q h dx =0}. (11) Ω In (8)–(11), P 1 is the space of polynomials in two variables of degree ≤ 1. Remark 4. A different choice of finite element, the Taylor–Hood finite element, for the velocity field has been considered in [JGP02] for simulating the fluid/particle interaction via distributed Lagrange multiplier based fictitious domain method for non-neutrally buoyant particles. ⊓⊔ A finite dimensional space approximating Λ 0 (t) isdefinedasfollows:let {x i } N i=1 be a set of points covering B(t) (see Figure 4, for example); we define then { } N∑ Λ h (t) = µ h | µ h = µ i δ(x − x i ), µ i ∈ R 2 , ∀i =1, ..., N , (12) i=1 where δ(·) is the Dirac measure at x = 0. Then, instead of the scalar product of (H 1 (B(t))) 2 we shall use 〈·, ·〉 Bh (t) defined by 〈µ h , v h 〉 Bh (t) = N∑ µ i · v h (x i ), ∀µ h ∈ Λ h (t), v h ∈ W 0,h . (13) i=1 Then we approximate Λ 0 (t) by { Λ 0,h (t) = µ h | µ h ∈ Λ h (t), 〈µ h , e i 〉 Bh (t) =0, i =1, 2, 〈µ h , −→ } Gx ⊥ 〉 Bh (t) =0 . (14)

216 J. Hao et al. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Fig. 4. An example of set of collocation points chosen for enforcing the rigid body motion inside the disk and at its boundary. Using the above finite dimensional spaces leads to the following approximation of the problem (1)–(6): For a.e. t>0, find u(t) ∈ W g0,h(t), p(t) ∈ L 2 0,h , V G(t) ∈ R 2 , G(t) ∈ R 2 , ω(t) ∈ R, λ h (t) ∈ Λ 0,h (t) such that ∫ ρ f ∫ − Ω Ω [ ∂uh ∂t ] ∫ +(u h · ∇)u h · v dx + µ f ∇u h : ∇v dx Ω ∫ p h ∇ · v dx −〈λ h , v〉 Bh (t) = F · v dx, ∀v ∈ W 0,h , (15) Ω ∫ q∇ · u h (t)dx =0, ∀q ∈ L 2 h, (16) Ω 〈µ, u h (t)〉 Bh (t) =0, ∀µ ∈ Λ 0,h (t), (17) dG dt = V G, (18) V G (0) = V 0 G, ω(0) = ω 0 , G(0) = G 0 = {G 0 1,G 0 2} t , (19) u h (x, 0) = u 0,h (x) (with ∇ · u 0,h =0). (20) Applying a first order operator splitting scheme, Lie’s scheme [CHMM78] and backward Euler scheme at some fractional steps, to discretize the equations (15)–(20) in time, we obtain (after dropping some of the subscripts h): Algorithm 1 Step 1. u 0 = u 0,h , V 0 G , ω0 ,andG 0 are given; Step 2. For n ≥ 0, knowing u n , V n G , ωn and G n , compute u n+1/6 and p n+1/6 via the solution of

Cell Adhesion <strong>and</strong> Detachment in Shear Flow 215<br />

Fig. 3. Subdivision of a triangle of T 2h .<br />

W g0,h(t) ={v h | v h ∈ (C 0 (Ω)) 2 , v h | T ∈ P 1 × P 1 , ∀T ∈T h , v h = g 0 (t)<br />

on the top <strong>and</strong> bottom of Ω <strong>and</strong> v is periodic at Γ<br />

in the x 1 -direction}, (8)<br />

W 0,h = {v h | v h ∈ (C 0 (Ω)) 2 , v h | T ∈ P 1 × P 1 , ∀T ∈T h , v h = 0<br />

on the top <strong>and</strong> bottom of Ω <strong>and</strong> v is periodic at Γ<br />

in the x 1 -direction}, (9)<br />

L 2 h = {q h | q h ∈ C 0 (Ω), q h | T ∈ P 1 , ∀T ∈T 2h ,q h is periodic at Γ<br />

in the x 1 -direction}, (10)<br />

∫<br />

L 2 0,h = {q h | q h ∈ L 2 h, q h dx =0}. (11)<br />

Ω<br />

In (8)–(11), P 1 is the space of polynomials in two variables of degree ≤ 1.<br />

Remark 4. A different choice of finite element, the Taylor–Hood finite element,<br />

for the velocity field has been considered in [JGP02] for simulating the<br />

fluid/particle interaction via distributed Lagrange multiplier based fictitious<br />

domain method for non-neutrally buoyant particles. ⊓⊔<br />

A finite dimensional space approximating Λ 0 (t) isdefinedasfollows:let<br />

{x i } N i=1 be a set of points covering B(t) (see Figure 4, for example); we define<br />

then<br />

{<br />

}<br />

N∑<br />

Λ h (t) = µ h | µ h = µ i δ(x − x i ), µ i ∈ R 2 , ∀i =1, ..., N , (12)<br />

i=1<br />

where δ(·) is the Dirac measure at x = 0. Then, instead of the scalar product<br />

of (H 1 (B(t))) 2 we shall use 〈·, ·〉 Bh (t) defined by<br />

〈µ h , v h 〉 Bh (t) =<br />

N∑<br />

µ i · v h (x i ), ∀µ h ∈ Λ h (t), v h ∈ W 0,h . (13)<br />

i=1<br />

Then we approximate Λ 0 (t) by<br />

{<br />

Λ 0,h (t) = µ h | µ h ∈ Λ h (t), 〈µ h , e i 〉 Bh (t) =0, i =1, 2, 〈µ h , −→ }<br />

Gx ⊥ 〉 Bh (t) =0 .<br />

(14)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!