24.02.2014 Views

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Cell Adhesion <strong>and</strong> Detachment in Shear Flow 213<br />

Fig. 2. An example of two-dimensional flow region with one rigid body.<br />

W g0,p = {v | v ∈ (H 1 (Ω)) 2 , v = g 0 (t) on the top <strong>and</strong> bottom of Ω <strong>and</strong><br />

v is periodic in the x 1 -direction},<br />

W 0,p = {v | v ∈ (H 1 (Ω)) 2 , v = 0 on the top <strong>and</strong> bottom of Ω <strong>and</strong><br />

v is periodic in the x 1 -direction},<br />

{<br />

∫ }<br />

L 2 0 = q | q ∈ L 2 (Ω), qdx =0 ,<br />

Ω<br />

Λ 0 (t) ={µ | µ ∈ (H 1 (B(t))) 2 , 〈µ, e i 〉 B(t) =0, i =1, 2, 〈µ, −→ Gx ⊥ 〉 B(t) =0}<br />

with e 1 = {1, 0} t , e 2 = {0, 1} t , −→ Gx ⊥ = {−(x 2 − G 2 ),x 1 − G 1 } t <strong>and</strong> 〈·, ·〉 B(t)<br />

an inner product on Λ 0 (t) which can be the st<strong>and</strong>ard inner product on<br />

(H 1 (B(t))) 2 (see [GPH + 01, Section 5] for further information on the choice of<br />

〈·, ·〉 B(t) ). Then the fictitious domain formulation with distributed Lagrange<br />

multipliers for flow around a freely moving neutrally buoyant particle (see<br />

[GPHJ99, GPH + 01] for detailed discussion of non-neutrally buoyant cases) is<br />

as follows:<br />

For a.e. t>0, find u(t) ∈ W g0,p, p(t) ∈ L 2 0, V G (t) ∈ R 2 , G(t) ∈ R 2 ,<br />

ω(t) ∈ R, λ(t) ∈ Λ 0 (t) such that<br />

∫ [ ]<br />

∫<br />

∫<br />

∂u<br />

ρ f<br />

Ω ∂t +(u · ∇)u · v dx +2µ f D(u) :D(v) dx − p∇ · v dx<br />

Ω<br />

Ω<br />

∫<br />

∫<br />

−〈λ, v〉 B(t) = ρ f g · v dx + F · v dx, ∀v ∈ W 0,p , (1)<br />

Ω<br />

Ω<br />

∫<br />

q∇ · u(t)dx =0, ∀q ∈ L 2 (Ω), (2)<br />

Ω<br />

〈µ, u(t)〉 B(t) =0, ∀µ ∈ Λ 0 (t), (3)<br />

dG<br />

dt = V G, (4)<br />

V G (0) = V 0 G, ω(0) = ω 0 , G(0) = G 0 = {G 0 1,G 0 2} t , (5)<br />

{<br />

u 0 (x),<br />

∀x ∈ Ω \ B(0),<br />

u(x, 0) = u 0 (x) =<br />

V 0 G + ω0 {−(x 2 − G 0 2),x 1 − G 0 1} t (6)<br />

, ∀x ∈ B(0),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!