24.02.2014 Views

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Discontinuous Galerkin Methods 9<br />

(<br />

2∑ ∫ ∫<br />

(<br />

µ ∇u : ∇v dx − (∇u · nΩ )v + ε(∇v · n Ω )u ) )<br />

dσ<br />

Ω i ∂Ω i\Γ 12<br />

∫<br />

− µ ( )<br />

{∇u · n e } e [v] e + ε{∇v · n e } e [u] e dσ + µJ0 (u, v)<br />

Γ 12<br />

(<br />

2∑<br />

∫<br />

∫<br />

) ∫<br />

+ − p div v dx + p(v · n Ω ) dσ + {p} e [v] e · n e dσ<br />

i=1 Ω i ∂Ω i\Γ 12 Γ 12<br />

∫<br />

= f · v dx, (13)<br />

Ω<br />

(<br />

2∑ ∫ ∫<br />

) ∫<br />

q div u dx − q(u · n Ω ) dσ − {q} e [u] e · n e dσ =0,<br />

Ω i ∂Ω i\Γ 12 Γ 12<br />

i=1<br />

i=1<br />

with the interpretation for the parameters ε <strong>and</strong> σ of the formula (7).<br />

(14)<br />

2.3 Upwinding in a Transport Problem: General Idea<br />

Consider the simple transport problem in Ω:<br />

c + u ·∇c = f in Ω, (15)<br />

where f belongs to L 2 (Ω)<strong>and</strong>u is a sufficiently smooth vector-valued function<br />

that satisfies<br />

div u =0 inΩ, u · n Ω =0 on∂Ω. (16)<br />

Recall the notation<br />

2∑ ∂c<br />

u ·∇c = u i ,<br />

∂x<br />

i=1 i<br />

<strong>and</strong> note that when the functions involved are sufficiently smooth, Green’s<br />

formula <strong>and</strong> (16) yield ∫<br />

(u ·∇c)cdx =0. (17)<br />

Ω<br />

For the applications we have in mind, let us assume that c is sufficiently<br />

smooth in each Ω i , but is not necessarily in H 1 (Ω).Then,wemustgivea<br />

meaning to the product u ·∇c. From the following identity <strong>and</strong> the fact that<br />

the divergence of u is zero:<br />

div(cu) =c(div u)+u ·∇c = u ·∇c,<br />

<strong>and</strong> we derive for any smooth function ϕ with compact support in Ω<br />

∫<br />

〈u ·∇c, ϕ〉 = 〈div(cu),ϕ〉 = −〈cu, ∇ϕ〉 = − (cu) ·∇ϕdx<br />

2∑<br />

∫<br />

= − (cu) ·∇ϕdx. (18)<br />

i=1 Ω i<br />

We use the last equality to define u ·∇c in the sense of distributions.<br />

Ω

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!