Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate Partial Differential Equations - Modelling and ... - ResearchGate

24.02.2014 Views

8 V. Girault and M.F. Wheeler In this case, we suppress from J 0 the boundary term on ∂Ω 2 \ Γ 12 : J 0 (u, v) = σ ∫ ∫ 12 σ 1 [u] e [v] e dσ + uv dσ, (9) |Γ 12 | Γ 12 |∂Ω 1 \ Γ 12 | ∂Ω 1\Γ 12 and the IIPG, SIPG, NIPG and OBB-DG formulations become: 2∑ ∫ ∫ ( ∇u ·∇vdx − (∇u · nΩ )v + ε(∇v · n Ω )u ) dσ Ω i ∂Ω 1\Γ 12 ∫ ( ) − {∇u · ne } e [v] e + ε{∇v · n e } e [u] e dσ + J0 (u, v) Γ ∫ 12 ∫ ∫ = fvdx + g 2 vdσ− ε g 1 (∇v · n Ω ) dσ Ω ∂Ω 2\Γ 12 ∂Ω 1\Γ 12 ∫ σ 1 + g 1 vdσ, (10) |∂Ω 1 \ Γ 12 | ∂Ω 1\Γ 12 i=1 with the same values of ε, σ 1 and σ 12 as in (7). 2.2 The General Idea for the Stokes Problem Consider the incompressible Stokes problem in Ω with data f in L 2 (Ω) 2 : −µ∆u + ∇p = f, div u =0 inΩ, u = 0 on ∂Ω, (11) where the viscosity parameter µ is a given positive constant. This is a typical problem with a linear constraint (the zero divergence) and a Lagrange multiplier (the pressure p). For treating the pressure term and divergence constraint, we take again a test function v that is not necessarily globally smooth, but has smooth components in each Ω i , and assuming the pressure p is sufficiently smooth, we apply Green’s formula in each Ω i : ∫ Ω (∇p) · v dx = ( 2∑ ∫ ∫ ) − p div v dx + p(v · n Ω ) dσ Ω i ∂Ω i\Γ 12 ∫ + {p} e [v] e · n e dσ. (12) Γ 12 i=1 We apply the same formula to the divergence constraint. Thus combining (12) with (7), we have the following IIPG, SIPG, NIPG and OBB-DG formulations for the Stokes problem (11):

Discontinuous Galerkin Methods 9 ( 2∑ ∫ ∫ ( µ ∇u : ∇v dx − (∇u · nΩ )v + ε(∇v · n Ω )u ) ) dσ Ω i ∂Ω i\Γ 12 ∫ − µ ( ) {∇u · n e } e [v] e + ε{∇v · n e } e [u] e dσ + µJ0 (u, v) Γ 12 ( 2∑ ∫ ∫ ) ∫ + − p div v dx + p(v · n Ω ) dσ + {p} e [v] e · n e dσ i=1 Ω i ∂Ω i\Γ 12 Γ 12 ∫ = f · v dx, (13) Ω ( 2∑ ∫ ∫ ) ∫ q div u dx − q(u · n Ω ) dσ − {q} e [u] e · n e dσ =0, Ω i ∂Ω i\Γ 12 Γ 12 i=1 i=1 with the interpretation for the parameters ε and σ of the formula (7). (14) 2.3 Upwinding in a Transport Problem: General Idea Consider the simple transport problem in Ω: c + u ·∇c = f in Ω, (15) where f belongs to L 2 (Ω)andu is a sufficiently smooth vector-valued function that satisfies div u =0 inΩ, u · n Ω =0 on∂Ω. (16) Recall the notation 2∑ ∂c u ·∇c = u i , ∂x i=1 i and note that when the functions involved are sufficiently smooth, Green’s formula and (16) yield ∫ (u ·∇c)cdx =0. (17) Ω For the applications we have in mind, let us assume that c is sufficiently smooth in each Ω i , but is not necessarily in H 1 (Ω).Then,wemustgivea meaning to the product u ·∇c. From the following identity and the fact that the divergence of u is zero: div(cu) =c(div u)+u ·∇c = u ·∇c, and we derive for any smooth function ϕ with compact support in Ω ∫ 〈u ·∇c, ϕ〉 = 〈div(cu),ϕ〉 = −〈cu, ∇ϕ〉 = − (cu) ·∇ϕdx 2∑ ∫ = − (cu) ·∇ϕdx. (18) i=1 Ω i We use the last equality to define u ·∇c in the sense of distributions. Ω

8 V. Girault <strong>and</strong> M.F. Wheeler<br />

In this case, we suppress from J 0 the boundary term on ∂Ω 2 \ Γ 12 :<br />

J 0 (u, v) = σ ∫<br />

∫<br />

12<br />

σ 1<br />

[u] e [v] e dσ +<br />

uv dσ, (9)<br />

|Γ 12 | Γ 12<br />

|∂Ω 1 \ Γ 12 | ∂Ω 1\Γ 12<br />

<strong>and</strong> the IIPG, SIPG, NIPG <strong>and</strong> OBB-DG formulations become:<br />

2∑<br />

∫<br />

∫<br />

(<br />

∇u ·∇vdx − (∇u · nΩ )v + ε(∇v · n Ω )u ) dσ<br />

Ω i ∂Ω 1\Γ 12<br />

∫<br />

( )<br />

− {∇u · ne } e [v] e + ε{∇v · n e } e [u] e dσ + J0 (u, v)<br />

Γ<br />

∫<br />

12<br />

∫<br />

∫<br />

= fvdx + g 2 vdσ− ε g 1 (∇v · n Ω ) dσ<br />

Ω<br />

∂Ω 2\Γ 12 ∂Ω 1\Γ 12<br />

∫<br />

σ 1<br />

+<br />

g 1 vdσ, (10)<br />

|∂Ω 1 \ Γ 12 | ∂Ω 1\Γ 12<br />

i=1<br />

with the same values of ε, σ 1 <strong>and</strong> σ 12 as in (7).<br />

2.2 The General Idea for the Stokes Problem<br />

Consider the incompressible Stokes problem in Ω with data f in L 2 (Ω) 2 :<br />

−µ∆u + ∇p = f, div u =0 inΩ, u = 0 on ∂Ω, (11)<br />

where the viscosity parameter µ is a given positive constant. This is a typical<br />

problem with a linear constraint (the zero divergence) <strong>and</strong> a Lagrange<br />

multiplier (the pressure p).<br />

For treating the pressure term <strong>and</strong> divergence constraint, we take again<br />

a test function v that is not necessarily globally smooth, but has smooth<br />

components in each Ω i , <strong>and</strong> assuming the pressure p is sufficiently smooth,<br />

we apply Green’s formula in each Ω i :<br />

∫<br />

Ω<br />

(∇p) · v dx =<br />

(<br />

2∑<br />

∫<br />

∫<br />

)<br />

− p div v dx + p(v · n Ω ) dσ<br />

Ω i ∂Ω i\Γ 12<br />

∫<br />

+ {p} e [v] e · n e dσ. (12)<br />

Γ 12<br />

i=1<br />

We apply the same formula to the divergence constraint. Thus combining (12)<br />

with (7), we have the following IIPG, SIPG, NIPG <strong>and</strong> OBB-DG formulations<br />

for the Stokes problem (11):

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!