24.02.2014 Views

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

138 S. Lapin et al.<br />

4 Energy Inequality<br />

Theorem 3. Let h min denote the minimal diameter of the triangles from T 1h ∪<br />

T 2h . There exists a positive number c such that the condition<br />

∆t ≤ c min{ √ ε 1 µ 1 , √ ε 2 µ 2 } h min (14)<br />

ensures the positive definiteness of the quadratic form<br />

( (u<br />

E n+1 = 1 n+1<br />

2 ε 1h<br />

1S 1<br />

∆t<br />

( ∣<br />

+ 1 2 S 1<br />

(<br />

− ∆t2<br />

8 S 1<br />

µ −1<br />

1<br />

µ −1<br />

1<br />

( u<br />

n+1<br />

∣ ∇ 1h<br />

2<br />

( u<br />

n+1<br />

∣ ∇ 1h<br />

∆t<br />

− un 1h<br />

+ un 1h<br />

− un 1h<br />

)2 ) (<br />

+ 1 ( u<br />

n+1<br />

2 S 2h<br />

2 ε<br />

∆t<br />

)∣ ∣∣∣<br />

2 ) (<br />

+ 1 ∣ ∣∣∣<br />

2 S 2 µ −1 ∇<br />

)∣ ∣∣∣<br />

2 ) ( ∣<br />

− ∆t2 ∣∣∣<br />

8 S 2 µ −1 ∇<br />

which we call the discrete energy.<br />

The system (9), (10) satisfies the energy identity<br />

√<br />

ε 1 µ −1<br />

E n+1 −E n 1<br />

+ S Γext ((u n+1<br />

1h<br />

4∆t<br />

− un−1 1h )2 )=<br />

= 1 2 S 1(f n 1 (u n+1<br />

1h<br />

− un 2h<br />

( u<br />

n+1<br />

2h<br />

( u<br />

n+1<br />

2h<br />

− un−1 1h )) + 1 2 S 2(f2 n (u n+1<br />

2h<br />

)2 ) +<br />

+ un 2h<br />

2<br />

− un 2h<br />

∆t<br />

)∣ ∣∣∣<br />

2 ) −<br />

)∣ ∣∣∣<br />

2 ) ,<br />

(15)<br />

− un−1 2h<br />

)) (16)<br />

<strong>and</strong> the numerical scheme is stable: There exists a positive number M = M(T )<br />

such that<br />

n−1<br />

∑<br />

E n ≤ M∆t (S 1 ((f1 k ) 2 )+S 2 ((f2 k ) 2 )), ∀n. (17)<br />

γ<br />

k=1<br />

Proof. Let n ≥ 1. From the equation (10) written for t n+1 <strong>and</strong> t n−1 we obtain<br />

∫<br />

ζ h ((u n+1<br />

2h<br />

− un−1 2h<br />

) − (un+1 1h<br />

− un−1 1h ))dγ = 0 for all ζ h ∈ Λ h . (18)<br />

Choosing<br />

in (9) <strong>and</strong><br />

w 1h = un+1 1h<br />

− un−1 1h<br />

, w 2h = un+1 2h<br />

2<br />

ζ h = − λn+1 h<br />

2<br />

in (18), we add these equalities. Using the identities<br />

− un−1 2h<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!