24.02.2014 Views

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

134 S. Lapin et al.<br />

∫<br />

∂ 2 ∫<br />

∫<br />

u 1<br />

ε 1<br />

˜Ω ∂t 2 w 1dx + µ −1<br />

1 ∇u 1 ·∇w 1 dx + ε(x) ∂2 u 2<br />

˜Ω<br />

R ∂t 2 w 2dx<br />

∫<br />

√ ∫<br />

∫<br />

+ µ −1 (x)∇u 2 ·∇w 2 dx + ε 1 µ −1 ∂u 1<br />

1<br />

R<br />

Γ ext<br />

∂t w 1dΓ + λ(w 2 − w 1 )dγ<br />

γ<br />

∫<br />

∫<br />

= f 1 w 1 dx + f 2 w 2 dx for all w 1 ∈ H 1 ( ˜Ω), w 2 ∈ H 1 (R), (5)<br />

˜Ω<br />

R<br />

∫<br />

ζ(u 2 − u 1 )dγ = 0 for all ζ ∈ H −1/2 (γ), (6)<br />

γ<br />

<strong>and</strong> the initial conditions from (1).<br />

Remark 1. We selected the time dependent approach to capture harmonic<br />

solutions since it substantially simplifies the linear algebra of the solution<br />

process. Furthermore, there exist various techniques to speed up the convergence<br />

of transient solutions to periodic ones (see, e.g., [BDG + 97]).<br />

2 Time Discretization<br />

In order to construct a finite difference approximation in time of the problem<br />

(5), (6), we partition the segment [0,T]intoN intervals using a uniform<br />

discretization step ∆t = T/N.Letu n i ≈ u i (n∆t)fori =1, 2, λ n ≈ λ(n∆t).<br />

The explicit in time semidiscrete approximation to the problem (5), (6) reads<br />

as follows:<br />

u 0 i = u 1 i =0<br />

for n =1, 2,...,N − 1. Find u n+1<br />

1 ∈ H 1 ( ˜Ω), u n+1<br />

2 ∈ H 1 (R) <strong>and</strong>λ n+1 ∈<br />

H −1/2 (γ) such that<br />

∫<br />

u n+1<br />

1 − 2u n 1 + u n−1 ∫<br />

1<br />

ε 1<br />

˜Ω ∆t 2 w 1 dx + µ −1<br />

1 ∇un 1 ·∇w 1 dx+<br />

˜Ω<br />

∫<br />

+ ε(x) un+1 2 − 2u n 2 + u n−1 ∫<br />

2<br />

R<br />

∆t 2 w 2 dx + µ −1 (x)∇u n 2 ·∇w 2 dx+<br />

R<br />

√<br />

+ ε 1 µ −1 u<br />

1<br />

∫Γ n+1<br />

1 − u n−1 ∫<br />

1<br />

w 1 dΓ + λ n+1 (w 2 − w 1 )dγ =<br />

ext<br />

2∆t<br />

γ<br />

∫<br />

∫<br />

= f1 n w 1 dx + f2 n w 2 dx for all w 1 ∈ H 1 ( ˜Ω),w 2 ∈ H 1 (R), (7)<br />

∫<br />

˜Ω<br />

R<br />

ζ(u n+1<br />

2 − u n+1<br />

1 )dγ = 0 for all ζ ∈ H −1/2 (γ). (8)<br />

γ<br />

Remark 2. The integral over γ is written formally; the exact formulation requires<br />

the use of the duality pairing 〈·, ·〉 between H −1/2 (γ) <strong>and</strong>H 1/2 (γ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!