24.02.2014 Views

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

Partial Differential Equations - Modelling and ... - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Optimal Higher Order Time Discretizations 93<br />

[Deu04] P. Deuflhard. Newton Methods for Nonlinear Problems – Affine<br />

Invariance <strong>and</strong> Adaptative Algorithms. Number 35 in Computational<br />

Mathematics. Springer, Berlin, 2004.<br />

[DPJ06] S. Del Pino <strong>and</strong> H. Jourdren. Arbitrary high-order schemes for the<br />

linear advection <strong>and</strong> wave equations: application to hydrodynamics<br />

<strong>and</strong> aeroacoustics. C. R. Math. Acad. Sci. Paris, 342(6):441–446,<br />

2006.<br />

[FLLP05] L. Fezoui, S. Lanteri, S. Lohrengel, <strong>and</strong> S. Piperno. Convergence <strong>and</strong><br />

stability of a discontinuous Galerkin time-domain method for the 3D<br />

heterogeneous Maxwell equations on unstructured meshes. M2AN<br />

Math. Model. Numer. Anal., 39(6):1149–1176, 2005.<br />

[HW96] E. Hairer <strong>and</strong> G. Wanner. Solving ordinary differential equations.<br />

II, volume 14 of Springer Series in Computational Mathematics.<br />

Springer-Verlag, Berlin, 2nd edition, 1996. Stiff <strong>and</strong> differentialalgebraic<br />

problems.<br />

[HW02] J. S. Hesthaven <strong>and</strong> T. Warburton. Nodal high-order methods on<br />

unstructured grids. I. Time-domain solution of Maxwell’s equations.<br />

J. Comput. Phys., 181(1):186–221, 2002.<br />

[Jol03] P. Joly. Variational methods for time-dependent wave propagation<br />

problems. In Topics in computational wave propagation, volume 31<br />

of Lect. Notes Comput. Sci. Eng., pages 201–264. Springer, Berlin,<br />

2003.<br />

[Kan01] Ch. Kanzow. An active set-type Newton method for constrained nonlinear<br />

systems. In M.C. Ferris, O.L. Mangasarian, <strong>and</strong> J.S. Pang,<br />

editors, Complementarity: applications, algorithms <strong>and</strong> extensions,<br />

pages 179–200, Dordrecht, 2001. Kluwer Acad. Publ.<br />

[LT86] P. Lascaux <strong>and</strong> R. Théodor. Analyse Numérique Matricielle<br />

Appliquée à l’Art de l’Ingénieur. Masson, Paris, 1986.<br />

[PFC05] S. Pernet, X. Ferrieres, <strong>and</strong> G. Cohen. High spatial order finite element<br />

method to solve Maxwell’s equations in time domain. IEEE<br />

Trans. Antennas <strong>and</strong> Propagation, 53(9):2889–2899, 2005.<br />

[RM67] R. D. Richtmyer <strong>and</strong> K. W. Morton. Difference methods for initialvalue<br />

problems, volume 4 of Interscience Tracts in Pure <strong>and</strong> Applied<br />

Mathematics. John Wiley & Sons, Inc., New York, 2nd edition, 1967.<br />

[RS78] M. Reed <strong>and</strong> B. Simon. Methods of modern mathematical physics.<br />

IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich<br />

Publishers], New York, 1978.<br />

[SB87] G. R. Shubin <strong>and</strong> J. B. Bell. A modified equation approach to constructing<br />

fourth-order methods for acoustic wave propagation. SIAM<br />

J. Sci. Statist. Comput., 8(2):135–151, 1987.<br />

[Sch91] L. Schwartz. Analyse I – Théorie des Ensembles et Topologie. Hermann,<br />

Paris, 1991.<br />

[TT05] E. F. Toro <strong>and</strong> V. A. Titarev. ADER schemes for scalar non-linear<br />

hyperbolic conservation laws with source terms in three-space dimensions.<br />

J. Comput. Phys., 202(1):196–215, 2005.<br />

[Wei06] E. W. Weisstein. Chebyshev polynomial of the first kind. MathWorld.<br />

http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirst<br />

Kind.html, 2006.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!