23.02.2014 Views

What's In a Red Blood Cell?

What's In a Red Blood Cell?

What's In a Red Blood Cell?

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Laboratory <strong>In</strong>vestigation of<br />

Hemolytic Anemia : A Logical<br />

Approach<br />

Mr. Andrew McFarlane<br />

Supervisor Genetic Services<br />

Hamilton Regional Laboratory Medicine Program<br />

McMaster University Medical Centre


Conflicts of <strong>In</strong>terest<br />

• Financial Conflicts of <strong>In</strong>terest: NONE<br />

• Non-Financial Conflicts of <strong>In</strong>terest:<br />

NONE<br />

• Unlabelled/ unapproved Use Disclosure:<br />

NONE


Objectives<br />

• Review normal red cell physiology<br />

• Discuss the pathophysiology and<br />

clinical presentation of hemolytic<br />

anemia<br />

• Construct a practical diagnostic<br />

approach to hemolytic anemia


A <strong>Red</strong> <strong>Blood</strong> <strong>Cell</strong><br />

A very flexible and deformable cell able to negotiate the 3 u<br />

sinusoids of the spleen.


What’s <strong>In</strong> A <strong>Red</strong> <strong>Cell</strong>?<br />

<strong>In</strong>trinsic Components<br />

‣ Phospholipid Membrane<br />

connected to<br />

‣ Protein cytoskeleton<br />

contains<br />

‣ Hemoglobin


Life Cycle of an RBC<br />

~120 days<br />

GLUCOSE<br />

ANTIOXIDANT<br />

PROTECTION<br />

METHEMOGLOBIN<br />

REDUCTION<br />

4-6 days 3 days Glycolysis<br />

HEMOGLOBIN<br />

FUNCTION<br />

MEMBRANE<br />

iNTEGRITY


Normal erythrocyte destruction<br />

120 days<br />

1% of RBCs destroyed<br />

every day<br />

Reticulocytes produced to<br />

replace RBCs


Hemolysis<br />

• Heme is Greek for “blood”.<br />

• Lysis means “Break down” in Greek.<br />

• Hemolysis is the end stage of the<br />

erythrocyte 120 life span which occurs<br />

normal in the Reticulo Endothelial System<br />

(RES) of the spleen.


Why do we see overt hemolysis?<br />

Extracorpuscular defects<br />

-acquired hemolysis<br />

• ANTIBODIES against RBC<br />

membrane (e.g., AIHA, DHTR,<br />

some drug-induced anemias)<br />

• SPLENIC TRAPPING<br />

• TRAUMA (e.g. MAHA,<br />

thermal burns)<br />

• OXIDANT exposure (e.g.,<br />

aniline dyes, dapsone,<br />

pyridium)<br />

• PATHOGEN destruction by<br />

(e.g., malaria, babesiosis,<br />

clostridium perfringens)


Why do we see overt hemolysis?<br />

<strong>In</strong>tracorpuscular defectsinherited<br />

hemolysis<br />

• HEMOGLOBIN DEFECTS -<br />

unstable variants (e.g. Hb Köln),<br />

defective globin chains (HbS,<br />

thalassemia)<br />

• MEMBRANE DEFECTS –<br />

altered or missing proteins (e.g.<br />

hereditary<br />

spherocytosis,elliptocytes,<br />

abnormal hydration (e.g.<br />

xerocytosis)<br />

• ENZYME DEFECTS – defective<br />

glycolysis (e.g. PK deficiency),<br />

defective reducing power (e.g.<br />

G6PD deficiency)


<strong>In</strong>creased hemolysis happens in 2 sites<br />

1. Extravascular - localized in the spleen<br />

• <strong>In</strong>trinsic red blood cell defects<br />

– Hemoglobin, membrane or enzyme problems<br />

• Extrinsic red blood cell defects<br />

– Liver disease<br />

– Hypersplenism<br />

– <strong>In</strong>fections (eg, bartonella, babesia, malaria)<br />

– Oxidant agents (eg, dapsone, nitrites, aniline dyes)<br />

– Autoimmune hemolytic anemias<br />

2. <strong>In</strong>travascular - in the circulation<br />

• Direct trauma, shear stress, thermal burns<br />

• Complement-induced lysis (i.e., PCH)<br />

• Lysis from osmotic change, bacterial toxins


EXTRAVASCULAR<br />

• RED CELLS REMOVED VIA RE<br />

SYSTEM<br />

BONE MARROW<br />

Fe++<br />

RBC<br />

RE SYSTEM<br />

globin<br />

BILIVERDIN<br />

L<br />

I<br />

V<br />

E<br />

R<br />

Glucoronal<br />

transferase<br />

UNCONJGATED<br />

BILIRUBIN<br />

GUT<br />

UROBILINOGEN<br />

acted on by<br />

bacteria<br />

CONJUGATED<br />

BILIRUBIN<br />

STERCOBILINOGEN<br />

excreted in feces


INTRAVASCULAR<br />

• CELLS LYSED IN VESSELS<br />

FREE HB<br />

HAPTOGLOBIN<br />

b globulin<br />

HB<br />

HAPTOGLOBIN<br />

Binds at 1:1 ratio (NR 0.3-<br />

0.75 g/l )<br />

Excreted by phagocytic cells-<br />

30min half life<br />

FREE HEME<br />

HEMOPEXIN<br />

FREE HEME<br />

HEME<br />

ox<br />

albumin<br />

HEMOPEXIN<br />

a globulin Binds at 1:1 ratio(NR<br />

0.6-1.0 g/l)<br />

Excreted by hepatic cells - 3.5hr half<br />

life<br />

Excreted by<br />

phagocytic cells -half<br />

METHEMALBUMIN life 20hrs


Excess Extravascular hemolysis


Case: A post-operative patient with a<br />

sudden hemoglobin drop<br />

• 47 yo Italian-Canadian woman, sphenoid tumour<br />

resection and post-op right MCA stroke<br />

• Past medical history:<br />

– Diabetic<br />

– Depression/anxiety<br />

• Sudden hemoglobin drop on post op day 2 and 32<br />

– Admission: Hb 158<br />

– Post op day 1 : Hb 114 dropped to 83 transfused<br />

– Post op day 29: Hb 110<br />

– POD 32: Hb 68 –Hematology consulted


Identifying hemolysis<br />

• Clinical clues<br />

– Rapid fall in hemoglobin with no evidence of blood<br />

loss<br />

– Jaundice<br />

– Dark urine, pale stools, pigmented gallstones<br />

– Splenomegaly<br />

• Laboratory clues<br />

– Reticulocytosis<br />

– <strong>In</strong>crease in serum lactate dehydrogenase (LDH) and<br />

indirect bilirubin concentrations


Does the patient have increased<br />

hemolysis?<br />

1. <strong>In</strong>creased erythrocyte destruction<br />

2. <strong>In</strong>creased erythrocyte regeneration


HEMOLYTIC SCREEN<br />

• CBC - include Retic count<br />

• RBC MORPHOLOGY- fragments,<br />

membranes<br />

• SUPRAVITAL STAINS<br />

– <strong>In</strong>cubated BCB<br />

– Methyl violet<br />

• BILIRUBIN TOTAL AND DIRECT<br />

• HAPTOGLOBIN ELECTROPHORESIS<br />

• COOMB’S TEST (DAT)


Haptoglobin Electrophoresis<br />

• Protein electrophoresis utilizing agar matrix<br />

• Barbituate buffer – alkaline pH<br />

• Electrophoresed @ 4 o C for 1hr at<br />

10 mamps / plate<br />

• Stained with a heme specific dye<br />

• Assesses presence of free hemoglobin, hemopexinheme<br />

complex, methemalbumin<br />

• Gives a semi-quantitative measurement of<br />

haptoglobin


1volume<br />

Plasma/Serum<br />

1 volume<br />

0.6g/l free<br />

Hb solution<br />

Completely binds all<br />

free Hb added<br />

Partially binds free<br />

Hb added<br />

<strong>In</strong>cubated @<br />

room temperature<br />

for 30 mins<br />

Does not bind any free<br />

Hb added


Haptoglobin Agar Gel<br />

Plasma<br />

+<br />

Controls<br />

Normal <strong>Red</strong>uced Absent<br />

1:1 mix with<br />

0.6g/l Hb<br />

Free Hb<br />

Hemopexin/Heme<br />

complex<br />

Hb/Hapt<br />

complex<br />

Methemealbumin<br />

_<br />

Lane 1 2 3 4 5 6 7 8


Haptoglobin Electrophoresis<br />

MHA<br />

Hb/HAPT<br />

Heme/Hx<br />

Free Hb


Case: A post-operative patient<br />

with a sudden hemoglobin drop<br />

• Clinical assessment<br />

– No evidence of blood loss<br />

– Jaundice, pallor, dark urine<br />

– Abdominal ultrasound<br />

• Gallbladder stones and sludge, thickening of gall bladder wall<br />

• Splenomegaly not noted<br />

• Laboratory assessment<br />

– Ferritin elevated at 2029 ug/L<br />

– Reticulocyte count elevated at 246 x 10 9 /L, RPI 2.6<br />

– LDH elevated at 1977 U/L (ref 110-220 U/L)<br />

– Bilirubin elevated at 28 umol/L (ref


Further hemolytic testing<br />

Haptoglobin<br />

Free Hb<br />

Hemopexin-Heme<br />

Methemalbumin<br />

Osmotic fragility<br />

Hb electropheresis<br />

G6PD Assay<br />

Pyruvate kinase assay<br />

• Absent<br />

• Absent<br />

• Absent<br />

• Normal<br />

• Abnormal = Hb Setif [HBA2c.283G>T]<br />

• Normal<br />

• 1.59 U/mL RBC (ref 1.87-3.90)


GLUCOSE<br />

Met Hb<br />

reduction<br />

Pyruvate kinase<br />

Glucose-6 P<br />

Fructose-6 P<br />

Fructose-1,6 BP<br />

Glyceraldehyde-3 P<br />

1,3 BP-Glycerate<br />

3 P-Glycerate<br />

2 P-Glycerate<br />

Phosphoenol –<br />

Pyruvate (PEP)<br />

Pyruvate<br />

Lactate<br />

ADP<br />

ATP<br />

Hexose<br />

monophosphate<br />

shunt<br />

Rapoport-<br />

Luebering<br />

shunt<br />

Adapted from Israels et al.<br />

Mechanisms in Hematology.


Impact of pyruvate kinase deficiency<br />

on the red cell<br />

• <strong>Red</strong> cell can’t produce enough energy to maintain<br />

integrity, causing hemolysis<br />

• Metabolites upstream to PK accumulate<br />

– PEP<br />

– 2,3 BPG (from Rapoport-Luebering shunt)


Genetics of PK Deficiency<br />

• Gene frequency is 1-2%,<br />

distributed worldwide<br />

• Autosomal recessive<br />

inheritance<br />

• Phenotype varies!<br />

• 158 mutations reported<br />

Zanella A et al. <strong>Blood</strong> Reviews 2007:21,217-231.<br />

Anastasiou D et al. Nature Chemical Biology 2012: 8, 839–847.


Genetic testing in post-operative<br />

• PKLR gene analyzed by<br />

PCR and direct<br />

nucleotide sequencing<br />

of coding exons<br />

• Patient heterozygous<br />

for pARG486Trp<br />

(c.1456C>T)<br />

• Missense mutation of<br />

pyruvate kinase gene<br />

• Mild clinical phenotype<br />

patient<br />

Beutler E, Gelbart T. <strong>Blood</strong> 2000, 95(11):3585-3588.


Clinical consequences of pyruvate<br />

kinase deficiency<br />

• Lifelong chronic hemolysis may have anemia<br />

• Splenomegaly<br />

• Gallstones<br />

• Iron overload<br />

– from chronic transfusion therapy, ineffective<br />

erythropoiesis, synergistic effect of<br />

hemochromatosis mutations<br />

• Rare outcomes<br />

– transient aplastic crises, folate deficiency,<br />

neonatal jaundice and kernicterus<br />

Zanella A et al. Br J Hem 2005.


Treatment of PK deficiency<br />

• No specific therapy available<br />

• <strong>Red</strong> cell transfusions for severe, symptomatic<br />

anemia<br />

• Splenectomy for severe, symptomatic anemia<br />

and transfusion dependence<br />

– Does not stop hemolysis, but can increase Hb<br />

– No way to predict therapeutic efficacy<br />

• Iron chelation may be needed<br />

• Gene therapies on the horizon<br />

Zanella A et al. Br J Hem 2005.<br />

Tanphaichitr VS et al. Bone Marrow Transplant. 2000;26(6):689.<br />

Tani K et al. <strong>Blood</strong>. 1994;83(8):2305.


Hb Setif: Unstable Hb Testing<br />

• Isopropanol <strong>In</strong>stability Test<br />

• Heat Denaturation Test


HEINZ BODIES<br />

• Denatured hemoglobin - intracellular body<br />

stained by supravital stains<br />

• Seen in oxidative hemolysis<br />

• Usually shows typical “bite cells”<br />

‣G6PD deficiency<br />

‣Unstable Hemoglobin<br />

‣Oxidative drugs


Methemoglobinemia<br />

• Several chemical and drugs can increase<br />

MetHb levels.<br />

• An acquired MetHb is suggested when<br />

sudden cyanosis appears with the absence<br />

of cardiopulmonary pathology.


Methemoglobin<br />

• Normal levels of less than 1%.<br />

• <strong>In</strong>crease of MetHb causes cyanosis because<br />

of the decreased O2 delivery.<br />

• Can be genetic causes- Hb M or deficiency<br />

of NADH-dependent cytochrome b5<br />

reductase (b5R)<br />

• Exogenous oxidizing agents.


Glucose-6-phosphate<br />

dehydrogenase deficiency<br />

(G6PD)<br />

• The most common enzymatic disorder of<br />

the human erythrocyte.<br />

• estimates =>200-400 million people world<br />

wide.<br />

• Most are asymptomatic some will have<br />

hemolytic episodes or chronic hemolysis.


G6PD Deficiency<br />

• Lack of G6PD means decreased NADPH<br />

and therefore an inability to regenerate GSH<br />

• Globin denaturation and precipitation -<br />

Results in Heinz bodies and bite cells<br />

• Damaged membrane, non-deformability<br />

• Extravascular hemolysis<br />

• X-linked disease


Hexose Monophosphate Shunt<br />

• Production of NADPH, which is used to produce<br />

GSH (Glutathione) the main protection vs oxidative<br />

injury


WHO Classification of G6PD<br />

• Class I- Severe deficiency with chronic anemia.<br />

• Class II- Severe deficiency with intermittent<br />

hemolysis.<br />

• Class III- moderate deficiency with intermittent<br />

hemolysis- associated infections and drugs.<br />

• Class IV- No enzyme deficiency or hemolysis<br />

• Class V- increased enzyme activity.


Fluorescent spot test for G6PD<br />

• Small amount of blood incubated with G6P<br />

and NADP .<br />

• G6PD enzyme source is patients whole<br />

blood<br />

• Spotted every 5 minutes on filter paper.<br />

• Normal will show fluoresence in 5-10<br />

minutes.<br />

Glucose-6-Phospate +NADP<br />

No Fluorescence<br />

G6PD<br />

6-Phosphogluconate +NADPH<br />

Fluorescence


0<br />

TIME<br />

5 10 15 20<br />

Mediterranean<br />

G6PD<br />

Normal<br />

<strong>In</strong>termediate<br />

G6PD<br />

Reagent


Glucose 6 Phosphate Dehydrogenase<br />

Deficiency Assay<br />

Buffer containing:<br />

Glucose 6 Phophate, NADP<br />

Patients Whole<br />

<strong>Blood</strong><br />

<strong>In</strong>c @ 30oC<br />

Using average<br />

change in OD<br />

/min,millimolar<br />

absorptivity of<br />

NADP and patients<br />

Hb level<br />

Calculate units of<br />

activity in U/g Hb<br />

OD read each minute at 340nm<br />

for 10 minutes


G6PD Assay<br />

• Same reaction and principle as screen.<br />

• Performed at specific temperature and<br />

measured on a spectrophotometer at 340<br />

nm.<br />

• Measure rate of change in Absorbance.<br />

• Reference = 146-376 U/10 12 RBC<br />

4.6-13.5 U/g Hb


Other Enzyme Deficiencies<br />

• Pyrimidine 5’ Nucleotidase Deficiency<br />

– Marked basophilic stippling due to deficiency.<br />

– Prevents RNA degradation products from leaving the maturing reticulocyte.<br />

– Results in a build up of insoluable pyrimidines.<br />

• Hexokinase deficiency<br />

– <strong>In</strong>ability to phosphorylize glucose and therefore keep it<br />

intracellular<br />

• Glucose Phosphate Isomerase Deficiency<br />

• Phosphofructokinase deficiency<br />

• Triosephosphate isomerase deficiency<br />

• Phosphoglycerate kinase deficiency<br />

• Adenylated Kinase deficiency<br />

• Aldolase Deficiency<br />

• Lactate Dehydrogenase deficiency<br />

• Biphosphoglycerate Mutase deficiency


Basophilic Stippling<br />

• Pyrimidine 5’ nucleotidase deficiency


Conclusions: Take-home<br />

message<br />

• A systematic approach to for investigation of<br />

unexplained anemia is be useful – CBC including the<br />

retic count and red cell morphology.<br />

• Think about hemolysis in all patients with anemia<br />

– Careful review of basic labs are useful for identification of<br />

hemolytic anemia<br />

– Consider causes of hemolysis congenital -inside the RBC<br />

and acquired - outside the RBC.<br />

• Patients with chronic, sometimes well compensated<br />

and stable hemolytic conditions can develop acute<br />

exacerbations with other medical conditions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!