23.02.2014 Views

MV design guide - Schneider Electric

MV design guide - Schneider Electric

MV design guide - Schneider Electric

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Design rules<br />

Short-circuit currents<br />

And now here<br />

are the results!<br />

Component Calculation Z = X (ohms)<br />

Network<br />

Ssc = 2 000 <strong>MV</strong>A<br />

Zr =<br />

U 2<br />

= 102<br />

U op. = 10 kV Ssc 2 000<br />

0.05<br />

15 <strong>MV</strong>A transformer<br />

Z15 =<br />

U 2<br />

•Usc =<br />

10 2<br />

•<br />

10<br />

(Usc = 10 %)<br />

U op. = 10 kV Sr 15 100 0.67<br />

20 <strong>MV</strong>A transformer<br />

(Usc = 10 %) Z20 =<br />

U 2<br />

•Usc =<br />

10 2<br />

• 10 0.5<br />

U op. = 10 kV<br />

Sr 20 100<br />

15 <strong>MV</strong>A alternator<br />

Za =<br />

U 2<br />

U op. = 10 kV<br />

• Xsc<br />

Sr<br />

Transient state<br />

Zat =<br />

10 2<br />

•<br />

20<br />

Zat = 1.33<br />

(Xsc = 20 %)<br />

15 100<br />

Sub-transient state<br />

Zas =<br />

10 2<br />

•<br />

15<br />

Zas = 1<br />

(Xsc = 15 %)<br />

15 100<br />

Busbars<br />

Parallel-mounted with Z15//Z20 =<br />

Z15 • Z20 0.67 • 0.5<br />

=<br />

Zet = 0.29<br />

the transformers<br />

Z15 + Z20 0.67 + 0.5<br />

Zer = 0.34<br />

Series-mounted with the network<br />

and the transformer impedance<br />

Zr + Zet = 0.05 + 0.29<br />

Parallel-mounting of<br />

the generator set<br />

Zer//Zat =<br />

Zer • Zat<br />

=<br />

0.34 • 1.33<br />

Transient state Zer + Zat 0.34 + 1.33 z 0.27<br />

Zer//Zat =<br />

Zer • Zat 0.34 • 1<br />

=<br />

Sub-transient state Zer + Zat 0.34 + 1 z 0.25<br />

N.B.: a circuit breaker is<br />

defined for a certain breaking<br />

capacity of an rms value in a<br />

steady state, and as a<br />

percentage of the aperiodic<br />

component which depends<br />

on the circuit breaker's<br />

opening time and on R<br />

of the network X<br />

(about 30 %).<br />

For alternators the aperiodic<br />

component is very high;<br />

the calculations must be<br />

validated by laboratory tests.<br />

Circuit breaker Equivalent circuit Breaking capacity Closing capacity<br />

D4 to D7<br />

Za<br />

Z15<br />

Zr<br />

Z20<br />

Zt = [Zr + (Z15//Z20)]//Za<br />

D3 alternator<br />

Z15<br />

Zr<br />

Z20<br />

Z (ohm) in kA rms. 2.5 Isc (in kA peak)<br />

Icc =<br />

U 2<br />

=<br />

10<br />

•<br />

1<br />

e•Zsc e Zsc<br />

transient state<br />

Z = 0.27<br />

sub-transient state<br />

Z = 0.25<br />

Z = 0.34<br />

21.40<br />

17<br />

21.40 • 2.5 = 53.15<br />

17 • 2.5 = 42.5<br />

Zt = Zr + (Z15//Z20)<br />

D1 15 <strong>MV</strong>A transformer<br />

17.9<br />

14.9 • 2.5 = 37.25<br />

Zr<br />

transient state<br />

Z = 0.39<br />

Za<br />

Z20<br />

sub-transient state<br />

Z = 0.35<br />

Zt = (Zr + Z20)//Za<br />

D2 20 <strong>MV</strong>A transformer<br />

Za<br />

Zr<br />

Z15<br />

Zt = (Zr + Z15)//Za<br />

transient state<br />

Z = 0.47<br />

sub-transient state<br />

Z = 0.42<br />

12.4<br />

12.4 • 2.5 = 31<br />

20 Merlin Gerin <strong>MV</strong> <strong>design</strong> <strong>guide</strong> <strong>Schneider</strong> <strong>Electric</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!