23.02.2014 Views

MV design guide - Schneider Electric

MV design guide - Schneider Electric

MV design guide - Schneider Electric

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Design rules<br />

Short-circuit currents<br />

c Synchronous motors and compensators<br />

Xsc Sub-transient transient permanent<br />

high speed motors 15 % 25 % 80 %<br />

low speed motors 35 % 50 % 100 %<br />

compensators 25 % 40 % 160 %<br />

c Asynchronous motors only sub-transient<br />

Ir<br />

Z(Ω) =<br />

Id<br />

c Fault arcing<br />

•<br />

U 2<br />

Sr<br />

Isc z 5 to 8 Ir<br />

Isc z 3∑ Ir,<br />

contribution to Isc by current feedback<br />

(with I rated = Ir)<br />

Isc<br />

Id =<br />

1.3 to 2<br />

c Equivalent impedance of a component through a transformer<br />

v for example, for a low voltage fault, the contribution<br />

of an HV cable upstream of an HV/LV transformer will be:<br />

R2 = R1( U2 ) 2<br />

U1<br />

et<br />

X2 = X1 ( U2 ) 2<br />

U1<br />

ainsi<br />

U2<br />

Z2 = Z1 ( ) 2<br />

U1<br />

This equation is valid for all voltage levels in the cable,<br />

in other words, even through several series-mounted transformers.<br />

Power source<br />

Ra, Xa<br />

HV cable R1, X1<br />

n<br />

transformer RT, XT<br />

impedance at primary<br />

LV cable R2, X2<br />

A<br />

v Impedance seen from the fault location A:<br />

∑ R = R2 + RT R1 Ra<br />

+ + ∑ X =<br />

n 2 n 2 n 2 X2 + XT+ X1<br />

+<br />

n 2 n 2<br />

n: transformation ratio<br />

Xa<br />

n 2<br />

c Triangle of impedances<br />

Z = (R 2 + X 2 )<br />

Z<br />

X<br />

ϕ<br />

R<br />

16 Merlin Gerin <strong>MV</strong> <strong>design</strong> <strong>guide</strong> <strong>Schneider</strong> <strong>Electric</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!