20.02.2014 Views

Phys. Rev. Lett. 91, 057201 (2003): Sound Attenuation Study on the ...

Phys. Rev. Lett. 91, 057201 (2003): Sound Attenuation Study on the ...

Phys. Rev. Lett. 91, 057201 (2003): Sound Attenuation Study on the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

VOLUME <str<strong>on</strong>g>91</str<strong>on</strong>g>, NUMBER 5<br />

PHYSICAL REVIEW LETTERS week ending<br />

1 AUGUST <str<strong>on</strong>g>2003</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Sound</str<strong>on</strong>g> <str<strong>on</strong>g>Attenuati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Bose-Einstein C<strong>on</strong>densati<strong>on</strong> of Magn<strong>on</strong>s in TlCuCl 3<br />

E.Ya. Sherman, 1 P. Lemmens, 2 B. Busse, 3 A. Oosawa, 4 and H. Tanaka 4<br />

1 Institute for Theoretical <str<strong>on</strong>g>Phys</str<strong>on</strong>g>ics, Karl-Franzens-University of Graz, A-8010, Graz, Austria<br />

2 Max-Planck-Institute for Solid State Research, D-70569 Stuttgart, Germany<br />

3 IMNF and High-Field Laboratory, TU Braunschweig, D-38106 Braunschweig, Germany<br />

4 Department of <str<strong>on</strong>g>Phys</str<strong>on</strong>g>ics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan<br />

(Received 21 February <str<strong>on</strong>g>2003</str<strong>on</strong>g>; published 29 July <str<strong>on</strong>g>2003</str<strong>on</strong>g>)<br />

We investigate experimentally and <strong>the</strong>oretically sound attenuati<strong>on</strong> in <strong>the</strong> quantum spin system<br />

TlCuCl 3 in magnetic fields at low temperatures. Near <strong>the</strong> point of Bose-Einstein c<strong>on</strong>densati<strong>on</strong> of<br />

magn<strong>on</strong>s a sharp peak in <strong>the</strong> sound attenuati<strong>on</strong> is observed. The peak dem<strong>on</strong>strates a hysteresis as a<br />

functi<strong>on</strong> of <strong>the</strong> magnetic field pointing to a first-order c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong> transiti<strong>on</strong>. The sound damping<br />

has a Drude-like form arising as a result of hard-core magn<strong>on</strong>-magn<strong>on</strong> collisi<strong>on</strong>s. The strength of <strong>the</strong><br />

coupling between lattice and magn<strong>on</strong>s is estimated from <strong>the</strong> experimental data. The puzzling relati<strong>on</strong>ship<br />

between <strong>the</strong> transiti<strong>on</strong> temperature and <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> of magn<strong>on</strong>s is explained by <strong>the</strong>ir<br />

‘‘relativistic’’ dispersi<strong>on</strong>.<br />

DOI: 10.1103/<str<strong>on</strong>g>Phys</str<strong>on</strong>g><str<strong>on</strong>g>Rev</str<strong>on</strong>g><str<strong>on</strong>g>Lett</str<strong>on</strong>g>.<str<strong>on</strong>g>91</str<strong>on</strong>g>.<str<strong>on</strong>g>057201</str<strong>on</strong>g><br />

PACS numbers: 75.30.Gw, 75.10.Jm, 78.30.–j<br />

Quantum spin systems in magnetic fields have recently<br />

gained enormous attenti<strong>on</strong> because of <strong>the</strong> richness and<br />

universality of phenomena that may be observed [1,2].<br />

The relevance of quantum field <strong>the</strong>ories to quantum spin<br />

systems allows <strong>the</strong> development of <strong>the</strong>oretical predicti<strong>on</strong>s<br />

that can be tested experimentally. The observati<strong>on</strong> of<br />

plateaus in <strong>the</strong> high-field magnetizati<strong>on</strong> of quantum<br />

spin chains predicted in Ref. [3] is an example of this<br />

mutual interest. The effect of a magnetic field <strong>on</strong> a gapped<br />

spin system is especially interesting for a small gap,<br />

which can be reduced or even closed by experimentally<br />

available static fields. On <strong>the</strong> o<strong>the</strong>r hand, sound attenuati<strong>on</strong><br />

experiments were very useful in <strong>the</strong> investigati<strong>on</strong><br />

of phase transiti<strong>on</strong>s with complex order parameters,<br />

e.g., superc<strong>on</strong>ductivity in <strong>the</strong> heavy fermi<strong>on</strong> UPt 3 [4] or<br />

<strong>the</strong> movement of flux lines in high-T c superc<strong>on</strong>ductors [5].<br />

The XCuCl 3 compounds, with X Tl, K,andNH 4 ,<br />

realize especially interesting systems [2]. Magnetizati<strong>on</strong><br />

plateaus are observed in NH 4 CuCl 3 ,whileTlCuCl 3 and<br />

KCuCl 3 show field-induced critical phenomena. The underlying<br />

quantum magnetism is based <strong>on</strong> S 1=2 spins<br />

of Cu 2 i<strong>on</strong>s arranged as planar dimers of Cu 2 Cl 6 . These<br />

dimers form infinite double chains parallel to <strong>the</strong> crystallographic<br />

a axis of <strong>the</strong> m<strong>on</strong>oclinic structure (space group<br />

P2 1 =c with 4 f.u. per unit cell) [6–8]. The ground state of<br />

TlCuCl 3 is a singlet with a spin gap 7Kand a weakly<br />

anisotropic antiferromagnetic intradimer interacti<strong>on</strong> of<br />

J 60 K (Ref. [9]). The magn<strong>on</strong> dispersi<strong>on</strong> was investigated<br />

<strong>the</strong>oretically in Ref. [10]. The three-dimensi<strong>on</strong>al<br />

(3D) character of <strong>the</strong> system leads to a relatively small<br />

gap since in this case it is more difficult to bind <strong>the</strong><br />

magn<strong>on</strong>s. In a magnetic field H <strong>the</strong> gap for S z 1<br />

excitati<strong>on</strong>s is reduced as g B H, where a g factor<br />

varies between 2.06 and 2.23 depending <strong>on</strong> <strong>the</strong> H directi<strong>on</strong>.<br />

Reaching a field of H g =g B , <strong>the</strong> gap is closed.<br />

A possible mechanism of magnetic-field induced spin<br />

transiti<strong>on</strong>s introduced in Ref. [11] is <strong>the</strong> Bose c<strong>on</strong>densati<strong>on</strong><br />

of <strong>the</strong> soft mode. For <strong>the</strong> explanati<strong>on</strong> of field-induced<br />

magnetic ordering in TlCuCl 3 <strong>the</strong> Bose c<strong>on</strong>densati<strong>on</strong> of<br />

diluted magn<strong>on</strong>s with S z 1 was proposed [12]. A<br />

Hartree-Fock descripti<strong>on</strong> of such a transiti<strong>on</strong> leads to an<br />

exp<strong>on</strong>ent 1:5 relating c<strong>on</strong>centrati<strong>on</strong> of magn<strong>on</strong>s n B<br />

and <strong>the</strong> transiti<strong>on</strong> temperature T B as n B T B .However,a<br />

larger value of exp close to 2 has been determined by<br />

magnetizati<strong>on</strong> and specific heat experiments [12–15].<br />

At <strong>the</strong> same time, <strong>the</strong> Bose c<strong>on</strong>densati<strong>on</strong> should be<br />

observable in experiments which are directly related to<br />

<strong>the</strong> distributi<strong>on</strong> functi<strong>on</strong> of <strong>the</strong> magn<strong>on</strong>s f B k , where k is<br />

<strong>the</strong> magn<strong>on</strong> momentum. Here we present, to our knowledge,<br />

<strong>the</strong> first results of ultras<strong>on</strong>ic attenuati<strong>on</strong> H measurements<br />

<strong>on</strong> TlCuCl 3 in magnetic field and show that <strong>the</strong><br />

experimental data suggest a gradual increase of f B k in<br />

<strong>the</strong> regi<strong>on</strong> of small k with <strong>the</strong> increase of H being c<strong>on</strong>sistent<br />

with <strong>the</strong> Bose-Einstein c<strong>on</strong>densati<strong>on</strong> (BEC) of<br />

magn<strong>on</strong>s at a critical field H c . As we see below, ultras<strong>on</strong>ic<br />

attenuati<strong>on</strong> experiments in this compound allow us to<br />

trace <strong>the</strong> main features of <strong>the</strong> distributi<strong>on</strong> functi<strong>on</strong>, investigate<br />

<strong>the</strong> fluctuati<strong>on</strong> regi<strong>on</strong> where <strong>the</strong> attenuati<strong>on</strong><br />

anomalously increases, make a c<strong>on</strong>clusi<strong>on</strong> <strong>on</strong> <strong>the</strong> order<br />

of <strong>the</strong> transiti<strong>on</strong>, and determine <strong>the</strong> mechanism and<br />

strength of magn<strong>on</strong>-lattice coupling.<br />

Ultras<strong>on</strong>ic attenuati<strong>on</strong> has been measured in single<br />

crystals of TlCuCl 3 prepared by <strong>the</strong> Bridgman method<br />

[13] using a pulse-echo method with l<strong>on</strong>gitudinal sound<br />

waves at a frequency of 5 MHz. The transducers were<br />

glued <strong>on</strong> freshly cleaved or <strong>on</strong> polished surfaces in <strong>the</strong><br />

crystallographic 102 plane of <strong>the</strong> crystals using a liquid<br />

polymer (Thiokol, Dow Resin). The H field has been<br />

applied parallel to <strong>the</strong> directi<strong>on</strong> of sound propagati<strong>on</strong>.<br />

The value of H is determined from <strong>the</strong> experimental<br />

data as H 10log 10 I N =I N 1 , where I N and I N 1 are<br />

<strong>the</strong> intensities of Nth and Nth 1 pulses arriving at <strong>the</strong><br />

detector with <strong>the</strong> time interval 2t p , where t p is <strong>the</strong> pulse<br />

traveling time through <strong>the</strong> sample.<br />

<str<strong>on</strong>g>057201</str<strong>on</strong>g>-1 0031-9007=03=<str<strong>on</strong>g>91</str<strong>on</strong>g>(5)=<str<strong>on</strong>g>057201</str<strong>on</strong>g>(4)$20.00 © <str<strong>on</strong>g>2003</str<strong>on</strong>g> The American <str<strong>on</strong>g>Phys</str<strong>on</strong>g>ical Society <str<strong>on</strong>g>057201</str<strong>on</strong>g>-1


VOLUME <str<strong>on</strong>g>91</str<strong>on</strong>g>, NUMBER 5<br />

PHYSICAL REVIEW LETTERS week ending<br />

1 AUGUST <str<strong>on</strong>g>2003</str<strong>on</strong>g><br />

The experimental results shown in Fig. 1 can be summarized<br />

as <strong>the</strong> following observati<strong>on</strong>s:<br />

(i) a weak H dependence up to H 2:5 T,<br />

(ii) a sharp and asymmetric peak close to <strong>the</strong> critical<br />

field H c determined by <strong>the</strong>rmodynamic experiments<br />

[12]. The sharp peak associated with <strong>the</strong> fluctuati<strong>on</strong> regi<strong>on</strong><br />

of <strong>the</strong> transiti<strong>on</strong> shows a pr<strong>on</strong>ounced hysteresis with<br />

increasing/decreasing field, which indicates a first-order<br />

c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong> transiti<strong>on</strong>, and<br />

(iii) a decrease of H for H>9:7 T.<br />

If <strong>the</strong> comparably slow underlying increase is approximated<br />

by a Gaussian, <strong>the</strong> sharp peak near H c can be<br />

separated from <strong>the</strong> background. Inset (b) shows <strong>the</strong> resulting<br />

transiti<strong>on</strong>-induced attenuati<strong>on</strong> at three different<br />

temperatures. The peaks have a gradual low-field <strong>on</strong>set of<br />

attenuati<strong>on</strong> Hc<br />

<strong>on</strong>s , a sharp maximum Hc<br />

max , and a highfield<br />

cutoff Hc co . The two critical fields Hc<br />

max and Hc<br />

co show<br />

a pr<strong>on</strong>ounced hysteresis. The respective attenuati<strong>on</strong> at <strong>the</strong><br />

critical fields systematically changes with T. ForHc <strong>on</strong>s ,<br />

which marks a crossover into a regime with str<strong>on</strong>g fluctuati<strong>on</strong>s,<br />

<strong>the</strong> hysteresis is negligible. In a recent NMR<br />

investigati<strong>on</strong> a hysteresis close to <strong>the</strong> phase boundary has<br />

also been observed and attributed to spin-ph<strong>on</strong><strong>on</strong> coupling<br />

[16]. Inset (c) shows <strong>the</strong> resulting phase diagram<br />

compared to magnetizati<strong>on</strong> measurements [12] (thick<br />

dashed line).<br />

The energy of a propagating sound pulse decays<br />

with time as w t expf m H tg, and, <strong>the</strong>refore<br />

H 20log 10 e m H t p . Here m H is <strong>the</strong><br />

c<strong>on</strong>tributi<strong>on</strong> of magn<strong>on</strong>s coupled to <strong>the</strong> lattice, while<br />

an unknown background arises due to all o<strong>the</strong>r<br />

effects such as scattering by impurities, interfaces, etc.<br />

In c<strong>on</strong>trast with ,<strong>the</strong>H dependence of <strong>the</strong> damping<br />

m H m 0 which corresp<strong>on</strong>ds to <strong>the</strong> field-induced<br />

changes in f B k and sound attenuati<strong>on</strong> mechanism can be<br />

FIG. 1. (a) Ultras<strong>on</strong>ic attenuati<strong>on</strong> H with increasing (full<br />

circles) and decreasing magnetic field (open circles) and a<br />

fitting of <strong>the</strong> broad maximum by a Gaussian (dashed line).<br />

Inset (b): transiti<strong>on</strong> regime after subtracting <strong>the</strong> Gaussian and a<br />

c<strong>on</strong>stant. Inset (c): phase diagram with gH c =2 (thick line) from<br />

<strong>the</strong>rmodynamic experiments [12]. The g factor of S z 1<br />

excitati<strong>on</strong>s g 2:16.<br />

determined accurately from Fig. 1. By comparis<strong>on</strong> with<br />

<strong>the</strong>oretical calculati<strong>on</strong>s also m 0 will be obtained.<br />

Cottam [17] investigated spin-ph<strong>on</strong><strong>on</strong> coupling in an<br />

antiferromagnet in <strong>the</strong> case of a low density of magn<strong>on</strong>s<br />

where magn<strong>on</strong>-magn<strong>on</strong> interacti<strong>on</strong>s can be neglected.<br />

Below we investigated ano<strong>the</strong>r case where <strong>the</strong> damping<br />

is related to collisi<strong>on</strong>s between magn<strong>on</strong>s. The model for<br />

sound attenuati<strong>on</strong> is <strong>the</strong> following: In <strong>the</strong> field of <strong>the</strong><br />

l<strong>on</strong>gitudinal sound wave with displacements of i<strong>on</strong>s<br />

u r , <strong>the</strong> energy of <strong>the</strong> magn<strong>on</strong> changes due to magn<strong>on</strong>lattice<br />

coupling as " k C k ru r , where C k is <strong>the</strong><br />

deformati<strong>on</strong> potential. The spatial dependence of <strong>the</strong><br />

displacement in a plane wave with wave vector q and<br />

frequency !, u r u 0 exp i qr !t , leads to an effective<br />

time-dependent force F r " k with F<br />

C k u 0 q 2 driving changes in <strong>the</strong> velocity of magn<strong>on</strong>s.<br />

Since <strong>on</strong>e cannot create two S z 1 states <strong>on</strong> a Cu-Cu<br />

b<strong>on</strong>d, <strong>the</strong> magn<strong>on</strong>s collide like hard-core bos<strong>on</strong>s.<br />

Inelastic collisi<strong>on</strong>s between <strong>the</strong> magn<strong>on</strong>s driven by <strong>the</strong><br />

displacements of <strong>the</strong> lattice in <strong>the</strong> wave lead to a dissipati<strong>on</strong><br />

of <strong>the</strong> pulse energy. The dissipati<strong>on</strong> rate per <strong>on</strong>e<br />

magn<strong>on</strong> is equal to <strong>the</strong> average of <strong>the</strong> product Fv per<br />

period, where v is <strong>the</strong> magn<strong>on</strong> velocity. The sound dissipati<strong>on</strong><br />

rate in this case is <strong>the</strong> dissipati<strong>on</strong> rate of an<br />

external harm<strong>on</strong>ic field in a medium, generally described<br />

by a Drude-like mechanism of <strong>the</strong> form<br />

Au 2 0<br />

m H<br />

q4<br />

1<br />

n Z<br />

6<br />

2 1 ! 2 h i 2 d 3 kf B k C2 Z<br />

k<br />

d 3 k 0 f<br />

m B k 0<br />

k<br />

1<br />

; (1)<br />

nv k;k<br />

0<br />

where m k is <strong>the</strong> magn<strong>on</strong> effective mass and v k;k<br />

0 is <strong>the</strong><br />

relative velocity of <strong>the</strong> particles with momenta k and k 0<br />

that determines <strong>the</strong>ir collisi<strong>on</strong> rate. The c<strong>on</strong>stant A is of<br />

<strong>the</strong> order of 1 and depends <strong>on</strong> details of magn<strong>on</strong>-magn<strong>on</strong><br />

collisi<strong>on</strong>s, which are bey<strong>on</strong>d our c<strong>on</strong>siderati<strong>on</strong>. The mean<br />

time between <strong>the</strong> collisi<strong>on</strong>s h i h‘v 1 i with <strong>the</strong> magn<strong>on</strong><br />

free path ‘ being proporti<strong>on</strong>al to 1=n , where is <strong>the</strong><br />

magn<strong>on</strong>-magn<strong>on</strong> scattering cross secti<strong>on</strong>, and n is <strong>the</strong><br />

magn<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>, is, <strong>the</strong>refore sensitive to <strong>the</strong> distributi<strong>on</strong><br />

functi<strong>on</strong>. The mean value hv 1 i and <strong>the</strong> damping<br />

increase simultaneously. Since !h i is very small 0:01<br />

at <strong>the</strong> experimental ! 3 10 7 s 1 , it is neglected in<br />

<strong>the</strong> denominator of Eq. (1) for <strong>the</strong> rest of <strong>the</strong> discussi<strong>on</strong>.<br />

To include <strong>the</strong> specific spin excitati<strong>on</strong> spectrum, we<br />

start with <strong>the</strong> p ’’relativistic’’ form of <strong>the</strong> magn<strong>on</strong> dispersi<strong>on</strong><br />

" k J 2 k 2 =4 at small k which is important<br />

2<br />

if T B and are of <strong>the</strong> same order of magnitude as in<br />

TlCuCl 3 . From here <strong>on</strong> <strong>the</strong> lattice c<strong>on</strong>stant l 1 if o<strong>the</strong>rwise<br />

is not stated. Since <strong>the</strong>rmal k 1 at T B J this<br />

form of energy is sufficient for an understanding of <strong>the</strong><br />

Bose c<strong>on</strong>densati<strong>on</strong> in <strong>the</strong> experimental temperature<br />

range. The velocity of a magn<strong>on</strong> and its inverse mass<br />

are (we put h 1)<br />

v k<br />

d" k<br />

dk<br />

J 2<br />

4" k k; 1 J 2<br />

m k 4<br />

1<br />

" k<br />

J 2<br />

4<br />

k 2<br />

" 3 k ; (2)<br />

<str<strong>on</strong>g>057201</str<strong>on</strong>g>-2 <str<strong>on</strong>g>057201</str<strong>on</strong>g>-2


VOLUME <str<strong>on</strong>g>91</str<strong>on</strong>g>, NUMBER 5<br />

PHYSICAL REVIEW LETTERS week ending<br />

1 AUGUST <str<strong>on</strong>g>2003</str<strong>on</strong>g><br />

respectively. The mass at small k, m 4 =J 2 determines<br />

T B at low c<strong>on</strong>centrati<strong>on</strong> of magn<strong>on</strong>s where<br />

T B . In <strong>the</strong> mean-field approximati<strong>on</strong> which is<br />

used below, <strong>the</strong> distributi<strong>on</strong> functi<strong>on</strong> is f B "<br />

1=fexp " eff =T 1g, where " k " k ,and<br />

eff g B H H g 2V mm n. n is <strong>the</strong> dimensi<strong>on</strong>less<br />

c<strong>on</strong>centrati<strong>on</strong> of <strong>the</strong> magn<strong>on</strong>s determined by <strong>the</strong> magnetizati<strong>on</strong><br />

M as n M=H,andV mm is <strong>the</strong> magn<strong>on</strong>-magn<strong>on</strong><br />

interacti<strong>on</strong> parameter. The transiti<strong>on</strong> temperature T B<br />

obtained with <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> eff 0, that is<br />

Z k 2 dk<br />

4<br />

n<br />

e " k =T B<br />

3 B ; (3)<br />

1 2<br />

is, <strong>the</strong>refore, V mm independent. Figure 2(a) presents dimensi<strong>on</strong>less<br />

n B T B , and Fig. 2(b) shows <strong>the</strong> ratio<br />

n B T B =n B 1K =TB<br />

2 obtained from Eq. (3) for different<br />

and J 7 . As <strong>on</strong>e can see, at <strong>the</strong> chosen<br />

6:5 K, <strong>the</strong> ratio is nearly a c<strong>on</strong>stant in <strong>the</strong> experimental<br />

range of temperatures, giving an explanati<strong>on</strong> for<br />

<strong>the</strong> observati<strong>on</strong> of exp 2 [12–15]. Since near <strong>the</strong><br />

c<strong>on</strong>densati<strong>on</strong> point <strong>the</strong> momenta of <strong>the</strong> magn<strong>on</strong>s k 2<br />

mT B , leading to a temperature dependence of <strong>the</strong> mean<br />

value h" k i T, <strong>the</strong> ‘‘exp<strong>on</strong>ent’’ depends <strong>on</strong> T B =<br />

<strong>on</strong>ly. We note that exp is indeed a fitting parameter,<br />

which can depend <strong>on</strong> <strong>the</strong> measured quantity. We menti<strong>on</strong><br />

that <strong>the</strong> parameter which determines <strong>the</strong> applicability<br />

of <strong>the</strong> Drude approach k‘ and can be estimated as<br />

n 2=3 , where k is <strong>the</strong> characteristic magn<strong>on</strong> momentum,<br />

is always larger than 10 thus justifying <strong>the</strong> validity of<br />

Eq. (1) except <strong>the</strong> fluctuati<strong>on</strong> regi<strong>on</strong>.<br />

Since near <strong>the</strong> transiti<strong>on</strong> <strong>the</strong> Bose functi<strong>on</strong> behaves as<br />

T<br />

f B "<br />

B<br />

" j effj ; (4)<br />

due to <strong>the</strong> singularity at eff ! 0, <strong>the</strong> average hv 1 i<br />

diverges as ln T B =j effj leading, as is shown below, to<br />

an increase in <strong>the</strong> damping rate.<br />

The sound-induced change in <strong>the</strong> magn<strong>on</strong> energy c<strong>on</strong>sists<br />

of two terms: " k " k " J k arising due<br />

to a modulati<strong>on</strong> in <strong>the</strong> gap ~ C ru and <strong>the</strong> exchange<br />

~J J C J ru, respectively. The resulting deformati<strong>on</strong><br />

potential is<br />

C k<br />

" k C J<br />

" k<br />

k 2<br />

4 C J: (5)<br />

Since <strong>the</strong> J-originated term in C k vanishes at small k, <strong>the</strong><br />

main c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong> increase of damping near <strong>the</strong><br />

transiti<strong>on</strong> comes from C . The calculated behavior of<br />

<strong>the</strong> damping at T 3:5 Kfor H


VOLUME <str<strong>on</strong>g>91</str<strong>on</strong>g>, NUMBER 5<br />

PHYSICAL REVIEW LETTERS week ending<br />

1 AUGUST <str<strong>on</strong>g>2003</str<strong>on</strong>g><br />

singularity of <strong>the</strong> f B " increasing as 1=" at H H c .At<br />

H>H c <strong>the</strong> number of quasiparticles n rapidly increases<br />

with H [12]. The spectrum of excitati<strong>on</strong>s in this case is<br />

E k v c k, with v c n 1=2 being <strong>the</strong> c<strong>on</strong>densate sound<br />

velocity. With <strong>the</strong> increase of H, and, corresp<strong>on</strong>dingly n,<br />

<strong>the</strong> excitati<strong>on</strong> energy increases, and, <strong>the</strong>refore, <strong>the</strong> role of<br />

<strong>the</strong>rmal excitati<strong>on</strong>s decreases. Thus, <strong>the</strong> increase in H<br />

drives <strong>the</strong> c<strong>on</strong>densate effectively towards <strong>the</strong> zerotemperature<br />

behavior. The system dem<strong>on</strong>strates a zero-T<br />

behavior when n becomes much larger than n B corresp<strong>on</strong>ding<br />

to <strong>the</strong> BEC at given T. At zero T <strong>the</strong> distributi<strong>on</strong><br />

of <strong>the</strong> out-of-c<strong>on</strong>densate particles which c<strong>on</strong>tribute to <strong>the</strong><br />

damping at small momenta is N E E ! 0 mv 2 c=2E k<br />

[18]. Since E k is linear in k, <strong>the</strong> singularity in Eq. (4)<br />

at eff 0 becomes weaker, and <strong>the</strong> damping decreases.<br />

To estimate <strong>the</strong> field at which <strong>the</strong> behavior of <strong>the</strong> c<strong>on</strong>densate<br />

is close to <strong>the</strong> T 0 limit we note that at T>0<br />

<strong>the</strong>rmal excitati<strong>on</strong>s and interacti<strong>on</strong> V mm produce out-ofc<strong>on</strong>densate<br />

particles. The c<strong>on</strong>centrati<strong>on</strong> of <strong>the</strong> magn<strong>on</strong>s at<br />

which <strong>the</strong> system dem<strong>on</strong>strates a crossover to <strong>the</strong> T 0<br />

behavior is determined by <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> that <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong><br />

of <strong>the</strong> particles p out of <strong>the</strong> c<strong>on</strong>densate arising due<br />

<strong>the</strong> interacti<strong>on</strong> ( n na 3 ) is larger than <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong><br />

of <strong>the</strong>rmally excited particles proporti<strong>on</strong>al to T 3=2 ,<br />

where a V mm l 3 m=4 is <strong>the</strong> magn<strong>on</strong>-magn<strong>on</strong> scattering<br />

length. In TlCuCl 3 a and l are close to each o<strong>the</strong>r since <strong>the</strong><br />

hard-core bos<strong>on</strong> has a spatial size of <strong>the</strong> Cu-Cu distance.<br />

As a result, <strong>the</strong> critical c<strong>on</strong>centrati<strong>on</strong> which determines<br />

<strong>the</strong> crossover to zero-temperature behavior and, in turn,<br />

<strong>the</strong> broad maximum positi<strong>on</strong> is n cr n B l=an 1=3<br />

B<br />

10n B . On <strong>the</strong> o<strong>the</strong>r hand, from <strong>the</strong> data <strong>on</strong> n H dependence<br />

(Ref. [12] ) <strong>on</strong>e expects that at T 3:5 K, n H<br />

10 T is an order of magnitude larger than n B H c ,ina<br />

good qualitative agreement with our estimate.<br />

Following Eqs. (1) and (5) <strong>on</strong>e can estimate C .The<br />

energy density in <strong>the</strong> sound wave with ! cq (c is <strong>the</strong><br />

sound velocity) is w u 2 0 !2 =c 2 , where is <strong>the</strong> elastic<br />

c<strong>on</strong>stant. The dissipati<strong>on</strong> rate estimated from Eq. (1) is<br />

dw F 2 1<br />

C 2 !4 1<br />

dt m hvi c 4 u2 0<br />

m hvi : (6)<br />

Therefore, <strong>the</strong> relaxati<strong>on</strong> rate dw=dt w 1 ! 2 . Let us<br />

c<strong>on</strong>sider as an example m 0 that with <strong>the</strong> estimates<br />

given above can be written as<br />

dw 1 C 2 ! 2 1 J<br />

m 0<br />

dt w c 2 c 2 p ; (7)<br />

l T<br />

where we took into account that p far from <strong>the</strong> transiti<strong>on</strong><br />

point h1=vi 1=hvi with hvi T=m. From <strong>the</strong> <strong>the</strong>oretical<br />

m H dependence (Fig. 3), we c<strong>on</strong>clude that<br />

m H g = m 0 2. From <strong>the</strong> experimental data in Fig. 1<br />

we obtain m H g m 0 0:1 dB, and, <strong>the</strong>refore,<br />

m 0 corresp<strong>on</strong>ds to a damping of <strong>the</strong> order of 0.1 dB.<br />

For <strong>the</strong> thickness of <strong>the</strong> sample of 2 mm and <strong>the</strong> sound<br />

velocity c 3 10 5 cm=s, <strong>the</strong> pulse traveling time t p is<br />

6:6 10 7 s, and, <strong>the</strong>refore, m 0 0:2 10 4 s 1 .The<br />

density 5g=cm 3 , ! 3 10 7 s 1 1=3<br />

,andl<br />

5 A, where is <strong>the</strong> unit cell volume per chemical formula<br />

yield C of <strong>the</strong> order of 200 K.<br />

We presented ultras<strong>on</strong>ic attenuati<strong>on</strong> experiments as<br />

well as a <strong>the</strong>oretical analysis <strong>on</strong> <strong>the</strong> field-induced changes<br />

in <strong>the</strong> spin dimer system TlCuCl 3 . These experiments are<br />

in agreement with <strong>the</strong> magn<strong>on</strong> Bose-Einstein c<strong>on</strong>densati<strong>on</strong><br />

and summarized as a sharp peak in <strong>the</strong> attenuati<strong>on</strong><br />

H in <strong>the</strong> close vicinity of <strong>the</strong> transiti<strong>on</strong> and a sec<strong>on</strong>d<br />

broader maximum at larger fields, deep in <strong>the</strong> l<strong>on</strong>g-range<br />

ordered phase. The peak in H shows a hysteresis<br />

crossing <strong>the</strong> phase boundary with increasing/decreasing<br />

field. This effect is attributed to a first-order c<strong>on</strong>tributi<strong>on</strong><br />

to <strong>the</strong> phase transiti<strong>on</strong>. The exp<strong>on</strong>ent 2 in <strong>the</strong> relati<strong>on</strong><br />

n B T B and <strong>the</strong> H dependence of sound attenuati<strong>on</strong><br />

originate from <strong>the</strong> relativistic dispersi<strong>on</strong> of magn<strong>on</strong>s.<br />

The spin-lattice coupling is due to a ph<strong>on</strong><strong>on</strong>-induced<br />

modulati<strong>on</strong> of <strong>the</strong> spin gap with <strong>the</strong> coupling c<strong>on</strong>stant<br />

C 200 K. The recent observati<strong>on</strong> [19,20] of triplet<br />

crystallizati<strong>on</strong> in <strong>the</strong> 2D compound SrCu 2 BO 3 2 in large<br />

magnetic fields with similar spin-ph<strong>on</strong><strong>on</strong> coupling dem<strong>on</strong>strates<br />

that <strong>the</strong>se phenomena are of a general nature.<br />

We acknowledge important discussi<strong>on</strong>s with D. Lenz,<br />

M. Takigawa, B. Wolf, and B. Lüthi, and financial support<br />

by DFG/SPP 1073 and <strong>the</strong> Austrian Science Fund Project<br />

No. P-15520. Experiments have been performed at <strong>the</strong><br />

High-Field Laboratory of <strong>the</strong> TU Braunschweig with <strong>the</strong><br />

expert help of R. Hofmann and H. Sim<strong>on</strong>towski.<br />

[1] A. Auerbach, Interacting Electr<strong>on</strong>s and Quantum<br />

Magnetism, Graduate Text in C<strong>on</strong>tempoary <str<strong>on</strong>g>Phys</str<strong>on</strong>g>ics<br />

(Springer, New York, 1994).<br />

[2] P. Lemmens et al., <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. Rep. 375, 1 (<str<strong>on</strong>g>2003</str<strong>on</strong>g>).<br />

[3] M. Oshikawa et al., <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. <str<strong>on</strong>g>Rev</str<strong>on</strong>g>. <str<strong>on</strong>g>Lett</str<strong>on</strong>g>. 78, 1984 (1997).<br />

[4] R. Joynt et al., <str<strong>on</strong>g>Rev</str<strong>on</strong>g>. Mod. <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. 74, 235 (2002).<br />

[5] J. Pankert et al., <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. <str<strong>on</strong>g>Rev</str<strong>on</strong>g>. <str<strong>on</strong>g>Lett</str<strong>on</strong>g>. 65, 3052 (1990).<br />

[6] R. D. Willet et al., J. Chem. <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. 38, 2429 (1963).<br />

[7] H. Tanaka et al., J. <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. Soc. Jpn. 65, 1945 (1996).<br />

[8] K. Takatsu et al., J. <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. Soc. Jpn. 66, 1661 (1997).<br />

[9] N. Cavadini et al., <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. <str<strong>on</strong>g>Rev</str<strong>on</strong>g>. B 63, 172414 (2001).<br />

[10] M. Matsumoto et al., <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. <str<strong>on</strong>g>Rev</str<strong>on</strong>g>. <str<strong>on</strong>g>Lett</str<strong>on</strong>g>. 89, 077203 (2002).<br />

[11] T. Giamarchi and A. Tsvelik, <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. <str<strong>on</strong>g>Rev</str<strong>on</strong>g>. B 59, 11 398<br />

(1999).<br />

[12] T. Nikuni et al., <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. <str<strong>on</strong>g>Rev</str<strong>on</strong>g>. <str<strong>on</strong>g>Lett</str<strong>on</strong>g>. 84, 5868 (2000).<br />

[13] A. Oosawa et al., J. <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. C<strong>on</strong>dens. Matter 11, 265 (1999).<br />

[14] A. Oosawa et al., <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. <str<strong>on</strong>g>Rev</str<strong>on</strong>g>. B 63, 134416 (2001).<br />

[15] H. Tanaka et al., J. <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. Soc. Jpn. 70, 939 (2001).<br />

[16] O. Vyaselev et al., <str<strong>on</strong>g>Phys</str<strong>on</strong>g>ica B (Amsterdam) (to be<br />

published).<br />

[17] M. G. Cottam, J. <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. C 7, 2<str<strong>on</strong>g>91</str<strong>on</strong>g>9 (1974).<br />

[18] L. D. Landau and E. M. Lifshitz, Statistical <str<strong>on</strong>g>Phys</str<strong>on</strong>g>ics<br />

(Pergam<strong>on</strong> Press, L<strong>on</strong>d<strong>on</strong>, 1958), 484 pp.<br />

[19] K. Kodama et al., Science 298, 395 (2002).<br />

[20] B. Wolf et al., <str<strong>on</strong>g>Phys</str<strong>on</strong>g>. <str<strong>on</strong>g>Rev</str<strong>on</strong>g>. <str<strong>on</strong>g>Lett</str<strong>on</strong>g>. 86, 4847 (2001).<br />

<str<strong>on</strong>g>057201</str<strong>on</strong>g>-4 <str<strong>on</strong>g>057201</str<strong>on</strong>g>-4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!