19.02.2014 Views

Degenerate Quasilinear Hyperbolic Equation with Strong Damping

Degenerate Quasilinear Hyperbolic Equation with Strong Damping

Degenerate Quasilinear Hyperbolic Equation with Strong Damping

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

in<br />

Funkcialaj Ekvacioj, 27 (1984), 125-145<br />

<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong><br />

<strong>with</strong> <strong>Strong</strong> <strong>Damping</strong><br />

By<br />

Kenji NISHIHARA<br />

(Tokyo National Technical College, Japan)<br />

1. Introduction.<br />

Let $a(¥cdot)$ be a real valued $C^{1}[0,$ $¥mathrm{o}¥mathrm{o}$)-function satisfying<br />

(1.1)<br />

$a(s)¥geq 0$ for $s¥in[0,$ $¥infty)$ .<br />

We consider the initial-boundary value problem (IBVP) for degenerate quasilinear<br />

hyperbolic equations<br />

(1.2)<br />

$u_{tt}(x, t)-a(¥int_{¥Omega}|¥nabla u(y, t)|^{2}dy)¥Delta u(x, t)-¥Delta ll_{t}(x, t)=0$<br />

the n-dimen-<br />

on where $¥Omega¥times(0, ¥infty)$ $¥Omega$ $¥partial¥Omega$<br />

is a bounded domain <strong>with</strong> its boundary<br />

sional Euclidean space . When<br />

$R^{n}$<br />

(1.3)<br />

$a(s)¥geq a_{0}>0$ for $s¥in[0,$ $¥infty)$<br />

$a_{0}$<br />

for some constant instead of (1.1), Eq. (1.2) has a classical solution <strong>with</strong> null<br />

Dirichlet boundary condition and suitable initial data, which is unique and decays<br />

$ t¥rightarrow¥infty$<br />

exponentially as .<br />

Our aim in this paper is to show the existence, uniqueness, regularity and<br />

asymptotic behaviour of the solution to (1.2) under the condition (1.1). We shall<br />

remark about the asymptotic behaviour: in general the decay property of the solution<br />

to (1.2) cannot be expected for an arbitrary . In fact, let $a$ $s_{0}$<br />

be a positive number<br />

such that $a(s_{0})=0$ and let $u_{0}(x)$ satisfy $u_{0}(x)¥in H^{¥infty}(¥Omega)$ ,<br />

$u_{0}(x)|_{¥partial¥Omega}=0$<br />

and<br />

$=s_{0}$ . Then $u(x, t)¥equiv u_{0}(x)$ is just a solution to (1.2) <strong>with</strong> initial conditions<br />

$¥int_{¥Omega}|¥nabla u_{0}(x)|^{2}dx$<br />

and boundary condition<br />

$u(x, 0)=u_{0}(x)$ , $u_{t}(x, 0)=0$<br />

$u(x, t)|_{¥partial¥Omega}=0$<br />

.<br />

We note that such $u_{0}(x)$ ’s are infinitely many, and that the above example is appli-


126 K. NISHIHARA<br />

cable to (1.4), (1.5) appeared below. However, we can prove the decay properties<br />

of the solution to (1.2) <strong>with</strong> $a(s)=s$ .<br />

We mention about related results. The equation (1.2) arises in the study of the<br />

motion of an elastic string. The equation related to (1.2) are<br />

(1.4)<br />

$u_{tt}-a(¥int_{¥Omega}|¥nabla u(y, t)|^{2}dy)¥Delta u=0$<br />

(1.5)<br />

$¥iota¥iota_{tt}-a(¥int_{¥Omega}|¥nabla u(y, t)|^{2}dy)¥Delta u+u_{t}=0$<br />

(1.6)<br />

$u_{tt}-a(¥int_{¥Omega}|¥nabla u(y, t)|^{2}dy)¥Delta u+¥Delta^{2}u=0$<br />

and etc., which are studied together <strong>with</strong> (1.3) by many authors; for (1.4) Dickey [5],<br />

[8], [9], Nishida [22], Menzala [17], Rodriguez [24], Greenberg and Hu [12], Pohozaev<br />

[23], Nishihara [20] (see also Lions [15]); for (1.5) Dickey [6], Brito [3], Yamada [27],<br />

Nishihara [21]; for (1.6) Ball [2], Dickey [7], Medeiros [16], Menzala [17], Yamaguchi<br />

[28] and others. The degenerate case is proposed in Lions [14], [15]. However, in<br />

our results the strongly damping term is necessary.<br />

The (IBVP)’s for the other (degenerate) quasilinear hyperbolic equations, such<br />

as<br />

(1.7)<br />

$u_{tt}-¥sigma(u_{x})_{x}-u_{xxt}=f$ ,<br />

are investigated by many authors, Tsutsumi [26], Andrews [1], Greenberg, MacCamy<br />

and Mizel [11], Greenberg [10] and etc., while the periodic problems to those are<br />

also studied by Clement [4], Kakita [13], Sowunmi [25], Narazaki [19] and etc.. In a<br />

final section, we shall show the existence of periodic solutions to (1.2) <strong>with</strong> the<br />

periodic forcing term when $a(s)=s$ .<br />

Acknowledgment. The author should like to express his sincere gratitude to<br />

Professor Takao Kakita for his helpful suggestions and constant encouragment and<br />

also to Professor Masaru Yamaguchi for his kind advices.<br />

2. Formulation of tke problem and results.<br />

Let $H$ $||¥cdot||$<br />

be a real, separable Hilbert space <strong>with</strong> norm and scalar product<br />

$(¥cdot, ¥cdot)$<br />

. Let A be a linear operator in $H$ <strong>with</strong> domain dense in $H$ . We assume<br />

$D(¥mathrm{A})$<br />

that A satisfies the following conditions:<br />

(HI)<br />

A is a self-adjoint, positive definite operator <strong>with</strong> discrete spectrum.<br />

$D(¥mathrm{A}^{r})$<br />

Then the linear operator A $r(r>0)$ <strong>with</strong> domain<br />

condition<br />

is<br />

well-defined and the


$D(¥mathrm{A}^{r})$<br />

<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong> 127<br />

$i$ $D(¥mathrm{A}^{r^{¥prime}})$ $r>r^{¥prime}¥geq 0$<br />

(H2) the inject on into , , is compact<br />

is assumed. It is also assumed that<br />

$a¥in C^{1}[0,$ $¥infty$<br />

(H3) ) <strong>with</strong> $a(s)¥geq 0$ for $s¥geq 0$ .<br />

In the space $H$ we now consider the initial value problem to the equation<br />

(2. 1)<br />

$u^{¥prime¥prime}(t)+a(||¥mathrm{A}^{1/2}u(t)||^{2})¥mathrm{A}u(t)+Au^{¥prime}(t)=0$<br />

<strong>with</strong> ’boundary’ condition<br />

(2.2) $u(t)$ ,<br />

$u^{¥prime}(t)¥in D(¥mathrm{A})$<br />

for any $t¥in[0,$ $¥infty)$<br />

and initial data<br />

(2.3) $u(0)=u_{0}$ ,<br />

$u^{¥prime}(0)=u_{1}$<br />

,<br />

which is the abstract form of (IBVP) to (1.2). Here we denote $’=d_{J}/dt$ and $’’=$<br />

$d^{2}/dt^{2}$<br />

.<br />

Then<br />

$¥mathrm{v}¥mathrm{v}¥mathrm{e}$<br />

have the followings:<br />

and<br />

Theorem 1 (Existence and uniqueness).<br />

We assume the conditions $(¥mathrm{H}1)-(¥mathrm{H}3)$<br />

(H4)<br />

$u_{0}¥in D(¥mathrm{A})$<br />

and $u_{1}¥in D(¥mathrm{A}^{1/2})$ .<br />

Then there exists a unique solution $u¥in C^{1}([0, ¥infty);H)$ of $(2.1)-(¥backslash 2.3)$ satisfying Au,<br />

$¥mathrm{A}^{1/2}u^{¥prime}¥in L^{¥infty}(0, ¥infty; H)$<br />

and Au’, .<br />

$u^{¥prime¥prime}¥in L^{2}(0, ¥infty; H)$<br />

Theorem 2 (Regularity).<br />

We assume<br />

$botf¥iota u_{0}$ $u_{1}$<br />

(H3) and are<br />

belonged to $D(¥mathrm{A}^{3/2})$ .<br />

Then tfre unique solution $u$ in Theorem 1 satisfies $u¥in C^{2}([0, ¥infty);H)$ , A $3/2u$ , Au’,<br />

$¥mathrm{A}^{1/2}u^{¥prime¥prime}$<br />

$¥in L^{¥infty}(0, ¥infty;H)$ and<br />

$¥mathrm{A}^{3/2}u^{¥prime}$<br />

, Au’, .<br />

$u^{¥prime¥prime¥prime}¥in L^{2}(0, ¥infty; H)$<br />

Theorem 3 (Regularity). If we assume<br />

$u_{0}¥in D(¥mathrm{A}^{k})$<br />

(H2) $k$<br />

and , $u_{1}¥in D(¥mathrm{A}^{k-1/2})$ $k¥geq 2$ ,<br />

then the solution $u$ in Theorem 2 satisfies A $ku$ , A $k-1/2u’¥in L^{¥infty}(0, ¥infty;H)$ and A<br />

$(0, ¥infty;H)$ .<br />

$ku^{¥prime}¥in L^{2}$<br />

The bounded solution of $(2.1)-(2.3)$ obtained above cannot be expected the<br />

decay properties, as indicated in Introduction, provided that there exists $s_{0}>0$ such<br />

that $a(s_{0})=0$ . But when $a(s)=s$ we have<br />

Theorem 4 (Decay). Let (HI), (H2) and (H5) be assumed and let $u$ be<br />

$t^{l}¥iota<br />

e$<br />

unique


.<br />

and<br />

depending<br />

$00$ for some constant<br />

$a_{0}$<br />

, then it is easily seen that the<br />

solution $u(t)$ to $(2.1)-(2.3)$ <strong>with</strong> its ’higher derivatives’ decays exponentially to zero<br />

$t$<br />

as tends to infinity (cf. Nishihara [21], Yamada [27]).<br />

3. A priori estimates.<br />

We employ Galerkin’s procedure for the proofs.<br />

$¥mathrm{i}¥mathrm{m}¥mathrm{p}1_{1}^{¥tau}.¥mathrm{e}¥mathrm{s}$<br />

$¥{¥lambda_{j}^{2}¥}$<br />

The condition (HI) that A has an infinite sequence of eigenvalues<br />

<strong>with</strong><br />

an eigen-<br />

and there exists a complete orthonormal system in $¥{w_{j}¥}$ $H$ , wach $w_{j}$<br />

$¥lambda_{j}^{2}$<br />

vector to For each $u¥in H$ , we have an expantion:<br />

being<br />

$u=¥sum_{j=1}^{¥infty}u_{j}w_{j}$,<br />

$u_{j}=(u, w_{j})$<br />

<strong>with</strong> $||u||=(¥sum_{j=1}^{¥infty}u_{j}^{2})^{1/2}$ If $u¥in D(¥mathrm{A}^{k})$ , there holds<br />

A<br />

$ku=¥sum_{j=1}^{¥infty}¥lambda_{j}^{¥prime}k/l_{j}w_{j}$<br />

<strong>with</strong><br />

$||$<br />

$ku||=(¥sum_{j=1}^{¥infty}1_{j}^{4k}u_{j}^{2})^{1/2}$<br />

We now define Galerkin’s approximation $u_{m}(t)=¥sum_{j=1}^{m}g_{jm}(t)w_{j}$<br />

the initial value problem for the system:<br />

as a solution to<br />

(3. 1)<br />

$(u_{m}^{¥prime¥prime}(t)+a(||¥mathrm{A}^{1/2}u_{m}(t)||^{2})¥mathrm{A}u_{m}(t)+Au_{m}^{J}(t), w)=0$<br />

for any fixed $w¥in V^{m}$ ,<br />

<strong>with</strong> data


<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong> 129<br />

(3.2)<br />

$u_{m}(0)=¥sum_{j=1}^{m}¥alpha_{j}w_{j}$?<br />

$u_{m}^{J}(0)=¥sum_{j=1}^{m}¥beta_{j}w_{j}$?<br />

$u_{0}$<br />

$u_{1}$<br />

strongly<br />

strongly as<br />

$<br />

as<br />

$<br />

m¥rightarrow¥infty$<br />

m¥rightarrow¥infty$<br />

,<br />

where is an $¥mathrm{m}$-dimensional vector space spanned by . Then we<br />

$V^{m}$ $¥{w_{1^{ }},--, w_{m}¥}$<br />

obtain certain nonlinear ordinary differential system for the $g_{jm}$ ’s, which has a unique<br />

$¥mathrm{C}^{3}$-solution defined on some interval [0,<br />

$t_{m}$)<br />

since .<br />

$a¥in C^{1}[0,$ $¥infty)$<br />

We estimate the under the condition (H4).<br />

$u_{m}$<br />

(I) Putting in (3. 1) we have<br />

$w=¥mathit{2}u_{m}^{J}(t)$<br />

(3.3)<br />

$¥frac{d}{dt}[||u_{m}^{¥prime}(t)||^{2}+¥hat{a}(||¥mathrm{A}^{1/2}u_{m}(t)||^{2})]+2||¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||^{2}=0$<br />

where $¥hat{a}(s)=¥int_{0}^{s}a(¥tau)d¥tau$ .<br />

(3.2), we have<br />

Integrating both sides of (3.3) from 0 to $t(t


130 K. NISHIHARA<br />

from which it follows that<br />

(3.7)<br />

$||¥mathrm{A}^{1/2}u_{m}(t)||^{2}¥leq C_{2}$<br />

and<br />

(3.8)<br />

$¥int_{0}^{t}a$<br />

$||$<br />

( A ) .<br />

$1/2u_{m}(¥tau)||^{2}$ $||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2}d¥tau¥leq C$<br />

From (3.4) and (3.7) we conclude that all the intervals [0,<br />

$t_{m}$) are extended to the<br />

$¥infty$<br />

whole interva1.[0, ).<br />

$t$<br />

(Ill) Taking $w=Au_{m}(t)$ in (3. 1) and integrating it over [0, ), we have<br />

(3.9)<br />

$a(||¥mathrm{A}^{1/2}u_{m}(t)||^{2})||$ $Au_{m}(t)||^{2}+¥frac{1}{2}¥frac{d}{dt}||$Au $m(f)||^{2}$<br />

$=-¥frac{d}{dt}(¥mathrm{A}^{1/2}u_{m}^{¥prime}(t), ¥mathrm{A}^{1/2}u_{m}(t))+||¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||^{2}$<br />

and<br />

$¥int_{0}^{t}a(||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2})||Au_{m}(¥tau)||^{2}d¥tau+¥frac{1}{2}||$<br />

Au $m(f)||^{2}$<br />

$¥leq¥frac{1}{2}||¥mathrm{A}u_{0}||^{2}+||u_{1}||||¥mathrm{A}u_{0}||+||u_{m}^{J}(t)||||¥mathrm{A}u_{m}(t)||+¥int_{0}^{t}||¥mathrm{A}^{1/2}u_{m}^{¥prime}(¥tau)||^{2}d¥tau$<br />

$¥leq C+C_{1}||$ Au$m(f)||$ ,<br />

the latter of which means<br />

(3. 10)<br />

$||$<br />

Au$m(t)||¥leq C$<br />

and<br />

(3. 11)<br />

$¥int_{0}^{¥infty}a$<br />

$||$<br />

( A ) $1/2u_{m}(¥tau)||^{2}$ $||$<br />

Au .<br />

$m(¥tau)||^{2}d¥tau¥leq C$<br />

(IV) Taking $w=¥mathit{2}Au_{m}^{J}(t)$ in<br />

$(3.¥mathrm{t})$<br />

, we have<br />

$¥frac{d}{dt}||¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||^{2}+2||$ $Au_{m}^{¥prime}(t)||^{2}=-2a$<br />

(<br />

$||$<br />

A $1/2u_{m}(t)||^{2}$ )($¥mathrm{A}u_{m}(t)$<br />

, Au )<br />

$m’(f)$<br />

$¥leq a$<br />

(<br />

$||$<br />

A ) $1/2u_{m}(t)||^{2}$ $(a_{1}||Au_{m}(t)||^{2}+¥frac{1}{a_{1}}||$ $Au_{m}^{¥prime}(t)||^{2})$<br />

that is,<br />

$¥leq a_{1}¥cdot a(||¥mathrm{A}^{1/2}u_{m}(t)||^{2})||$<br />

Au $m(t)||^{2}+||Au_{m}^{¥prime}(t)||^{2}$ ,


<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong> 131<br />

(3.12)<br />

$¥frac{d}{dt}||¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||^{2}+||Au_{m}^{¥prime}(t)||^{2}¥leq<br />

a_{1}¥cdot a$ $||$<br />

( A ) $1/2u_{m}(t)||^{2}$ $||$<br />

Au $m(f)||^{2}$<br />

where $a_{1}=¥max¥{a(s);0¥leq s¥leq C_{2}¥}$ . Then, integrating (3. 12) over $[0, t]$ , we have<br />

$||¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||^{2}+¥int_{0}^{t}||Au_{m}^{¥prime}(¥tau)||^{2}d¥tau¥leq||$A $1/2u_{1}||^{2}+a_{1}¥int_{0}^{¥infty}a(||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2})||$<br />

Au $ m(¥tau)||^{2}d¥tau$<br />

which gives by (3.11)<br />

(3. 13)<br />

$||¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||¥leq<br />

C$<br />

and<br />

(3. 14)<br />

$¥int_{0}^{¥infty}||Au_{m}^{¥prime}(¥tau)||^{2}d¥tau¥leq<br />

(V) Putting $w=u_{m}^{¥prime¥prime}(t)$ in<br />

C$.<br />

(3. 1), we have<br />

(3. 15)<br />

$||u_{m}^{¥prime¥prime}(t)||^{2}+¥frac{1}{2}¥frac{d}{dt}||¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||^{2}=-¥frac{d}{dt}¥{a(||¥mathrm{A}^{1/2}u_{m}(t)||^{2})(¥mathrm{A}^{1/2}u_{m}(t), ¥mathrm{A}^{1/2}u_{m}^{J}(t))¥}$<br />

$+2a^{¥prime}(||¥mathrm{A}^{1/2}u_{m}(t)||^{2})(¥mathrm{A}^{1/2}u_{m}(t), ¥mathrm{A}^{1/2}u_{m}^{J}(t))^{2}+a(||¥mathrm{A}^{1/2}u_{m}(t)||^{2})||¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||^{2}$<br />

and<br />

$¥int_{0}^{t}||u_{m}^{¥prime J}(¥tau)||^{2}d_{T}+¥frac{1}{2}||¥mathrm{A}^{1/2}u_{m}^{J}(t)||^{2}$<br />

$¥leq¥frac{1}{2}||¥mathrm{A}^{1/2}u_{1}||^{2}+a_{1}||¥mathrm{A}^{1/2}u_{0}||||$<br />

A $1/2u_{1}||+a_{1}||$ A $1/2u_{m}(t)||||$ A $1/2u_{m}(t)||J$<br />

$+2a_{2}¥int_{0}^{t}||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2}||¥mathrm{A}1/2u_{m}^{;}(¥tau)||^{2}d_{T}+a_{1}¥int_{0}^{t}||¥mathrm{A}^{1/2}u_{m}^{¥prime}(¥tau)||^{2}d¥tau$.<br />

where $a_{2}=¥max¥{|a^{¥prime}(s)|; 0¥leq s¥leq C_{2}¥}$ . Hence, by (3.5), (3.7) and (3.13),<br />

$¥int_{0}^{¥infty}||u_{m}^{¥prime¥prime}(¥tau)||^{2}d¥tau¥leq $¥langle$3.<br />

16)<br />

C$.<br />

Assuming (H5) we proceed a priori estimates.<br />

Similarly to (III), taking in $w=A^{¥mathit{2}}u_{m}(t)$<br />

($¥mathrm{V}¥mathrm{D}$<br />

(3.1) derives<br />

$||¥mathrm{A}^{3/2}u_{m}(t)||¥leq C$<br />

(3. 17)<br />

and<br />

(3. 18)<br />

$¥int_{0}^{¥infty}a(||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2})||¥mathrm{A}^{3/2}u_{m}(¥tau)||^{2}d¥tau¥leq<br />

C$.


132 K. NISHIHARA<br />

(3. 19)<br />

$||$<br />

and<br />

(VII)<br />

Also, similar estimates to (IV) yield<br />

Au $mJ(t)||¥leq C$<br />

(3.20)<br />

$¥int_{0}^{¥infty}||¥mathrm{A}^{3/2}u_{m}^{¥prime}(¥tau)||^{2}d¥tau¥leq<br />

C$<br />

by virtue of (3. 18).<br />

Now we differentiate (3. 1) <strong>with</strong> respect to<br />

$t$<br />

and have<br />

(3.21)<br />

$(u_{m}^{¥prime¥prime¥prime}(t)+a(||<br />

¥mathrm{A}^{1/2}u_{m}(t)||^{2})¥mathrm{A}u_{m}^{J}(t)$<br />

$+2a^{¥prime}(||¥mathrm{A}^{1/2}u_{m}(t)||^{2})(¥mathrm{A}^{1/2}u_{m}(t), ¥mathrm{A}^{1/2}u_{m}^{J}(t))¥mathrm{A}u_{m}(I)$<br />

, $w)=0$ .<br />

(VIII) Putting<br />

$w=2¥mathrm{A}u_{m}^{¥prime¥prime}(t)$<br />

in<br />

(3.21) we have<br />

$¥frac{d}{dt}$ $||¥mathrm{A}^{1/2}u_{m}^{¥prime J}(t)||^{2}+a(||$<br />

[ A $Au_{m}^{¥prime}(t)||^{2}$] $1/2u_{m}(t)||^{2})||$ $+2||$ $Au_{m}^{¥prime¥prime}(t)||^{2}$<br />

or<br />

$=2a^{¥prime}$<br />

$||$<br />

( A ) $1/2u_{m}(t)||^{2}$ $(¥mathrm{A}^{1/2}u_{m}(t), ¥mathrm{A}^{1/2}u_{m}^{J}(t))$ $||$ $Au_{m}^{¥prime}(t)||^{2}-2(¥mathrm{A}u_{m}(t)$<br />

( , Au )<br />

$m’’(t))$<br />

(3.22)<br />

$¥frac{d}{dt}[||¥mathrm{A}^{1/2}u_{m}^{¥prime¥prime}(t)||^{2}+a(||¥mathrm{A}^{1/2}u_{m}(t)||^{2})||¥mathrm{A}u_{m}^{¥prime}(t)||^{2}]+||¥mathrm{A}u_{m}^{¥prime J}(t)||^{2}$<br />

$¥leq C$<br />

(<br />

$||$<br />

$’$<br />

$Au_{m}^{¥prime}(t)||^{2}+||$<br />

A )<br />

$1/2u_{m}(t)||^{2}$<br />

by (3.7), (3.10) and (3. 13). Integrating (3.22) over $[0, t]$ leads to<br />

(3.23)<br />

$||$<br />

$¥mathrm{A}^{1/2}u_{m}^{¥prime¥prime}(t)||¥leq C$<br />

and<br />

(3.24)<br />

$¥int_{0}^{¥infty}||$<br />

$Au_{m}^{¥prime¥prime}(¥tau)||^{2}d¥tau¥leq C$.<br />

Here<br />

$||¥mathrm{A}^{1/2}u_{m}^{¥prime¥prime}(0)||^{2}¥leq<br />

C$<br />

follows from (3.1) and (H5).<br />

(IX)<br />

(3.21) <strong>with</strong> (3.5), (3.7), (3. [0, (3. 14) and (3.24) yields<br />

(3.25)<br />

$¥int_{0}^{¥infty}||u_{m}^{¥prime¥prime¥prime}(¥tau)||^{2}d_{T}¥leq<br />

C$<br />

.<br />

4. Proof of Theorem 1.<br />

By virtue of a priori estimates (3.10), (3.13), (3. 14) and (3.25),<br />

of <strong>with</strong> the properties<br />

$¥{u_{m}¥}$<br />

subsequence<br />

$¥{u_{¥mu}¥}$<br />

we may extract a


u^{¥prime}$<br />

in<br />

u^{¥prime¥prime}$<br />

in<br />

<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong> 133<br />

(4. 1)<br />

$u_{¥mu}¥rightarrow<br />

$u_{¥mu}^{¥prime}¥rightarrow<br />

(4.2)<br />

$u_{¥mu}^{¥prime¥prime}¥rightarrow<br />

(4.3)<br />

u$ in<br />

$¥mathrm{w}¥mathrm{e}¥mathrm{a}¥mathrm{k}1¥mathrm{y}^{*}$<br />

$L^{¥infty}(0, ¥infty; D(¥mathrm{A}))$<br />

$L^{¥infty}(0, ¥infty; D(¥mathrm{A}^{1/2}))¥cap L^{2}(0, ¥infty;D(¥mathrm{A}))$<br />

$¥mathrm{w}¥mathrm{e}¥mathrm{a}¥mathrm{k}1¥mathrm{y}^{*}$<br />

$L^{2}(0, ¥infty; H)$ weakly<br />

and<br />

(4.4)<br />

$a(||¥mathrm{A}^{1/2}u_{¥mu}(¥cdot)||^{2})¥mathrm{A}u_{¥mu}$<br />

for some $u$ and<br />

$¥chi$<br />

.<br />

?<br />

in<br />

$L^{¥infty}(0, ¥infty; H)$ $¥mathrm{w}¥mathrm{e}¥mathrm{a}¥mathrm{k}1¥mathrm{y}^{*}$<br />

We must show $¥chi_{=a}(||¥mathrm{A}^{1/2}u(¥cdot)||^{2})¥mathrm{A}u$ . For any $¥phi¥in C_{0}(0, ¥infty; H)$ and $T>0$ we<br />

have<br />

$¥int_{0}^{T}(¥chi-a(||¥mathrm{A}^{1/2}u(¥tau)||^{2})¥mathrm{A}u(¥tau), ¥phi)dt=¥int_{0}^{T}(¥chi-a(||¥mathrm{A}^{1/2}u_{¥mu}(¥tau)||^{2})¥mathrm{A}u_{¥mu}(¥tau), ¥phi)d¥tau$<br />

(4. 5)<br />

$+¥int_{0}^{T}a$<br />

(<br />

$||$<br />

A $1/2u(¥tau)||^{2}$ )($¥mathrm{A}u_{¥mu}(¥tau)-$<br />

Au(),<br />

$¥phi$)<br />

$ d¥tau$<br />

$+¥int_{0}^{T}$<br />

$(a(||¥mathrm{A}^{1/2}u_{¥mu}(¥tau)||^{2})-a(||¥mathrm{A}^{1/2}u(¥tau)||^{2}))(¥mathrm{A}u_{¥mu}(¥tau), ¥phi)d¥tau$.<br />

But, by the mean value theorem and by (4. 1) and (H2),<br />

$|$<br />

the last term in $(4.5)|$<br />

$¥leq C¥int_{0}^{T}a_{2}|$<br />

($¥mathrm{A}^{1/2}u_{¥mu}(¥tau)-¥mathrm{A}^{1/2}u(¥tau)$<br />

,<br />

A $1/2u_{¥mu}(¥tau)+¥mathrm{A}^{1/2}u(¥tau)$ ) $|d¥tau$<br />

$¥leq C¥int_{0}^{T}||¥mathrm{A}^{1/2}u_{¥mu}(¥tau)-¥mathrm{A}^{1/2}u(¥tau)||d¥tau¥rightarrow 0$<br />

as $¥mu¥rightarrow¥infty$<br />

.<br />

The other integrals in right-hand side in (4.5) also tend to zero. The arbitrariness<br />

$¥phi$<br />

of and $T$ implies . Hence we get (2.1) for almost all $¥chi_{=a}(||¥mathrm{A}^{1/2}u(¥cdot)||^{2})¥mathrm{A}u$ $t$<br />

. The<br />

initial conditions (2.3) follow from (4.3) and the next Lemma 1.<br />

Lemma 1 (Ball [2]). Let $X$ be a Banach space. If $f¥in L^{2}(0, T;X)$ and<br />

$f^{¥prime}¥in L^{2}$<br />

$(0, T;X)$ , then $f$ , possibly after redefinition on a set of measure zero, is continuous from<br />

$[0, T]$ to $X$ .<br />

Thus the existence part of Theorem 1 is completed.<br />

In order to prove the uniqueness part, let and be two solutions of $u$ $v$ $(2.1)-$<br />

$(2.3)$ . Then $w¥equiv u-v$ satisfies<br />

(4. 6)<br />

and<br />

$w^{¥prime¥prime}(t)+a(||¥mathrm{A}^{1/2}u(t)||^{2})¥mathrm{A}w(t)+¥mathrm{A}w^{¥prime}(t)$<br />

$=-$ [ $a(||¥mathrm{A}^{1/2}u(t)||^{2})-a(||$ A $1/2u(t)||^{2})$ ]<br />

$¥mathrm{A}v(t)$


134 K. NISHIHARA<br />

(4.7) $w(0)=0$, $w^{¥prime}(0)=0$ .<br />

Applying , $2w^{¥prime}(t)+¥mathcal{T}w(t)$ $0


<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong> 135<br />

and<br />

(5.4)<br />

$u^{¥prime¥prime¥prime}¥in L^{2}(0, ¥infty;H)$<br />

by (3.16)?(3.19) and (3.22)?(3.24). Combining Lemma 1 and $(5.1)-(54)$ implies<br />

$u¥in C^{2}(.[0, ¥infty);H)$ .<br />

Q.E.D.<br />

Proof of Theorem 3. Putting $w=¥mathrm{A}^{2k-1}u_{m}(t)$ , $k=2,3$ ,<br />

$¥cdots$<br />

, in (3.1) and integrating<br />

it from 0 to<br />

$t$,<br />

(5. 5)<br />

$||$<br />

and<br />

we obtain<br />

A $ku_{m}(t)||¥leq C$<br />

(5.6)<br />

$¥int_{0}^{¥infty}a(||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2})||$A<br />

$ku_{m}(¥tau)||^{2}d_{T}¥leq C$<br />

by the similar way to (III).<br />

(5.7)<br />

$||$<br />

and<br />

Then, similarly to (IV), we get<br />

A<br />

$k-1/2u_{m}^{¥prime}(t)||^{2}¥leq C$<br />

(5.8)<br />

$¥int_{0}^{¥infty}||$<br />

A<br />

$ku_{m}^{¥prime}(¥tau)||^{2}d¥tau¥leq C$ ,<br />

using (5.6). Hence Theorem 3 follows from (5.5), (5.7) and (5.8) Q.E.D.<br />

6. Proof of Theorem 4.<br />

From Theorem 2 it suffices to obtain the apriori estimates $(2.5)-(2.9)$ to $u_{m}(t)_{>}$<br />

which satisfies<br />

(6.1)<br />

$(u_{m}^{¥prime¥prime}(t)+||¥mathrm{A}^{1/2}u_{m}(t)||^{2}Aum(t)+Au_{m}^{J}(t), w)=0$<br />

for any<br />

$w¥in V^{m}$<br />

together <strong>with</strong> (3.2). Since $a(s)=s$, (3.5) and (3.8) give<br />

(6.2)<br />

$¥int_{0}^{t}||$<br />

$¥mathrm{A}^{1/2}u^{J}(¥tau)||^{2}d¥tau¥leq C$<br />

and<br />

(6.3)<br />

$¥int_{0}^{t}||¥mathrm{A}^{1/2}u(¥tau)||^{4}d¥tau¥leq<br />

C$<br />

.<br />

(From now on we abbreviate the suffix $m$<br />

for simplicity.)<br />

Multiplying (3.3) by $(1+t)$ and integrating it over $[0, t]$ , we have


136 K. NISHIHARA<br />

$¥frac{d}{dt}[(1+t)(||u^{¥prime}(t)||^{2}+¥frac{1}{2}||¥mathrm{A}^{1/2}u(t)||^{4})]+2(1+t)||¥mathrm{A}^{1/2}u^{¥prime}(t)||^{2}$<br />

$=||u^{j}(t)||^{2}+¥frac{1}{2}||¥mathrm{A}^{1/2}u(t)||^{4}$<br />

and<br />

(6. 4)<br />

$(1+t)(||u^{¥prime}(t)||^{2}+¥frac{1}{2}||¥mathrm{A}^{1/2}u(t)||^{4})+2¥int_{0}^{t}(1+¥tau)||¥mathrm{A}^{1/2}u^{¥prime}(¥tau)||^{2}d¥tau$<br />

$¥leq||u_{1}||^{2}+¥frac{1}{2}||u_{0}||^{4}+¥int_{0}^{t}(||u^{¥prime}(¥tau)||^{2}+¥frac{1}{2}||¥mathrm{A}^{1/2}u(¥tau)||^{4})d¥tau$<br />

.<br />

By virtue of (6.2), (6.3) and (H5), (6.4) gives<br />

(6.3)<br />

$(1+t)||u^{¥prime}(t)||^{2}¥leq C$<br />

(6.6)<br />

$(1+t)||¥mathrm{A}^{1/2}u(t)||^{4}¥leq C$<br />

and<br />

(6.7)<br />

$¥int_{0}^{t}(1+¥tau)||¥mathrm{A}^{1/2}u^{¥prime}(¥tau)||^{2}d¥tau¥leqq C$.<br />

Multiplying (3.6) by $(1+t)^{1/2-¥epsilon}$ for small positive constant<br />

$¥epsilon$<br />

, we have<br />

$(1+t)^{1/2-¥epsilon}||¥mathrm{A}^{1/2}u(t)||^{4}+¥frac{1}{2}¥frac{d}{dt}(1+t)^{1/2-¥epsilon}||$A $1/2u(t)||^{2}$<br />

$=¥frac{1}{2}(1/2-¥epsilon)(1+t)^{-1/2-¥epsilon}||¥mathrm{A}^{1/2}u(t)||^{2}+(1+t)^{1/2-¥epsilon}||u^{¥prime}(t)||^{2}$<br />

$-¥frac{d}{dt}(1+t)^{1/2-8}(u^{¥prime}(t), u(t))+(1/2-¥epsilon)(1+t)^{-1/2-¥epsilon}(u^{¥prime}(t), u(t))$<br />

which yields, by integration over $[0, t]$ and by (6.2)?(6.3), $(6.5)-(6.7)$ ,<br />

$¥int_{0}^{t}(1+¥tau)^{1/2-¥epsilon}||¥mathrm{A}^{1/2}u(¥tau)||^{4}d¥tau+¥frac{1}{2}(1+t)^{1/2-¥epsilon}||¥mathrm{A}^{1/2}u(t)||^{2}$<br />

$¥leq¥frac{1}{2}||¥mathrm{A}^{1/2}u_{0}||^{2}+||u_{1}||||u_{0}||+(1+t)^{1/2-¥epsilon}||u^{¥prime}(t)||||u(t)||+¥frac{1}{4}¥int_{0}^{t}(1+¥tau)^{-1/2-¥epsilon}||¥mathrm{A}^{1/2}u(¥tau)||^{2}d¥tau$<br />

$+¥int_{0}^{t}(1+¥tau)^{1/2-¥epsilon}||u^{¥prime}(¥tau)||^{2}d¥tau+¥frac{1}{2}¥int_{0}^{t}(1+¥tau)^{-1/2-¥epsilon}||u^{¥prime}(¥tau)||||u(¥tau)||d¥tau$<br />

$¥leq C+¥{(1+t)||u^{¥prime}(t)||^{2}¥}^{1/2}||u(t)||+¥frac{1}{¥lambda_{1}^{2}}¥int_{0}^{t}(1+¥tau)||$A $1/2u(¥tau)||^{2}d¥tau’$<br />

$+¥frac{1}{4}(¥int_{0}^{¥infty}(1+¥tau)^{-1-2¥epsilon}d¥tau)^{1/2}(¥int_{0}^{¥infty}||¥mathrm{A}^{1/2}u(¥tau)||^{4}d¥tau)^{1/2}$<br />

$+¥frac{1}{2¥lambda_{1}}¥max||u(¥tau)||¥cdot(¥int_{0}^{¥infty}(1+¥tau)^{-1-2¥epsilon}d¥tau)^{1/2}(¥int_{0}^{¥infty}||¥mathrm{A}^{1/2}u^{¥prime}(¥tau)||^{2}d¥tau)^{1/2}¥leq C_{2¥epsilon}$ .


}¥mathrm{i}¥mathrm{v}¥mathrm{e}¥mathrm{s}$<br />

$(2.5)$<br />

}t]$<br />

,<br />

Here we denote by<br />

$C_{¥epsilon}$<br />

<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong> 13”<br />

the constant depending only upon<br />

$¥int_{0}^{¥infty}(1+¥tau)^{-1-¥epsilon}d¥tau$<br />

.<br />

Hence we obtain<br />

(6. 8)<br />

$¥int_{0}^{t}(1+¥tau)^{1/2-¥epsilon}||$<br />

A $1/2u(¥tau)||^{4}d¥tau¥leq C_{2¥epsilon}$ .<br />

By induction we shall show<br />

$¥langle$6.9)<br />

$¥int_{0}^{t}(1+¥tau)^{1-¥epsilon}||¥mathrm{A}^{1/2}u(¥tau)||^{4}d¥tau¥leq<br />

C_{¥epsilon/2}$<br />

(6. 10)<br />

$(1+t)^{1-¥epsilon}||¥mathrm{A}^{1/2}u(t)||^{2}¥leq C_{¥epsilon/2}$,<br />

the latter of which<br />

$¥mathrm{g}_{¥backslash<br />

. For $N¥geq 1$ we assume<br />

$(6.11)_{N}$<br />

$¥int_{0}^{t}(1+¥tau)^{1-2^{-N}-¥epsilon/2}||¥mathrm{A}^{1/2}u(¥tau)||^{4}d¥tau¥leq C_{¥epsilon/2}$<br />

$(6.12)_{N}$ $(1+t)^{1- 2-¥epsilon/2}-N||$ $¥mathrm{A}^{1/2}u(t)||^{2}¥leq C_{¥epsilon/2}$<br />

.<br />

Note that and are valid from (6.8) and (6.6). Multiplying (3.6) by<br />

$(6.11)_{1}$ $(6.12)_{1}$<br />

$(1+t)^{1-2-¥epsilon/2}-N-1$ and integrating it over<br />

$[¥mathrm{O}_{¥backslash<br />

we get<br />

$(1+t)^{1-2-¥epsilon/2}-N-1||¥mathrm{A}^{1/2}u(t)||^{4}+¥frac{1}{2}¥frac{d}{dt}(1+t)^{1- 2-¥epsilon/2}-N-1||¥mathrm{A}^{1/2}u(t)||^{2}$<br />

$=¥frac{1}{2}(1-2^{-N-1}-¥epsilon/2)(1+t)^{-2-¥epsilon/2}-N-1||¥mathrm{A}^{1/2}u(t)||^{2}$<br />

$+(1+t)^{1-2-¥epsilon/2}-N-1||u^{¥prime}(t)||^{2}-¥frac{d}{dt}(1+t)^{1-2-¥epsilon/}-N-12(u^{¥prime}(t), u(t))$<br />

and<br />

$+(1-2^{-N-1}-¥epsilon/2)(1+t)^{-2-¥epsilon/2}-N-1(u^{¥prime}(t), u(t))$<br />

$¥int_{0}^{t}(1+¥tau)^{1-N-1}-2-¥epsilon/2||$ A $1/2u(¥tau)||^{4}d_{T}+¥frac{1}{2}(1+t)^{1-N-1}-2-¥epsilon/2||$ A $1/2u(t)||^{¥mathrm{z}}$<br />

$¥leq¥frac{1}{2}||¥mathrm{A}^{1/2}u_{0}||^{2}+||u_{1}||||u_{0}||+¥frac{1}{2}(¥int_{0}^{¥infty}(1+¥tau)^{-1-¥epsilon/2}d¥tau)^{1/2}$<br />

$¥times(¥int_{0}^{¥infty}(1+¥tau)^{-1- 2-¥epsilon/2}-N||¥mathrm{A}^{1/2}u(¥tau)||^{4}d¥tau)^{1/2}+¥frac{1}{¥lambda_{1}^{2}}¥int_{0}^{¥infty}(1+¥tau)||¥mathrm{A}^{1/2}u^{¥prime}(¥tau)||^{2}d¥tau$<br />

$+¥frac{1}{¥lambda_{1}}¥{(1+t)||u^{¥prime}(t)||^{2}¥}^{1/2}¥{(1+t)^{1-2-¥epsilon/2}-N||¥mathrm{A}^{1/2}u(t)||^{2}¥}^{1/2}$<br />

$+¥frac{1}{¥lambda_{1}}¥sup_{¥tau}||u(¥tau)||¥cdot(¥int_{0}^{¥infty}(1+¥tau)^{-1-¥epsilon}d¥tau)^{1/2}(¥int_{0}^{¥infty}(1+¥tau)||¥mathrm{A}^{1/2}u^{¥prime}(¥tau)||^{2}d¥tau)^{1/2}¥leq C_{¥epsilon/2}$.


138 K. NISHIHARA<br />

This shows $(6.11)_{N+1}$ and $(6.12)_{N+1}$ . Thus we obtain (6.9) and (6. 10) by selecting $N$<br />

$2^{-N}


$||$<br />

Au<br />

<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong> 139<br />

(6. 16)<br />

$(1+t)^{3/2-¥epsilon}||$ A $1/2u(t)||¥leq C_{¥epsilon/12}’$ .<br />

(6. 16) gives (2.7).<br />

In (3.21), putting $w=2(1+t)^{4-¥epsilon}u^{¥prime¥prime}(t)$ and integrating it from 0 to<br />

$t$<br />

, we obtain<br />

$¥frac{d}{dt}$<br />

[ A ] $(1+t)^{4-¥epsilon}(||u^{¥prime¥prime}(t)||^{2}+||$ $1/2u(t)||^{2}||¥mathrm{A}^{1/2}u^{¥prime}(t)||^{2})$ $+2(1+t)^{4-¥epsilon}||$ A $l/2u(t)||^{2}’’$<br />

$=(4-¥epsilon)(1+t)^{3-6}(||u^{¥prime¥prime}(t)||^{2}+||¥mathrm{A}^{1/2}u(t)||^{2}||¥mathrm{A}^{1/2}u^{¥prime}(t)||^{2})$<br />

$+2(1+t)^{4-¥epsilon}$ (Au(t),<br />

$u^{¥prime}(t)$<br />

$(|| ¥mathrm{A}^{1/2}u^{¥prime}(t)||^{2}-2(¥mathrm{A}u(t), u^{¥prime¥prime}(t)))$<br />

)<br />

and<br />

$(1+t)^{4-¥epsilon}[||u^{¥prime¥prime}(t)||^{2}+||¥mathrm{A}^{1/2}u(t)||^{2}||¥mathrm{A}^{1/2}u^{¥prime}(t)||^{2}]+2¥int_{0}^{t}(1+¥tau)^{4-¥epsilon}||¥mathrm{A}^{1/2}u^{¥prime¥prime}(¥tau)||^{2}d¥tau$<br />

$¥leq||u^{¥prime¥prime}(0)||^{2}+||¥mathrm{A}^{1/2}u_{0}||^{2}||¥mathrm{A}^{1/2}u_{1}||^{2}+4¥int_{0}^{¥infty}(1+¥tau)^{3-¥epsilon}||u^{¥prime¥prime}(¥tau)||^{2}d¥tau$<br />

$+4¥sup_{¥tau}$ { $(1+¥tau)^{1-¥epsilon/2}||$ A $1/2u(¥tau)||^{2}$ }<br />

$¥int_{0}^{¥infty}(1+¥tau)^{2-¥epsilon/2}||$<br />

A $1/2u(¥tau)||^{2}d¥tau’$<br />

$+2[¥sup_{¥tau}¥{(1+¥tau)^{1-2¥epsilon/3}||¥mathrm{A}^{1/2}u^{¥prime}(¥tau)||^{2}¥}]^{1/2}¥sup_{¥tau}${<br />

A }<br />

$(1+¥tau)^{3/2-¥epsilon/3}||$ $1/2u(¥tau)||$<br />

$’$<br />

$¥times¥int_{0}^{¥infty}(1+¥tau)^{2-¥epsilon/3}||$<br />

A $1/2u(¥tau)||^{2}d¥tau+4¥sup_{¥tau}${<br />

$(1’+¥tau)^{1-¥epsilon/6}||$ A }<br />

$1/2u(¥tau)||^{2}$<br />

$¥times¥sup_{¥tau}¥{(1+¥tau)^{3/2-¥epsilon/6}||¥mathrm{A}^{1/2}u^{¥prime}(¥tau)||¥}(¥int_{0}^{¥infty}(1+¥tau)^{-1-¥epsilon¥prime 3}d¥tau)^{1/2}$<br />

$¥times(¥int_{0}^{t}(1+¥tau)^{4-¥epsilon}||¥mathrm{A}^{1/2}u^{¥prime¥prime}(¥tau)||^{2}d¥tau)^{1/2}$<br />

$¥leq C_{¥epsilon/9}+C_{¥epsilon/18}(¥int_{0}^{t}(1+¥tau)^{4-¥epsilon}||¥mathrm{A}^{1/2}u^{¥prime¥prime}(¥tau)||^{2}d¥tau)^{1/2}$<br />

which gives (2.8), (2.9).<br />

Finally we show (2.6).<br />

In fact, by the Cauchy-Schwarz inequality<br />

$||^{4}=(¥sum¥lambda_{j}^{4}g_{jm}^{2})^{2}¥leq(¥sum¥lambda_{j}^{2}g_{jm}^{2})(¥sum¥lambda_{j}^{6}g_{jm}^{2})=||$ A $1/2u||^{2}||¥mathrm{A}^{3/2}u||^{2}$<br />

and hence, by (6.9) and (3.17),<br />

$(1+t)^{1-¥epsilon}||u(t)$ $||^{4}¥leq(1+t)^{1-¥epsilon}||¥mathrm{A}^{1/2}u(t)||^{2}¥cdot||$ $¥mathrm{A}^{3/2}u(t)||^{2}¥leq C_{¥epsilon/2}$<br />

.<br />

Thus the proof of Theorem 4 is completed.<br />

$¥mathrm{Q}.¥mathrm{E}$.D.<br />

7. Periodic solution.<br />

In this section we seek the $¥omega$-periodic solution $u(t)$ to the equation<br />

(7. 1)<br />

$u^{¥prime¥prime}(t)+||¥mathrm{A}^{1/2}u(t1||^{2}Au(t)+Au^{¥prime}(t)=f(t)$ in $H$


degree<br />

,<br />

140 K. NISHIHARA<br />

where : $f$ $(-¥infty, ¥infty)¥rightarrow H$<br />

is an $¥omega$-periodic function. When $X$ is a Banach space <strong>with</strong><br />

$||¥cdot||_{X}$<br />

norm , $L^{p}(¥omega; X)$ means the space of functions $f(t)¥in X$<br />

$ t¥in$<br />

for each $(-¥infty, ¥infty)$<br />

and periodic, <strong>with</strong> period<br />

$¥omega$<br />

, such that , equipped <strong>with</strong> norm<br />

$¥int_{0}^{¥omega}||f(t)||_{X}^{p}dt


$¥epsilon||$<br />

<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong> 141<br />

(7.5)<br />

$¥int_{¥omega}||¥mathrm{A}^{1/2}u_{m}^{J}(¥tau)||^{2}d¥tau¥leq¥frac{1}{¥lambda_{1}^{2}}¥int_{¥omega}||f(¥tau)||^{2}d¥tau¥equiv<br />

C_{3}$<br />

by integration of (7.4) over $[t, t+¥omega]$ $¥int_{t}^{t+¥omega}=¥int_{¥omega}$<br />

and (7.3), where we denote for<br />

simplicity. (In this section several constants $C$ $C_{i}$ $t$<br />

and are independent of , $m$ and<br />

$¥epsilon.)$<br />

If we put $w=u_{m}$ in (7.2), then we have<br />

$¥frac{d}{dt}(u_{m}^{¥prime}(t), u_{m}(t))-||u_{m}^{¥prime}(t)||^{2}+¥epsilon||¥mathrm{A}^{1/2}u_{m}(t)||^{2}+||¥mathrm{A}^{1/2}u_{m}(t)||^{4}$<br />

$+¥frac{1}{2}¥frac{d}{dt}||¥mathrm{A}^{1/2}u_{m}(t)||^{2}=(f(t), u_{m}(t))$<br />

and<br />

$¥int_{¥omega}||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{4}d¥tau¥leq C_{3}/¥lambda_{1}^{2}+¥frac{1}{2¥lambda_{1}}¥int_{¥omega}||f(¥tau)||^{2}d¥tau+¥frac{¥vee¥overline{¥omega}}{2¥lambda_{1}}(¥int_{¥omega}||$<br />

A $1/2l_{m}^{¥prime}(¥tau)||^{4}d¥tau)^{1/2}$<br />

and hence<br />

(7.6)<br />

$¥int_{¥omega}||$<br />

A<br />

$1/2u_{m}(¥tau)||^{4}d¥tau¥leq C$ .<br />

By virtue of (7.5) and (7.6) there exists<br />

$t_{0}¥in[0, ¥omega]$<br />

such<br />

that<br />

$||u_{m}^{J}(t_{0})||$<br />

,<br />

$||$<br />

$¥mathrm{A}^{1/2}u_{m}(t_{0})||¥leq C$<br />

from which and (7.4) it follows that, for $t¥in[t_{0}, t_{0}+¥omega]$ ,<br />

$||u_{m}^{¥prime}(t)||^{2}+¥epsilon||¥mathrm{A}^{1/2}u_{m}(t)||^{2}+¥frac{1}{2}||$<br />

A $ 1/2u_{m}(t)||^{4}+¥int_{t¥mathrm{o}}^{t}||¥mathrm{A}^{1/2}u_{m}^{J}(¥tau)||^{2}d¥tau$<br />

$¥leq||u_{m}^{¥prime}(t_{0})||^{2}+¥epsilon||¥mathrm{A}^{1/2}u_{m}(t_{0})||^{2}+¥frac{1}{2}||¥mathrm{A}^{1/2}u_{m}(t_{0})||^{4}+¥frac{1}{¥lambda_{1}^{2}}¥int_{t¥mathrm{o}}^{t}||f(¥tau)||^{2}d¥tau$ ,<br />

that is,<br />

(7.7)<br />

$||u_{m}^{j}(t)||¥leq C$<br />

and<br />

$||¥mathrm{A}^{1/2}u_{m}(t)||^{2}¥leq C_{4}$<br />

.<br />

Taking $w=Au_{m}$ in (7.2) and integrating it over $[t, t+¥omega]$ ,<br />

we have<br />

(7. 8)<br />

Au$m(t)||^{2}+||$ A $1/2u_{m}(t)||^{2}||$ Au<br />

$m(f)||^{2}+¥frac{1}{2}¥frac{d}{dt}||$ $Au_{m}(t)||^{2}$<br />

$=(¥mathrm{A}^{1/2}f(t), ¥mathrm{A}^{1/2}u_{m}(t))+||¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||^{2}-¥frac{d}{dt}(¥mathrm{A}^{1/2}u_{m}^{¥prime}(t), ¥mathrm{A}^{1/2}u_{m}(t))$<br />

and


Au<br />

to<br />

142 K. NISHIHARA<br />

(7.9)<br />

$¥int_{¥omega}||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2}||$<br />

Au<br />

$m(¥tau)||^{2}d¥tau¥leq¥int_{¥omega}||¥mathrm{A}^{1/2}u_{m}^{J}(¥tau)||^{2}d_{T}+¥int_{¥omega}(¥mathrm{A}^{1/2}f(¥tau), ¥mathrm{A}^{1/2}u_{m}(¥tau))d¥tau¥leq C$<br />

by (7.5) and (7.6). Putting<br />

$¥mathrm{w}=2¥mathrm{A}¥mathrm{u}_{m}^{J}$<br />

in<br />

(7.2) we have<br />

$¥frac{d}{dt}$ $||¥mathrm{A}^{1/2}u_{m}^{J}(t)||^{2}+¥epsilon||$<br />

( Au ) $m(t)||^{2}$ $Au_{m}^{¥prime}(t)||^{2}$<br />

$+2||$<br />

$=2$ ( $f(t)$ , Au $m’(f)$ ) $-2||¥mathrm{A}^{1/2}u_{m}(t)||^{2}$ (Au $m(t)$ , Au $m’(f)$ )<br />

$¥leq||¥mathrm{A}^{1/2}f(t)||^{2}+||$<br />

A $1/2u_{m}^{;}(t)||^{2}+||¥mathrm{A}^{1/2}u_{m}(t)||^{2}(C_{4}||$<br />

Au $m(t)||^{2}+¥frac{1}{C_{4}}||Au_{m}^{¥prime}(t)||^{2})$<br />

and<br />

(7. 10)<br />

$¥frac{d}{dt}$ $||¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||^{2}+¥epsilon||$<br />

( Au ) $m(f)||^{2}$ $+||$ $Au_{m}^{J}(t)||^{2}$<br />

$¥leq||¥mathrm{A}^{1/2}f(t)||^{2}+||$<br />

A $1/2u_{m}^{¥prime}(t)||^{2}+C_{4}||¥mathrm{A}^{1/2}u_{m}(t)||^{2}||$ Au $m(f)||^{2}$ .<br />

Then, integrating (7. 10) over<br />

$[t, t+¥omega]$ and<br />

using (7.7), (7.9), we have<br />

(7. 11)<br />

$¥int_{¥omega}||$<br />

$Au_{m}^{J}(¥tau)||^{2}d¥tau¥leq C$<br />

$||$<br />

which implies for some . Integrating (7.10) from $mJ(t_{1})||¥leq C$ $t_{1}¥in[0, ¥omega]$ $t_{1}$<br />

$[t_{1}, t_{1}+¥omega]$<br />

, we obtain<br />

$t$<br />

$ t¥in$<br />

,<br />

(7. 12)<br />

$||$<br />

Putting<br />

$¥mathrm{w}=¥mathrm{A}^{2}¥mathrm{u}_{m}$<br />

in<br />

$¥mathrm{A}^{1/2}u_{m}^{¥prime}(t)||¥leq C$<br />

.<br />

(7.2) and integrating it over $[t, t+¥omega]$ , we get<br />

$¥epsilon¥int_{¥omega}||¥mathrm{A}^{3/2}u_{m}(¥tau)||^{2}d¥tau+¥int_{¥omega}||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2}||$A $ 3/2u_{m}(¥tau)||^{2}d¥tau$<br />

(7. 13)<br />

$¥leq¥frac{1}{2}¥int_{¥omega}||¥mathrm{A}f(¥tau)||^{2}d_{T}+¥frac{1}{2}¥int_{¥omega}||$<br />

A $ll_{m}(¥tau)||^{2}d¥tau+¥int_{¥omega}||$ $ Au_{m}^{¥prime}(¥tau)||^{2}d¥tau$ .<br />

By virtue of the Cauchy-Schwarz inequality it holds<br />

Hence<br />

$||$<br />

Au .<br />

$m||^{2}¥leq||¥mathrm{A}^{1/2}u_{m}||||¥mathrm{A}^{3/2}u_{m}||$<br />

$¥int_{¥omega}||$<br />

$Au_{m}(¥tau)||^{4}d¥tau¥leq¥frac{1}{2}¥int_{¥omega}||¥mathrm{A}f(¥tau)||^{2}d¥tau+¥frac{¥vee¥overline{¥omega}}{2}(¥int_{¥omega}||$ $Au_{m}(¥tau)||^{4}d¥tau)^{1/2}+¥int_{¥omega}||$ $ Au_{m}^{¥prime}(¥tau)||^{2}d¥tau$<br />

and<br />

(7. 14)<br />

$¥int_{¥omega}||$<br />

Au<br />

$m(¥tau)||^{4}d¥tau¥leq C$ .


Au<br />

Au<br />

It also follows from (7. 13) that<br />

<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong> 143<br />

(7. 15)<br />

$¥int_{¥omega}¥epsilon||¥mathrm{A}^{3/2}u_{m}(¥tau)||^{2}d¥tau+¥int_{¥omega}||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2}||$<br />

$¥mathrm{A}^{¥mathrm{S}/2}u_{m}(¥tau)||^{2}d¥tau¥leq C$.<br />

From (7.14) there exists such that $t_{2}¥in[0, ¥omega]$ $||$<br />

$Au_{m}(t_{2})||¥leq C$ . If we consider (7.8) as<br />

$||$<br />

the first order differential equation in <strong>with</strong> the initial value $m(f)||^{2}$ $||$<br />

$Au_{m}(t_{2})||^{2}$<br />

at<br />

$t$<br />

$t=t_{2}$ $ t_{2}¥leq t¥leq t_{2}+¥omega$<br />

, then we have for , ,<br />

$||$<br />

$Au_{m}(t)||^{2}=e^{-P(t)}$ [<br />

$||$ $m(t_{¥mathrm{z}})||^{2}-2(¥mathrm{A}^{1/2}u_{m}^{¥prime}(t_{2}),$ $¥mathrm{A}^{1/2}u_{m}(t_{2}))$<br />

Au ]<br />

$+2(¥mathrm{A}^{1/2}u_{m}^{J}(t), ¥mathrm{A}^{1/2}u_{m}(t))+2e^{-P(b)}¥int_{t_{2}}^{t}e^{P(¥tau)}¥{||$<br />

A $1/2u_{m}(¥tau)||^{2}’$<br />

$(¥mathrm{A}^{1/2}u_{m}^{¥prime}(¥tau), ¥mathrm{A}^{1/2}u_{m}(¥tau))||$<br />

?2 A<br />

$¥iota/2u_{m}(¥tau)||^{2}+(¥mathrm{A}^{1/2}f(¥tau), ¥mathrm{A}^{1/2}u_{m}(¥tau))¥}d¥tau$<br />

where $P(t)=2¥int_{t_{2}}^{t}$ $(¥epsilon+||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2})d¥tau$ . The estimates obtained above gives<br />

(7. 16)<br />

$||$<br />

Next, if we replace $w=2¥mathrm{A}^{2}u_{m}^{J}$<br />

Au$m(t)||¥leq C$.<br />

in (7.2), then we have<br />

(7. 17)<br />

$¥frac{d}{dt}(|| Au_{m}^{¥prime}(t)||^{2}+¥epsilon||¥mathrm{A}^{3/2}u_{m}(t)||^{2})+2||¥mathrm{A}^{3/2}u_{m}^{J}(t)||^{2}$<br />

$=2$<br />

($¥mathrm{A}f(t)$<br />

, Au $m’(t)$ )<br />

$-2||¥mathrm{A}^{1/2}u_{m}(t)||^{2}(¥mathrm{A}^{3/2}u_{m}(t), ¥mathrm{A}^{3/2}u_{m}^{¥prime}(t))$<br />

and<br />

2<br />

$¥int_{¥omega}||¥mathrm{A}^{3/2}u_{m}^{J}(¥tau)||^{2}d_{T}¥leq<br />

C_{4}¥int_{¥omega}||¥mathrm{A}^{1/2}u_{m}(¥tau)||^{2}||¥mathrm{A}^{3/2}u_{m}(¥tau)||^{2}d_{T}+¥int_{¥omega}(||¥mathrm{A}f(¥tau)||^{2}+||Au_{m}^{¥prime}(¥tau)||^{2})d¥tau$<br />

.<br />

By (7. 15)<br />

$¥int_{¥omega}||¥mathrm{A}^{3/2}u_{m}^{¥prime}(¥tau)||^{2}d¥tau¥leq C$<br />

which means <strong>with</strong> (7.15) that there is some such that $t_{3}¥in[0, ¥omega]$ $¥epsilon||$<br />

$||¥mathrm{A}^{3/2}u_{m}^{J}(t_{3})||¥leq C$<br />

. Then, integrating (7. 17) over , $[t_{3}, t]$ $t¥in[t_{3}, t_{3}+¥omega]$<br />

, we have<br />

$¥mathrm{A}^{3/2}u_{m}(t_{3})||+$<br />

(7. 18)<br />

$||$<br />

(7. 19)<br />

$||u_{m}^{¥prime¥prime}(t)||¥leq<br />

Finally putting $w=u_{m}^{JJ}$<br />

$¥prime m(t)||¥leq C$ .<br />

in (7.2) then we have<br />

C$<br />

since .<br />

$f¥in L^{¥infty}$ $(¥omega; H)$ $.¥mathrm{n}¥mathrm{d}(7.19)$<br />

We now pass $u_{m,¥epsilon}$ to the limit. From (7.7), (7. 12), (7. 16), (7. 18) a we<br />

$¥{u_{¥nu,¥delta}¥}$<br />

may extract a subsequence of such that for some and $u$ $¥chi$<br />

$¥{u_{m,¥epsilon}¥}$


$u_{¥nu,¥delta}^{J}$?<br />

$u_{¥nu,¥delta}^{¥prime¥prime}$?<br />

$u^{¥prime}$<br />

in<br />

$u^{¥prime¥prime}$<br />

in<br />

144 K. NISHIHARA<br />

$u_{¥nu,¥delta}$<br />

?<br />

$u$<br />

in<br />

$L^{¥infty}(¥omega; D(¥mathrm{A}))$<br />

$¥mathrm{w}¥mathrm{e}¥mathrm{a}¥mathrm{k}1¥mathrm{y}^{*}$<br />

$L^{¥infty}(¥omega;D(¥mathrm{A}))$<br />

$¥mathrm{w}¥mathrm{e}¥mathrm{a}¥mathrm{k}1¥mathrm{y}^{*}$<br />

$L^{¥infty}(¥omega;H)$<br />

$¥mathrm{w}¥mathrm{e}¥mathrm{a}¥mathrm{k}1¥mathrm{y}^{*}$<br />

and<br />

$||¥mathrm{A}^{1/2}u_{¥nu,¥delta}(¥cdot)||^{2}Au_{¥nu,¥delta}$ ? $¥chi$ in<br />

$L^{¥infty}(¥omega;H)$<br />

$¥mathrm{w}¥mathrm{e}¥mathrm{a}¥mathrm{k}1¥mathrm{y}^{*}$<br />

$¥delta¥rightarrow 0$<br />

$ p¥rightarrow¥infty$ $¥chi_{=}||¥mathrm{A}^{1/2}u(¥cdot)||^{2}Au$<br />

as and . is shown by the compact method as in the<br />

proof of Theorem 1. Hence this is the solution to (7. 1).<br />

$u$<br />

Thus the proof is completed<br />

Q.E.D.<br />

We shall state the regularity theorem <strong>with</strong>out proof.<br />

In addition to the assumptions in Theorem 5, is as-<br />

$f^{¥prime}¥in L^{¥infty}(¥omega; H)$<br />

Then the solution $u(t)$ satisfies<br />

sumed.<br />

Theorem<br />

$¥epsilon$.<br />

$u¥in C^{1}(¥omega;D(¥mathrm{A}))¥cap C^{2}(¥omega; D(¥mathrm{A}^{1/2}))$<br />

.<br />

Moreover, if we assume $f^{(j)}¥in L^{¥infty}(¥omega;D(¥mathrm{A}^{k}))$ , $j$ , $k=0,1,2$ ,?, then we have<br />

$u¥in C^{¥infty}(¥omega; D(¥mathrm{A}^{k^{¥prime}}))$<br />

, $k^{¥prime}=0,1,2$ ,?.<br />

References<br />

[1] Andrews, G., On the existence of solutions to the equation , $u_{tt}=u_{xxt}+¥sigma(u_{x})_{x}$ J. Differential<br />

<strong>Equation</strong>s, 35 (1980), 200-231.<br />

[2] Ball, J. M., Initial boundary value problems for an extensible beam, J. Math. Anal.<br />

Appl., 42 (1973), 61-90.<br />

[3] Brito, E. H., The damped elastic stretched string equation generalized: existence,<br />

uniqueness, regularity and stability, Applicable Anal., 13 (1982), 219-233.<br />

[4] Clement, J. C., Existence theorems for a quasilinear evolution equation, SIAM J. Appl.<br />

Math., 26 (1974), 745-752.<br />

[5] Dickey, R. W., Infinite system of nonlinear oscillation equation related to the string,<br />

Proc. Amer. Math. Soc., 23 (1969), 459-468.<br />

[6]?, Infinite systems of nonlinear oscillation equations <strong>with</strong> linear damping, SIAM J.<br />

Appl. Math., 19 (1970), 208-214.<br />

[7]?, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal.<br />

Appl., 29 (1970), 443-454.<br />

[8]?, The initial value problem for a nonlinear semiinfinite string, Proc. Roy. Soc.<br />

Edinburgh, 82 (1978), 19-26.<br />

[9]?, Stability of periodic solutions of the nonlinear string, Quart. Appl. Math., (July<br />

1980), 253-259.<br />

[10] Greenberg, J. M., On the existence, uniqueness and stability of the equation $¥rho_{0}X_{tt}=$<br />

$E(X_{x})X_{xx}+¥lambda X_{xxt}$ , J. Math. Anal. Appl., 25 (1969), 575-591.<br />

[11] Greenberg, J. M., MacCamy, R. C. and Mizel, V. J., On the existence, uniqueness and<br />

$¥sigma^{¥prime}(u_{x})u_{xx}+¥lambda u_{xtx}=¥rho_{¥mathit{0}}u_{tt}$<br />

stability of solutions , J. Math. Mech., 17 (1968), 707-728.<br />

[12] Greenberg, J. M. and Hu, S. C., The initial-value problem for a stretched string, Quart.


<strong>Degenerate</strong> <strong>Quasilinear</strong> <strong>Hyperbolic</strong> <strong>Equation</strong> 145<br />

Appl. Math., (October 1980), 289-311.<br />

[13] Kakita, T., Time periodic solutions of some non-linear evolution equations, Publ. Res.<br />

Inst. Math. Sci., 9 (1974), 477-492.<br />

[14] Lions, J. L., Quelques methodes de resolution des problemes aux limites non lineaires,<br />

Dunod, Paris, 1969.<br />

[15]?, On some equations in boundary value problems of mathematical physics, in Contemporary<br />

Developments in Continuum Mechanics and Partial Differential <strong>Equation</strong>,<br />

(Edited by G. M. De La Penha and L. A. Medeiros), North-Holland, Amsterdam, 1978.<br />

[16] Medeiros, L. A., On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69<br />

(1979), 252-262.<br />

[17] Menzala, G. P., On classical solutions of a quasilinear hyperbolic equation, Nonlinear<br />

Analysis, 3 (1979), 613-627.<br />

[18]?, On global classical solutions of a nonlinear wave equation, Applicable Anal., 10<br />

(1980), 179-195.<br />

[19] Narazaki, T., On the existence of classical periodic solution of the equation $u_{tt}-(¥sigma(u_{x}))_{x}$<br />

$-u_{xxt}=f$ , Proc. Fac. Sci. Tokai Univ., 18 (1983), 87-101.<br />

[20] Nishihara, K., On a global solution of some quasilinear hyperbolic equation, to appear.<br />

[21]?, Exponential decay of solutions of some quasilinear hyperbolic equations <strong>with</strong><br />

linear damping, to appear.<br />

[22] Nishida, T., A note on the nonlinear vibrations of the elastic string, Mem. Fac. Eng.<br />

Kyoto Univ., XXXIII-4 (1971), 329-341.<br />

[23] Pohozaev, S. I., On a class of quasilinear hyperbolic equations, Math. USSR-Sb., 25-1<br />

(1975), 145-158.<br />

[24] Rodriguez, P. H. R., On local strong solutions of a nonlinear partial differential equation,<br />

Applicable Anal., 10 (1980), 93-104.<br />

[25] Sowunmi, C. O. A., On the existence of periodic solutions of the equation<br />

$¥rho u_{tt}-(¥sigma(u_{x}))_{x}$<br />

$-¥lambda u_{xtx}-f=0$, Rend. 1st. Math. Univ. Trieste, 8 (1976), 58-68.<br />

[26] Tsutsumi, M., Some nonlinear evolution equations of second order, Proc. Japan Acad.,<br />

47 (1971), 950-955.<br />

[27] Yamada, Y., On some quasilinear wave equations <strong>with</strong> disspative terms, Nagoya Math.<br />

J., 87 (1982), 17-39.<br />

[28] Yamaguchi, M., Time-decaying solutions and asymptotically almost periodic solutions<br />

of nonlinear evolution equations, Funkcial, Ekvac., 24-3 (1981), 281-306.<br />

nuna adreso:<br />

Tokyo National Technical College<br />

Hachioji, Tokyo<br />

Japan<br />

(Ricevita la 23-an de majo, 1983)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!