18.02.2014 Views

Quantum Phase Diagram of Bosons in Optical Lattices

Quantum Phase Diagram of Bosons in Optical Lattices

Quantum Phase Diagram of Bosons in Optical Lattices

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong><br />

<strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong><br />

Ednilson Santos<br />

Freie Universität Berl<strong>in</strong><br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 1


Outl<strong>in</strong>e <strong>of</strong> the talk<br />

1. Experimental facts<br />

2. Second-quantized Hamiltonian<br />

3. Mean-field theory<br />

4. Corrections to mean-field theory<br />

5. Second method<br />

6. Perturbation theory<br />

7. Results<br />

8. Perspectives<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 2


1 - Experimental facts<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 3


2 - Second-quantized Hamiltonian<br />

∫<br />

Ĥ =<br />

{<br />

d 3 x<br />

[ −¯h<br />

ˆψ † 2<br />

]<br />

(x)<br />

2m ∇2 + V (x) − µ<br />

}<br />

ˆψ (x) + 2πa¯h2<br />

m ˆψ † (x) 2 ˆψ (x)<br />

2<br />

Wannier decomposition: ˆψ(x) =<br />

∑i âiw(x − x i )<br />

Bose-Hubbard Hamiltonian:<br />

[ U<br />

2 ˆn i(ˆn i − 1) − µˆn i<br />

]<br />

Here: ˆn i = â † iâi<br />

Ĥ BH = −t ∑ 〈i,j〉<br />

â † iâj + ∑ i<br />

Matrix elements:<br />

⎧<br />

⎨t = − ∫ d 3 xw ∗ (x)<br />

⎩U = 4πa¯h2<br />

m<br />

{<br />

}<br />

− ¯h2<br />

2m ▽2 +V (x) w(x)<br />

∫<br />

d 3 x|w(x)| 4 <strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 4


3 - Mean-field theory<br />

∑<br />

〈i,j〉<br />

â † iâj → 2D ∑ i<br />

(ψ ∗ â i + ψâ † i − |ψ|2 )<br />

Local Hamiltonian:<br />

Ĥ MF = ∑ [<br />

−2Dt<br />

(ψ ∗ â i + ψâ † i − |ψ|2) + U ]<br />

2 ˆn i(ˆn i − 1) − µˆn i<br />

i<br />

Partition function: Z = Tr<br />

Self-consistency relations:<br />

⎧<br />

⎨∂F MF<br />

∂ψ = 0<br />

⎩∂F MF<br />

∂ψ<br />

= 0 ∗<br />

[ ]<br />

e −βĤMF(ψ∗ ,ψ)<br />

=⇒<br />

⎧<br />

⎨〈â † i 〉 = ψ∗<br />

⎩〈â i 〉 = ψ<br />

= e −βF MF(ψ ∗ ,ψ)<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 5


4 - Corrections to mean-field theory<br />

Introduction <strong>of</strong> smallness parameter:<br />

]<br />

Ĥ (η, ψ ∗ , ψ) = ĤMF (ψ ∗ , ψ) + η<br />

[ĤBH − ĤMF (ψ ∗ , ψ)<br />

Partition function: Z = Tr<br />

Extremization <strong>of</strong> free energy:<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

∂F<br />

∂ψ = 0<br />

∂F<br />

∂ψ ∗ = 0<br />

[ ]<br />

e −βĤ(η,ψ∗ ,ψ)<br />

= e −βF(η,ψ∗ ,ψ)<br />

=⇒ Interpretation with<strong>in</strong> VPT<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 6


4.1 - Procedure<br />

1. Expansion <strong>in</strong> η def<strong>in</strong>es level <strong>of</strong> approximation<br />

Zeroth order: Mean-field phase diagram<br />

First order: No shift <strong>of</strong> phase boundary<br />

Second order: <strong>Quantum</strong> correction to phase boundary<br />

2. Landau expansion:<br />

[<br />

]<br />

F (N) (η, ψ ∗ , ψ) = N S a (N)<br />

0 (η) + a (N)<br />

2 (η)|ψ| 2 + a (N)<br />

4 (η)|ψ| 4 + · · ·<br />

Here a (N)<br />

2p (η) is truncated expansion <strong>in</strong> η up to order N <strong>of</strong> a 2p(η):<br />

⎧<br />

⎨a 2 (η) = (2Dt) 2 (1 − η) 2 ∑ ∞<br />

m=0 (−tη)m α (m)<br />

2 + 2Dt(1 − η)<br />

⎩<br />

a 2p (η) = (2Dt) 2p (1 − η) 2p ∑ ∞<br />

m=0 (−tη)m α (m)<br />

2p ; p ≠ 1<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 7


4.2 - <strong>Phase</strong> diagram<br />

Second-order phase transition ⇐⇒ a (N)<br />

4 (η = 1) > 0<br />

<strong>Phase</strong> boundary: a (N)<br />

2 (η = 1) = 0<br />

General structure:<br />

⎧<br />

⎨a (0)<br />

2 (η = 1) = α(0) 2 t2 + 2Dt<br />

[<br />

]<br />

⎩a (N)<br />

2 (η = 1) = (−1) N t 2 α (N)<br />

2 t N + α (N−1)<br />

2 t N−1<br />

; N ≥ 1<br />

<strong>Phase</strong> boundary:<br />

⎧⎪⎨<br />

⎪ ⎩<br />

t (0)<br />

c<br />

t (N)<br />

c<br />

= − 2D<br />

α (0)<br />

2<br />

= − α(N−1) 2<br />

α (N)<br />

2<br />

; N ≥ 1<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 8


4.3 - Explicit formulas<br />

⎧<br />

α (0)<br />

2 = 1+b<br />

µ(b−1)<br />

⎪⎨<br />

α (1)<br />

2 = 2D(1+b)2<br />

µ 2 (b−1) 2<br />

⎪⎩<br />

α (2)<br />

2 = 4D [D(b−3)(b+1) 3 −3b(b−3+4b 2 −2b 3 )]<br />

Here: n = 1 and b = µ/U<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

(b−3)(b−1) 3 µ 3<br />

t (0)<br />

c<br />

U = (1−b)b<br />

2D(b+1)<br />

t (1)<br />

c<br />

U = (1−b)b<br />

2D(b+1)<br />

t (2)<br />

c<br />

U = b(b−3)(b−1)(b+1) 2<br />

6b(b−3+4b 2 −2b 3 )−2D(b−3)(b+1) 3<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 9


5 - Second method<br />

Bose-Hubbard Hamiltonian with current:<br />

Ĥ BH (J ∗ , J) = ĤBH + ∑ ( )<br />

J ∗ â i + Jâ † i<br />

i<br />

ψ = 〈â i 〉 = 1 ∂F(J ∗ , J)<br />

N s ∂J ∗ ; ψ ∗ = 〈â † i 〉 = 1 ∂F(J ∗ , J)<br />

N s ∂J<br />

Legendre transformation: Γ(ψ ∗ , ψ) = ψ ∗ J + ψJ ∗ − F/N s<br />

∂Γ<br />

∂ψ ∗ = J ;<br />

Physical limit <strong>of</strong> vanish<strong>in</strong>g current:<br />

∂Γ<br />

∂ψ ∗ = 0 ;<br />

∂Γ<br />

∂ψ = J ∗<br />

∂Γ<br />

∂ψ = 0 <strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 10


5.1 - Details<br />

F(J ∗ , J) = F 0 +<br />

∞∑<br />

c 2n |J| 2n<br />

n=1<br />

Γ(ψ ∗ , ψ) = −F 0 + 1 |ψ| 2 − 3 c 4<br />

c 2 c 4 |ψ| 4 + · · ·<br />

2<br />

with: c 2p = ∑ ∞<br />

n=0 (−t)n α (n)<br />

2p<br />

Remark: α (n)<br />

2p<br />

are the same used for the first method.<br />

<strong>Phase</strong> boundary:<br />

⎧<br />

1<br />

= 1 ⎨<br />

c 2 α (0) ⎩ 1 + α(1) 2<br />

2 α (0)<br />

2<br />

t +<br />

⎡(<br />

⎣<br />

α (1)<br />

2<br />

α (0)<br />

2<br />

) 2<br />

− α(2) 2<br />

α (0)<br />

2<br />

⎤ ⎫<br />

⎬<br />

⎦t 2 + · · ·<br />

⎭ = 0<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 11


5.2 - <strong>Phase</strong> boundary<br />

First order: t (1)<br />

c = − α(0) 2<br />

α (1)<br />

2<br />

Remark: Identical to mean-field phase boundary.<br />

Second order:<br />

t (2)<br />

c =<br />

α 1<br />

2 ( )<br />

α 2 − α 2 ±<br />

1<br />

1<br />

2 ( α 2 − α 2 1<br />

√<br />

) α 2 1 − 4 ( α 2 1 − α )<br />

2<br />

with: α 1 = α(1) 2<br />

α (0)<br />

2<br />

; α 2 = α(2) 2<br />

α (0)<br />

2<br />

Note: Choose the smallest critical t (2)<br />

c .<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 12


6 - Perturbation theory<br />

here Ĥ = Ĥ0 + λˆV .<br />

Ĥ|Ψ n 〉 = E n |Ψ n 〉<br />

Perturbative series <strong>in</strong> λ :<br />

∞∑<br />

|Ψ n 〉 = λ k |Ψ (k)<br />

n 〉 ; E n =<br />

k=0<br />

∞∑<br />

k=0<br />

λ k E (k)<br />

n<br />

with: E (k)<br />

n = 〈Ψ (0)<br />

n |ˆV |Ψ (k−1)<br />

n 〉<br />

|Ψ (k)<br />

n 〉 = ∑ |Ψ (0)<br />

m≠n<br />

m 〉 〈Ψ(0)<br />

E (0)<br />

m |ˆV |Ψ (k−1)<br />

n 〉<br />

n − E (0)<br />

m<br />

−<br />

k∑<br />

l=1<br />

E (l)<br />

n<br />

∑<br />

|Ψ (0)<br />

m 〉 〈Ψ(0) m |Ψ n (k−l) 〉<br />

m≠n E n (0) − E m<br />

(0)<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 13


6.1 - <strong>Diagram</strong>matic notation<br />

E (1)<br />

n = 〈Ψ (0)<br />

n |ˆV |Ψ (0)<br />

n 〉 =<br />

E n (2) = ∑ m≠n<br />

E n (3) = ∑<br />

1<br />

E n (0) − E m<br />

(0)<br />

∑<br />

m 1 ≠n m 2 ≠n<br />

〈Ψ (0)<br />

n |ˆV |Ψ (0)<br />

m 〉〈Ψ (0)<br />

m |ˆV |Ψ (0)<br />

n 〉 =<br />

1<br />

E (0)<br />

n − E (0)<br />

1<br />

m 1<br />

E (0)<br />

n − E (0)<br />

m 2<br />

〈Ψ (0)<br />

×〈Ψ (0)<br />

m 2<br />

|ˆV |Ψ (0)<br />

m 1<br />

〉〈Ψ (0)<br />

m 1<br />

|ˆV |Ψ (0)<br />

n 〉 − ∑<br />

m 1 ≠n<br />

m 2<br />

〉<br />

n |ˆV |Ψ (0)<br />

×〈Ψ (0)<br />

n |ˆV |Ψ (0)<br />

n 〉〈Ψ (0)<br />

n |ˆV |Ψ (0)<br />

m 1<br />

〉〈Ψ (0)<br />

m 1<br />

|ˆV |Ψ (0)<br />

n 〉<br />

= −<br />

1<br />

(E (0)<br />

n − E (0)<br />

m 1<br />

) 2<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 14


6.2 - Rules<br />

Each dot represents an <strong>in</strong>teraction ˆV .<br />

The <strong>in</strong>ternal l<strong>in</strong>es appear<strong>in</strong>g between two consecutive dots<br />

” q |Ψ (0)<br />

m 〉〈Ψ (0)<br />

m |,<br />

are associated with the factor ∑ m≠n<br />

“ 1<br />

E m (0) −E n<br />

(0)<br />

and q is the number <strong>of</strong> l<strong>in</strong>es l<strong>in</strong>k<strong>in</strong>g the two given<br />

consecutive dots.<br />

If there is more than one l<strong>in</strong>e between two consecutive dots,<br />

each extra l<strong>in</strong>e is associated with an extra disconnected part<br />

<strong>of</strong> the diagram.<br />

The external l<strong>in</strong>es are associated with the unperturbed bra<br />

and ket 〈Ψ (0)<br />

n | · · · |Ψ (0)<br />

n 〉.<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 15


6.3 - More <strong>in</strong>teraction terms<br />

Example:<br />

Ĥ = Ĥ0 + λˆV + σŴ<br />

⎧<br />

⎨ˆV →<br />

⎩Ŵ →<br />

E n = E (0)<br />

n + λ + σ + λσ<br />

+λ 2 + σ 2 + · · ·<br />

(<br />

+<br />

)<br />

Symmetries between diagrams if ˆV and<br />

Ŵ are Hermitean:<br />

= ; =<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 16


6.4 - Lattice calculations<br />

First approach:<br />

(ψ ∗ â i + ψâ † i − |ψ|2)<br />

Ĥ(η, ψ ∗ , ψ) = −tη ∑ â † iâj − 2Dt(1 − η) ∑<br />

〈i,j〉<br />

i<br />

[ ]<br />

U<br />

2 ˆn i(ˆn i − 1) − µˆn i<br />

+ ∑ i<br />

Second approach:<br />

Ĥ BH (J ∗ , J) = −t ∑ 〈i,j〉<br />

â † iâj+ ∑ i<br />

( )<br />

J ∗ â i + Jâ † i<br />

+ ∑ i<br />

[ U<br />

2 ˆn i(ˆn i − 1) − µˆn i<br />

]<br />

Note: Both Hamiltonians are essentially equivalent.<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 17


6.5 - Interaction terms <strong>in</strong> our case<br />

Ĥ BH (J ∗ , J) = −t ∑ 〈i,j〉<br />

â † iâj+ ∑ i<br />

( )<br />

J ∗ â i + Jâ † i<br />

+ ∑ i<br />

[ U<br />

2 ˆn i(ˆn i − 1) − µˆn i<br />

]<br />

⎧∑<br />

⎪⎨<br />

∑<br />

⎪⎩ ∑<br />

i âi →<br />

i ↠i →<br />

〈i,j〉 ↠iâj →<br />

Ground-state energy:<br />

E 0 = E (0)<br />

0 + t 2 (<br />

( + |J| 2 +<br />

+|J| 2 t + +<br />

+ + +<br />

)<br />

)<br />

+ · · ·<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 18


6.6 - Individual processes<br />

The previous diagrams can be split <strong>in</strong> their <strong>in</strong>dividual processes<br />

which are represented by arrow diagrams. For example:<br />

= 2 1 ; = 1 2<br />

= 1 2<br />

3<br />

= 1<br />

+<br />

2 3<br />

4 3<br />

2 1<br />

4 +<br />

+<br />

2 3<br />

4 1<br />

2 4<br />

3 1<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 19


6.7 - Evaluation<br />

g =<br />

4<br />

3<br />

2<br />

1<br />

= N s (n + 1)(n + 2)<br />

1<br />

(E (0)<br />

n − E (0)<br />

1<br />

n+1 )2 E (0)<br />

n − E (0)<br />

n+2<br />

1. Create a particle at some site with N s different possibilities:<br />

g = N s<br />

h √n + 1/(E<br />

(0)<br />

n − E (0)<br />

n+1 ) i<br />

· · ·<br />

2. Create a second particle at the same position <strong>of</strong> the first:<br />

h √n i h<br />

(0)<br />

g = N s + 1/(E n − E (0) √n i<br />

n+1 ) (0) + 2/(E n − E (0)<br />

n+2 ) · · ·<br />

3. Annihilate one particle at the site <strong>of</strong> the two previously<br />

created particles:<br />

g = N s<br />

h √n<br />

+ 1/(E<br />

(0)<br />

n − E (0)<br />

n+1 ) i h √n<br />

+ 2/(E<br />

(0)<br />

n − E (0)<br />

n+2 ) i h √n<br />

+ 2/(E<br />

(0)<br />

n − E (0)<br />

n+1 ) i<br />

· ·<br />

4. Annihilate the last particle:<br />

g = N s<br />

h √n<br />

+ 1/(E<br />

(0)<br />

n − E (0)<br />

n+1 ) i h √n<br />

+ 2/(En − E (0)<br />

n+2 ) i h √n<br />

+ 2/(E<br />

(0)<br />

n − E (0)<br />

n+1 ) i √n<br />

+ 1<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 20


6.8 - Coefficients<br />

α (0)<br />

2 = 2 1 + 1 2<br />

α (1)<br />

2 = 1 2<br />

3 + 5 permutations<br />

α (2)<br />

2 = 1<br />

2<br />

3<br />

4 + 23 permutations<br />

+<br />

+<br />

2 3<br />

4 1<br />

2 4<br />

3 1<br />

+ 15 permutations<br />

+ 7 permutations<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 21


6.9 - Explicit results<br />

α (0)<br />

2 =<br />

b + 1<br />

U(b − n)(b + 1 − n)<br />

α (1)<br />

2 =<br />

2D(b + 1) 2<br />

U 2 (b − n) 2 (b + 1 − n) 2<br />

α (2)<br />

2 = 2D { 2D(b + 1) 3 (b − 2 − n)(b + 3 − n) + n(b − n)(b + 1 − n)<br />

×(1 + n)(4 + 3b + 2n) [ −3 − 2n + 2(b 2 + b − 2bn + n 2 ) ]}<br />

/ [ U 3 (b − n − 2)(b − n) 3 (b + 1 − n) 3 (b + 3 − n) ]<br />

Here n is the number <strong>of</strong> particles at each site and b = µ/U .<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 22


7 - Results<br />

First Method:<br />

Second method:<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 23


8 - Perspectives<br />

Automatization for higher orders<br />

Resummation<br />

Extension for T ≠ 0<br />

<strong>Phase</strong> boundary from diverg<strong>in</strong>g Green’s function<br />

<strong>Quantum</strong> <strong>Phase</strong> <strong>Diagram</strong> <strong>of</strong> <strong>Bosons</strong> <strong>in</strong> <strong>Optical</strong> <strong>Lattices</strong> – p. 24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!