18.02.2014 Views

The Global Earth Observation System of Systems ... - PMOD/WRC

The Global Earth Observation System of Systems ... - PMOD/WRC

The Global Earth Observation System of Systems ... - PMOD/WRC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Global</strong> <strong>Earth</strong> <strong>Observation</strong> <strong>System</strong> <strong>of</strong><br />

<strong>System</strong>s (GEOSS) and Metrological Support<br />

for Measuring<br />

Radiometric<br />

Properties<br />

<strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

V. Krutikov - Federal Agency on Technical Regulating and Metrology, Russia;<br />

V. Sapritsky, B. Khlevnoy, B. Lisiansky, S. Morozova, S. Ogarev, A. Panfilov,<br />

M. Sakharov, M. Samoylov – All-Russian Institute for Opto-Physical Measurements<br />

(VNIIOFI), Russia;<br />

G. Bingham, T. Humpherys, A. Thurgood - Space Dynamics Laboratory, USA;<br />

V. Privalsky - Vega International, Inc, USA<br />

NEWRAD’2005<br />

1


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

This report deals with the future <strong>of</strong> radiometric<br />

calibration <strong>of</strong> space-borne electro-optical optical sensors<br />

as applied to the <strong>Global</strong> <strong>Earth</strong> <strong>Observation</strong> <strong>System</strong><br />

<strong>of</strong> <strong>System</strong>s (GEOSS)<br />

<strong>The</strong> following topics will be briefly discussed:<br />

• General information about GEOSS<br />

• Formulation <strong>of</strong> the problem <strong>of</strong> metrological assurance for the GEOSS<br />

measurements<br />

• Potential solutions for the spectral regions from 0.2 µm m to 3 µm m and<br />

from 3 µm to 15 µm<br />

• An in-flight monitoring suggestion<br />

• Conclusions<br />

2


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

<strong>The</strong> <strong>Global</strong> <strong>Earth</strong> <strong>Observation</strong> <strong>System</strong> <strong>of</strong> <strong>System</strong>s<br />

(GEOSS) Milestones<br />

• First <strong>Earth</strong> <strong>Observation</strong> Summit, Washington, D.C., August 31, 2003<br />

• Declared the need for an information system that would help to make m<br />

well-<br />

based decisions in the interests <strong>of</strong> the entire mankind.<br />

• A decision is made to develop a 10-yr GEOSS plan.<br />

• A Group for <strong>Earth</strong> <strong>Observation</strong> (GEO) is subsequently established.<br />

• Second <strong>Earth</strong> <strong>Observation</strong> Summit, Tokyo, April 25, 2004<br />

• A framework is approved that describes major GEOSS 10-yr plan ideas.<br />

• Third <strong>Earth</strong> <strong>Observation</strong> Summit , Brussels, February 16, 2005<br />

• <strong>The</strong> 10-yr GEOSS plan approved with a possibility for future corrections.<br />

3


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

GEOSS Application Areas in accordance with<br />

the internationally approved<br />

10-year Implementation Plan<br />

• Reducing loss <strong>of</strong> life and property from natural and human-induced<br />

disasters.<br />

• Understanding environmental factors affecting human health and<br />

well-being.<br />

• Improving management <strong>of</strong> energy resources.<br />

• Understanding, assessing, predicting, mitigating, and adapting to t<br />

climate variability and change.<br />

• Improving water resource management through better<br />

understanding <strong>of</strong> the water cycle.<br />

• Improving weather information, forecasting, and warning.<br />

• Improving the management and protection <strong>of</strong> terrestrial, coastal,<br />

and marine ecosystems.<br />

• Supporting sustainable agriculture and combating desertification.<br />

• Understanding, monitoring, and conserving biodiversity.<br />

4


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

GOESS Structure:<br />

GEOSS will be built as a “system <strong>of</strong> systems”<br />

• Will embrace both the existing and future <strong>Earth</strong><br />

observation systems for jointly using the acquired<br />

data.<br />

• <strong>Global</strong> observation strategy will include<br />

complimentary use <strong>of</strong> space-borne, air-borne, and<br />

ground-based observation systems.<br />

Major functional parts <strong>of</strong> GEOSS:<br />

• Components <strong>of</strong> observation facilities<br />

• Coordinated data processing systems<br />

• Archiving<br />

• Cataloging<br />

• Dissemination systems for data, metadata, and final data<br />

products.<br />

5


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Coordinating <strong>Earth</strong> Observing <strong>System</strong>s<br />

Vantage Points<br />

Capabilities<br />

Deployable Permanent<br />

Far-<br />

Space<br />

Near-<br />

Space<br />

Airborne<br />

Terrestrial<br />

L1/HEO/GEO<br />

TDRSS &<br />

Commercial<br />

Satellites<br />

LEO/MEO<br />

Commercial<br />

Satellites<br />

and Manned<br />

Spacecraft<br />

Aircraft/Balloon<br />

Event Tracking<br />

and Campaigns<br />

Forecasts & Predictions<br />

User<br />

Community<br />

6


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

<strong>The</strong> 10-yr Plan GEOSS Idea<br />

7


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

GEOSS Requirements<br />

• High quality <strong>of</strong> data<br />

• <strong>Global</strong> scale observations<br />

• No spatial or temporal gaps in the data<br />

• Accumulating real time data over decades<br />

8


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Formulation <strong>of</strong> the problem - 1<br />

Optical sensors present a major part <strong>of</strong> the GEOSS program.<br />

• Providing imaging data<br />

• Measurements <strong>of</strong> radiance, reflective properties, and radiation<br />

temperature <strong>of</strong> observation objects.<br />

Measurements can be trusted only if the instruments are metrologically<br />

robust.<br />

<strong>The</strong> task <strong>of</strong> the universal use <strong>of</strong> data acquired with the GEOSS<br />

subsystems can be solved only on the basis <strong>of</strong> common standards<br />

(data formats, geolocation, etc.).<br />

• For a number <strong>of</strong> applications such as climatology, meteorology, and a<br />

environmental monitoring, assuring the uniformity <strong>of</strong> radiometric<br />

measurements obtained by all subsystems and at an unusually high<br />

accuracy and stability levels is <strong>of</strong> extreme importance.<br />

• <strong>The</strong>se exact requirements have not yet been properly reflected in the<br />

10-yr plan.<br />

• <strong>The</strong> solution <strong>of</strong> the problem requires joint efforts both in supporting this<br />

idea and in implementing it at the international level.<br />

9


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Formulation <strong>of</strong> the problem - 2<br />

Within the wide area <strong>of</strong> GEOSS data application, the highest requirements for<br />

the long-term stability <strong>of</strong> the data and for the accuracy <strong>of</strong> optical sensors are<br />

imposed by climatology which needs time series extending over decades.<br />

Required accuracies and stabilities <strong>of</strong> satellite instruments<br />

No<br />

1<br />

2*<br />

3*<br />

4*<br />

5*<br />

6<br />

7<br />

8<br />

9<br />

Ozone<br />

Vegetation<br />

Surface albedo<br />

Ocean color<br />

Sea surface temperature<br />

Atmospheric temperature<br />

Water vapor<br />

Climate variable<br />

Total solar irradiance<br />

Cloud parameters<br />

* Requirements to radiance measurements<br />

Accuracy<br />

0.1 %<br />

1 %<br />

2 %<br />

5 %<br />

5 %<br />

0.1 K<br />

0.5 K<br />

1 K<br />

1 K<br />

[Satellite Instrument Calibration for Measuring <strong>Global</strong> Climate Change. C<br />

NISTIR 7047.<br />

US Department <strong>of</strong> Commerce. 2004. ]<br />

Stability<br />

(per decade)<br />

0.02 %<br />

0.1 %<br />

0.8 %<br />

1 %<br />

1 %<br />

0.01 K<br />

0.04 K<br />

0.03 K<br />

0.2 K<br />

10


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Formulation <strong>of</strong> the problem - 3<br />

Maximum Requirements<br />

Onboard<br />

instrumentation<br />

Spectral region, µm<br />

0.2 – 3 3 – 15<br />

Calibration<br />

systems<br />

(ground)<br />

accuracy<br />

1 % 0.1 K<br />

accuracy<br />

stability<br />

0.1 % per<br />

decade<br />

0.01 K per<br />

decade<br />

reproducibility<br />

11


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Formulation <strong>of</strong> the problem - 4<br />

<strong>The</strong> accuracy requirements can be met even today but we still<br />

cannot satisfy the requirements for the long-term stability <strong>of</strong><br />

our instruments. Those requirements transformed into<br />

respective requirements for the national scale reproducibility<br />

are:<br />

Ground calibration<br />

Spectral region 0.2 – 3 µm ≤ 0.1 %<br />

Spectral region 3 - 15 µm ≤ 0.01 K<br />

As for the in-flight stability monitoring, the requirement is<br />

satisfied for the spectral s region 0.2 - 3 µm (see T.C. Stone, H.H.<br />

Kieffer. . Proc. CALCON 2005. Logan, Utah, 2005 )<br />

Inside the spectral region 3 - 15 µm we need to ensure the<br />

stability within 0.01 K.<br />

12


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Formulation <strong>of</strong> the problem - 5<br />

<strong>The</strong> necessary conditions for the implementation <strong>of</strong> these<br />

requirements and for the assurance <strong>of</strong> uniformity <strong>of</strong> measurements<br />

include:<br />

•High-quality methodological basis, and<br />

•High-quality systems for both ground and in-flight radiometric calibration <strong>of</strong><br />

the measuring devices.<br />

<strong>The</strong> methodological basis includes such components as:<br />

•Definitions <strong>of</strong> measurands and respective measurement units,<br />

•Methods and techniques <strong>of</strong> calibration, and<br />

•Estimation <strong>of</strong> the accuracy <strong>of</strong> measurement results during the calibration<br />

process.<br />

With regard to the ground calibration systems, we need:<br />

•To improve our calibration standards as well as methods and devices used<br />

to transfer the dimensions <strong>of</strong> radiometric quantities from standards to the<br />

instrument that is being calibrated<br />

•Better calibration installations and international comparisons <strong>of</strong> calibration<br />

standards.<br />

<strong>The</strong>se efforts should result in universal, stable and accurate scales s<br />

<strong>of</strong> radiometric quantities, with a mandatory participation <strong>of</strong> respective<br />

national metrological institutions.<br />

13


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

SOLUTION<br />

We believe that a necessary condition for the solution <strong>of</strong><br />

the above-formulated problem is the use <strong>of</strong> newly-<br />

developed ground calibration facilities:<br />

• Highly accurate blackbody sources on the basis <strong>of</strong> phase<br />

transitions <strong>of</strong> eutectic alloys and pure metals that<br />

possess very high reproducibility; such sources on<br />

eutectic alloys were first advanced by the National<br />

Institute <strong>of</strong> Metrology <strong>of</strong> Japan.<br />

• Improved calibration installations<br />

14


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Eutectic alloys and pure metals to be used and their<br />

phase transition temperatures<br />

High-temperature<br />

Medium-temperature<br />

Low-temperature<br />

Substance<br />

Temperature, K<br />

Substance<br />

Temperature, K<br />

Substance<br />

Temperature, K<br />

HfC-C<br />

3458<br />

Cu<br />

1357.8<br />

In<br />

429.7485<br />

ZrC-C<br />

3154<br />

Au<br />

1337.3<br />

Ga<br />

302.9146<br />

TiC-C<br />

3034<br />

Ag<br />

1234.9<br />

GaZn<br />

298.5<br />

Re-C<br />

2748<br />

GaSn<br />

293.5<br />

Ir-C<br />

2563<br />

GaIn<br />

288.5<br />

This phenomenon ensures a high level <strong>of</strong> reproducibility<br />

15


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Solution for the 0.2 µm – 3 µm m region<br />

Transferring the spectral radiance unit dimension<br />

Traditional approach<br />

Filament tungsten<br />

Primary<br />

standard<br />

incandescence lamps<br />

Reproducibility ~ 1 %<br />

Integrating<br />

sphere<br />

Imager<br />

Suggested approach<br />

Eutectic alloy fixed-point<br />

blackbodies<br />

Reproducibility ≤ 0.03 %<br />

Integrating<br />

sphere<br />

Imager<br />

16


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Blackbody BB3200pg and a crucible with a eutectic<br />

placed inside a pyrographite radiator (VNIIOFI)<br />

17


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Summary <strong>of</strong> measurements <strong>of</strong> the melting / freezing<br />

temperatures <strong>of</strong> eutectics (VNIIOFI data)<br />

Metal<br />

Purity<br />

T, , K<br />

Repeatability, σ<br />

Radiance, %<br />

650 nm<br />

Re-C<br />

0.99995<br />

0.04 – 0.09<br />

0.01 – 0.022<br />

TiC-C<br />

0.9998<br />

0.05<br />

0.012<br />

ZrC-C<br />

0.9994<br />

0.09<br />

0.02<br />

HfC-C<br />

0.999<br />

0.30<br />

0.06<br />

18


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Solution for the 3 µm – 15 µm m region<br />

Fixed-point blackbodies<br />

Reproducibility ≤ 0.01 K<br />

Variabletemperature<br />

blackbodies<br />

Imager<br />

19


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Ga fixed-point blackbody BB29gl (VNIIOFI)<br />

1 - Body;<br />

2 - Pt resistance thermometers;<br />

3 - Copper heat-exchanger<br />

exchanger;<br />

4 - Gallium in a Teflon case 8;<br />

5 - Heat-exchanger exchanger tube;<br />

6 - Copper cavity covered by the Chamglaze Z-306<br />

7 paint;<br />

9 - “O” ring;<br />

10 - Sylphon;<br />

11 - Aperture.<br />

Reproducibility: 0.2 mК<br />

20


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Medium Background Facility (VNIIOFI)<br />

for VTBB and fixed-point BB comparison<br />

<strong>The</strong> Medium Background<br />

Facility (MBF) was<br />

constructed to provide<br />

the absolute radiometric<br />

calibration <strong>of</strong> blackbody<br />

sources <strong>of</strong> thermal<br />

radiation, to compare<br />

radiometric scales with<br />

predictions for the<br />

measured temperatures,<br />

and to serve as a highly<br />

stable transfer standard<br />

for calibration <strong>of</strong><br />

blackbody sources under<br />

the medium vacuum<br />

conditions (10 - 4 Torr)<br />

and medium background<br />

environment (liquid<br />

nitrogen cooled shroud)<br />

21


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

SDL Calibration Chambers<br />

22


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Calibration Domains<br />

A complete calibration will address five responsivity domains:<br />

<br />

<br />

<br />

<br />

<br />

Radiometric responsivity<br />

• Radiance and irradiance<br />

• Response linearity and uniformity corrections<br />

• Nominal/outlying pixel identification<br />

• Transfer calibration to internal calibration units<br />

Spectral responsivity<br />

• Sensor-level relative spectral response (RSR)<br />

Spatial responsivity<br />

• Point response function, effective field <strong>of</strong> view, optical distortion,<br />

tion,<br />

and scatter<br />

Temporal<br />

• Short, medium, and long-term reproducibility, frequency response<br />

Polarization<br />

• Polarization sensitivity<br />

23


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Top Level SDL Calibrator Specifications<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Provide complete calibration in a single test configuration<br />

20K (He) or 100K (LN2) radiometric background<br />

Up to 17.5 inch exit pupil diameter<br />

Long focal length collimator to simulate small angular divergent sources<br />

(i.e. point sources)<br />

Short focal length collimator for measurements requiring sources with<br />

angular divergence <strong>of</strong> ~1°<br />

Sensor specific extended source measurements for radiance calibration<br />

ation<br />

Capability for in situ monitoring <strong>of</strong><br />

<br />

radiance, irradiance, calibrator focus/image quality, spectral<br />

throughput, and polarization<br />

24


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

In-flight monitoring<br />

Spectral region 3 - 15 µm<br />

Stability<br />

≤ 0.01 K<br />

<strong>The</strong> practice <strong>of</strong> the remote sensing <strong>of</strong> the <strong>Earth</strong> shows that the<br />

traditional in-flight monitoring techniques do not assure the required<br />

long-term stability.<br />

Approaches to problem solution<br />

• Develop and use onboard sources based upon phase transition <strong>of</strong><br />

substances.<br />

Studies are required to<br />

- select suitable substances,<br />

- determine their properties under the space environment<br />

- design onboard sources.<br />

• Develop a space-borne radiometric calibration facility<br />

25


GEOSS and Metrological Support for MeasuringM<br />

Radiometric<br />

Properties <strong>of</strong> Objects<br />

<strong>of</strong> <strong>Observation</strong>s<br />

Conclusions<br />

<strong>The</strong> only way to achieve the goal <strong>of</strong> combining individual<br />

observation systems into a single <strong>Global</strong> <strong>Earth</strong> <strong>Observation</strong> <strong>System</strong><br />

<strong>of</strong> <strong>System</strong>s is solving the problems formulated here through joint<br />

efforts <strong>of</strong> all participants <strong>of</strong> the program, with a mandatory<br />

participation <strong>of</strong> respective national metrological institutions.<br />

<strong>The</strong> approach to the solution is seen through the use <strong>of</strong> fixed-point<br />

blackbody sources and better (more “powerful”)) ground calibration<br />

installations.<br />

New approaches are required for the in-flight monitoring <strong>of</strong> our<br />

instruments within the spectral region form 3 µm to 15 µm (the<br />

phase-transition phenomenon).<br />

A unification <strong>of</strong> metrological support on the basis <strong>of</strong> approaches<br />

advanced here will help us obtain intercomparable high-quality data<br />

sets.<br />

26


Thank you<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!