29.10.2012 Views

Gravitational waves from core collapse supernovae - LUTh

Gravitational waves from core collapse supernovae - LUTh

Gravitational waves from core collapse supernovae - LUTh

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Gravitational</strong> <strong>waves</strong> <strong>from</strong><br />

<strong>core</strong> <strong>collapse</strong> <strong>supernovae</strong><br />

Ewald Müller<br />

Max-Planck Institut für Astrophysik


<strong>Gravitational</strong> <strong>waves</strong><br />

(Einstein quadrupole formula)<br />

h jk = 2G<br />

c 4<br />

time-dependent mass-energy quadrupole moment<br />

in <strong>core</strong> <strong>collapse</strong> <strong>supernovae</strong> due to<br />

- convection in proto-neutron star<br />

- convection in neutrino heated hot bubble<br />

- anisotropic neutrino emission<br />

- any other non-radial instability (e.g. SASI, AAC)<br />

1<br />

R<br />

and due to rotation and magnetic fields<br />

d 2 Q jk<br />

dt 2<br />

~ R s<br />

R<br />

•<br />

-20 *<br />

R =1 km , v/c=0.1 , R=10kpc ---> h ~ 10 s<br />

generically produced by any CCSN<br />

* [ measuring the distance earth-sun with an accuracy of 1 nm ]<br />

v 2<br />

c 2


●<br />

●<br />

● An<br />

●<br />

important<br />

technical<br />

aspect !


●<br />

●<br />

● Stability<br />

●<br />

against pseudo<br />

radial modes (<strong>collapse</strong>)<br />

of self-gravitating<br />

rotating configurations


●<br />

●<br />

The effective adiabatic index


●<br />

●<br />

●<br />

● A<br />

● of<br />

●<br />

● the<br />

●<br />

● of<br />

brief history<br />

the efforts to predict<br />

GW signature<br />

<strong>core</strong> <strong>collapse</strong> <strong>supernovae</strong>


Most studies aimed at studying the GW signature of <strong>core</strong> <strong>collapse</strong><br />

<strong>supernovae</strong> based on greatly simplified parameterized models<br />

* spheroidal / ellipsoidal, one-zone models<br />

(Saenz & Shapiro '81) �E/Mc 2 ~ 10 -6 ... 10 -4<br />

* Newtonian ''realistic'' prompt explosion models, parameterized<br />

non-equilibrium progenitor models<br />

(Müller '82, Mönchmeyer etal '89) �E/Mc 2 ~ 10 -10 ... 10 -7<br />

* Newtonian polytropes, parameter study of non-equilibrium<br />

progenitor models<br />

(Finn & Evans '90, Yamada & Sato '95, Zwerger & Müller '87,<br />

Rampp, Müller & Ruffert '98 (3D) )


●<br />

1<br />

Collapse dynamics & waveform types in rotational <strong>core</strong> <strong>collapse</strong><br />

(Newtonian gravity, axisymmetric models)<br />

● Mönchmeyer et al., '91: 4 models with tabulated EOS<br />

●<br />

●<br />

● typical signal<br />

strength &<br />

frequency:<br />

● h ~ 10 -20<br />

at 10 kpc<br />

● f ~ 500Hz -<br />

1 kHz<br />

●<br />

●<br />

● Zwerger & Müller '97: 78 models with simple analytic EOS


* GR <strong>collapse</strong>(CFC), parameter study of equilibrium progenitor<br />

models, simplified equation of state, no transport<br />

(Dimmelmeier, Font & Müller '02 ; Shibata '03)<br />

* microphysical equation of state, Newtonian gravity, some<br />

treatment of weak interactions and crude neutrino ''transport''<br />

(Fryer, Holz & Hughes '02, '04 ; Fryer etal '03 ;<br />

Kotake, Yamada & Sato '03 ; Ott etal '03)<br />

* simple equation of state, Newtonian gravity, MHD models<br />

(Kotake etal '04 ; Yamada & Sawai '04 ; Obergaulinger etal '04)<br />

---> �E GW < 10 -6 M sun c 2


•<br />

•<br />

• GR <strong>collapse</strong> of rotating polytropes using CFC approximation<br />

1<br />

(H. Dimmelmeier, J.A. Font & EM '02, '03)<br />

• toroidal density stratification at bounce for an increasing rate and<br />

degree of differential rotation


Rotational <strong>core</strong> bounce can occur at subnuclear densities!<br />

<strong>Gravitational</strong> <strong>waves</strong> provide direct diagnostic tool<br />

c e n tra l d e n s ity<br />

w a ve a m p litu d e<br />

bounce due to the stiffening of the equation<br />

of state beyond nuclear matter density<br />

c e n tra l d e n s ity<br />

w a ve a m p litu d e<br />

multiple bounce due to rotation<br />

GRHD simulations of polytropes (Dimmelmeier, Font & Müller 2002)


●<br />

● ---><br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● source<br />

GW amplitude vs frequency for GR and Newtonian models<br />

(Dimmelmeier, Font & Müller '02)<br />

centrifugal bounce less likely to occur in GR<br />

at 10 kpc


* presently most advanced microphysical study (concerning<br />

the GW signature of <strong>core</strong> <strong>collapse</strong> <strong>supernovae</strong>)<br />

(Müller, Rampp, Buras, Janka & Shoemaker '04)<br />

- microphysical equation of state<br />

- progenitor models <strong>from</strong> stellar evolutionary calculations<br />

- detailed modelling of all relevant weak interaction processes<br />

- multi-flavour Boltzmann neutrino transport<br />

- effective relativistic gravitational potential<br />

- Newtonian dynamics of axisymmetric flows


GWs <strong>from</strong> a non-rotating 11.2 M sol star<br />

Models with detailed micro and transport physics<br />

Müller, Rampp, Buras, Janka & Shoemaker '04


GWs <strong>from</strong> a rotating 15 M sol star<br />

b o u n c e s ig n a l<br />

Müller, Rampp, Buras, Janka & Shoemaker '04


GWs <strong>from</strong> simplified models of CCSNe:<br />

- miss important physics (convection)<br />

- initial models rotate too fast according to state-of-the-art<br />

stellar evolution models and spin rates of young pulsars<br />

GWs <strong>from</strong> elaborate models of CCSNe: LIGO II<br />

- proto-neutron star convection (at least): ~ 10 kpc<br />

- convection in non-rotating progenitors: ~ 15 kpc<br />

both type of signals are generically produced by any CCSN<br />

- state-of-the-art rotating progenitors: ~ 100 kpc<br />

[ only bounce signal: ~ 5kpc ]


●<br />

●<br />

● Towards<br />

●<br />

● relativistic<br />

<strong>core</strong> <strong>collapse</strong> simulations<br />

● with<br />

● detailed<br />

microphysics<br />

● &<br />

● neutrino<br />

transport


●<br />

1


●<br />

1


●<br />

1


●<br />

1


●<br />

1


●<br />

1


●<br />

1


●<br />

1


●<br />

● most sophisticated simulations of GR rotational <strong>core</strong> <strong>collapse</strong><br />

●<br />

1<br />

up to now include: (Ott, Dimmelmeier, et al., 06)<br />

● - coupled relativistic gravity (BSSN, CFC) and GRHD<br />

(Cactus/Carpet/Whisky & CoCoNut codes)<br />

● - tabulated microphysical EOS (Shen et al., '98; Marek et al., '05)<br />

● - Newtonian quadrupole formula for GW signal<br />

●<br />

● - parameterized, approximate<br />

treatment of deleptonization<br />

(Liebendörfer '05: 1D!!)<br />

● Y e ~ ρ and ρ trap<br />

fine until shortly after bounce!


●<br />

1<br />

Simple vs. microphysical EOS (Ott, Dimmelmeier, et al., 06)<br />

● slow & (almost) uniform rotating progenitor („best“ stellar evolution)<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● simulations with microphysical EOS:<br />

- influence of rotation on dynamics & GW signal less pronounced<br />

● - no longer multiple centrifugal bounces & type-II GW signals<br />

(for very rapid rotators: type-I <strong>collapse</strong> dynamics & GW signal)


●<br />

1<br />

Detection prospects of GW <strong>from</strong> <strong>core</strong> <strong>collapse</strong> (to NS)<br />

● - bounce signal of a galactic supernova detectable by current detectors<br />

● - microphysical EOS: GW signal frequency range significantly narrower<br />

●<br />

●<br />

● low frequency<br />

GW signals<br />

(i.e. multiple<br />

centrifugal<br />

bounces)<br />

are suppressed<br />

in simulations<br />

with GR &<br />

a microphysical<br />

EOS!<br />

● (Ott, Dimmelmeier,<br />

et al., 06)


●<br />

1<br />

Cause of suppression: relativistic gravity?<br />

● Newtonian study of the <strong>collapse</strong> of rotating polytropes (Zwerger & Mueller, '97)<br />

repeated in relativistic gravity<br />

(Dimmelmeier, Font & Muller, '02; Dimmelmeier et al., 05; Cerda et al., '05;<br />

Shibata & Segikuchi, '05, '06)<br />

● relativistics effects: deeper potential --> larger bounce densities, more<br />

compact PNS<br />

● less multiple centrifugal bounces (less type II GW signals)


●<br />

1<br />

Cause of suppression: microphysical EOS?<br />

● - neglect deleptonization and adopt adiabatic index for simplified<br />

EOS according to microscopic EOS<br />

● - simple EOS (piecewise polytropic + thermal part to mimic shocks)<br />

● γ < 4/3 for ρ < ρ nuc = 2 10 14 g/cm 3<br />

● γ = 2.5 for ρ > ρ nuc<br />

● similar to microphysical EOS<br />

●<br />

● - centrifugal bounce: (below ρ nuc )<br />

●<br />

γ is always very close to 4/3<br />

● ---> approximating microphysical EOS with simple EOS (with γ=1.32)<br />

predicts correct <strong>collapse</strong> & GW signal type!


●<br />

1<br />

Cause of suppression: deleptonization?<br />

● - when including effects of deleptonization: no centrifugal multiple<br />

bounce found! (neither in Newtonian nor relativistic gravity)<br />

(Dimmelmeier et al., in prep.)<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />


1<br />

Conclusions<br />

Relativistic gravity important for explosion mechanism & GW signal<br />

Its effects can be well modelled (for not too extreme models) by<br />

means of an effective relativistic potential (during <strong>collapse</strong> to NS)<br />

Models of (rotational) <strong>core</strong> <strong>collapse</strong> including a microphysical EOS,<br />

some treatment of the <strong>core</strong>'s deleptonization, and (approximate)<br />

relativistic gravity show no multiple centrifugal bounce<br />

Open questions: GR post-bounce evolution & GW signal<br />

GR & magnetic fields (collapsars)<br />

BH formation <strong>from</strong> <strong>core</strong> <strong>collapse</strong>


●<br />

● Additional<br />

aspects<br />

3D effects (angular momentum conservation during <strong>collapse</strong>)<br />

fast rotating<br />

axisymmetric<br />

<strong>core</strong>s may<br />

become triaxial<br />

but<br />

low density at<br />

bounce<br />

rotating polytropes (Rampp, Ruffert & Muller '97)


●<br />

● Additional<br />

● (Bazan<br />

aspects<br />

asymmetries (��/� ~ 10%) in progenitor star due to oxygen &<br />

silicon burning<br />

4 s -1<br />

& Arnett '98)<br />

0.25 s -1<br />

h = ~ 20% of amplitude of fast rotating <strong>core</strong> (Fryer, Holz & Hughes '04)<br />

10 s -1<br />

0 s -1


●<br />

●<br />

●<br />

●<br />

● Relativistic<br />

● An<br />

<strong>core</strong> <strong>collapse</strong> simulations:<br />

alternative approach


•<br />

•<br />

Characteristic GR <strong>collapse</strong> of axisymmetric polytropes<br />

Initial value problem of general relativity: Choice of foliation?<br />

Cauchy/ADM<br />

(boundary conditions?)<br />

characteristic/light cone<br />

(unambigous extraction of GW)


•<br />

•<br />

1<br />

Application: Spherical and non-spherical <strong>core</strong> <strong>collapse</strong><br />

(Siebel et al., 02) [polytropes, hybrid EOS (bounce + shock)]<br />

Evolution of central density:<br />

Increase by 4.5 orders of magnitude<br />

spacetime<br />

diagram<br />

shock<br />

formation &<br />

propagation


•<br />

•<br />

<strong>Gravitational</strong> <strong>waves</strong> at null infinity: Bondi news function<br />

- gauge contributions must be considered<br />

- shock propagation creates numerical noise<br />

Work still in progress!<br />

first time characteristic<br />

2D numerical relativity<br />

is applied to a matter<br />

flow problem


Magnetohydrodynamic<br />

effects in supernova


●<br />

1<br />

Basic MHD processes in <strong>core</strong> <strong>collapse</strong><br />

(Meier, Epstein, Arnett & Schramm '76)<br />

● infall R≈R 0 /� � E G ≈�E G0 , E rot ≈� 2 E rot0 , E mag ≈ �E mag0<br />

(if <strong>collapse</strong> approx. homologous)<br />

● poloidal circulation (due to centrifugal force) � �(�)~� -2<br />

● linear field amplification (toroidal field) by differential rotation<br />

●<br />

●<br />

● Up to 2000 only a few<br />

numerical studies:<br />

● LeBlanc & Wilson ('70)<br />

Bisnovatyi-Kogan etal ('76)<br />

Müller & Hillebrandt ('79)<br />

Ohnishi ('83)<br />

Symbalisty ('84)<br />


●<br />

●<br />

1<br />

Meier, Epstein, Arnett & Schramm '76<br />

● two parameters determine<br />

evolution:<br />

● � R0 = E rot0 / E G0<br />

● and<br />

● � M0 = E mag0 / E G0<br />

●<br />

●<br />

● model C (LeBlanc & Wilson '70):<br />

● 7 M sun Fe-Ni <strong>core</strong><br />

● � R0 = 0.0025 ⇔ � = 0.42 rad/s<br />

� M0 = 0.00025 ⇔ B = 9.2 10 11 Gauss<br />

Heger etal '05: �=0.05s -1 , � R0 = 5x10 -4<br />

observed WD fields: � M0 < 10 -10


●<br />

1<br />

Other MHD processes<br />

● - Thompson & Murray ('01) field amplification and transport by rapid<br />

(semi-analytic) convective overturn in PNS for ~10 s ; if<br />

turbulent = magnetic stresses � B equi ~ 10 15 G<br />

● - Wheeler etal ('00, '02) asymmetric CCSNe & MHD jets (like in AGNs);<br />

(semi-analytic) field amplification by differential rotation<br />

and possibly by an �-� dynamo<br />

● - Akiyama etal ('03) importance of MRI (exponential growth ~� -1 )<br />

(1D HD) � strong MHD activity in PNS & behind<br />

stalled shock; even for moderate initial<br />

conditions: Bsat ~10 15 ...10 16 G ?<br />

● - Sato's group<br />

Yamada & Sawai ('04) parameter studies with polytropic & realistic<br />

Kotake etal ('04a, '04b) EOS; neutrino leakage scheme;<br />

Takiwaki etal ('04) field contribution to GW signal<br />

Kotake etal ('05)<br />

Sawai etal ('05) --> no MRI?<br />

(2D MHD)


●<br />

●<br />

●<br />

● Initial models:<br />

● - rigidly & diff. rotating<br />

polytropes (as in<br />

Zwerger & Müller '97)<br />

●<br />

1<br />

● - approx. rel. gravity<br />

●<br />

– 2D MHD simulations: Obergaulinger, Aloy & Müller 2005<br />

– (TVD MHD code of Pen, Arras & Wong 2003<br />

based on the relaxing TVD scheme of Jin & Xin 1995 )<br />

● - B-field <strong>from</strong> toroidal<br />

current loop in equat.<br />

plane (100≤r/km≤800)<br />

● central field strength<br />

10 10 – 10 13 Gauss<br />

(realist. B < 10 9 Gauss)


●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

1<br />

Evolution of central density and rotation rate:<br />

non-magnetized Newtonian initial model bouncing due to EOS<br />

(models A1B3G3-D3Mx, x∈ {10, 12, 13); Obergaulinger, Aloy & Müller '05)<br />

central density rotation rate<br />

● ----- 10 10 Gauss ----- 10 12 Gauss ----- 10 13 Gauss


●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

1<br />

Evolution of central density and rotation rate:<br />

non-magnetized Newtonian initial model bouncing due to rotation<br />

(models A3B3G3-D3Mx, x∈ {10, 12, 13); Obergaulinger, Aloy & Müller '05)<br />

central density rotation rate<br />

● ----- 10 10 Gauss ----- 10 12 Gauss ----- 10 13 Gauss


●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

1<br />

<strong>Gravitational</strong> wave quadrupole amplitude:<br />

TOV (solid line) vs Newtonian (dashed line) models:<br />

(A1B3G3-D3M1x; Obergaulinger, Aloy & Müller '06)<br />

● 10 10 Gauss 10 13 Gauss


●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

1<br />

<strong>Gravitational</strong> wave quadrupole amplitude:<br />

TOV (solid line) vs Newtonian (dashed line) models:<br />

(A3B3G3-D3M1x; Obergaulinger, Aloy & Müller '06)<br />

● ---- 10 10 Gauss ----- 10 13 Gauss


●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

1<br />

<strong>Gravitational</strong> wave spectra:<br />

(A3B3G3-D3M1x-T; Obergaulinger, Aloy & Müller '06)<br />

● ---- 10 10 Gauss ----- 10 13 Gauss<br />

●<br />

● enhancement of spectral power at low frequencies in strong<br />

field model (right) is due to collimated outflow (jet) !


●<br />

●<br />

●<br />

1<br />

Snapshot of model A3B3G5-D3M13 about 49 ms post-bounce<br />

strong initial B field & rapid rotation --> collimated outflow<br />

(Obergaulinger, Aloy & Müller<br />

'05)<br />

● gas & magnetic pressure<br />

●<br />

●<br />

●<br />

●<br />

● velocity & final velocity<br />

● (total energy --><br />

kinetic energy)


●<br />

● Conclusions <strong>from</strong> MHD studies up to now<br />

● - weak (realistic!) initial fields (B < 10 11 G) do neither change<br />

<strong>collapse</strong> dynamics nor resulting GW signal<br />

● - strong initial fields (B ≥ 10 12 G)<br />

---> - slow down <strong>core</strong> efficiently (even retrograde rotation occurs!)<br />

- qualitatively different dynamical evolution & GW signal<br />

- highly bipolar, mildly relativistic outflows<br />

● - shape of GW signal reflects dynamical behavior of the model<br />

(in particular the collimated outflow)<br />

●<br />

● Still waiting exploration: - MHD models with realistic microphysics<br />

and neutrino-driven convection<br />

● - secular evolution ?<br />

● - 3D effects, MHD instabilities (MRI) &<br />

possible MHD dynamo

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!