15.02.2014 Views

mag07.pdf (150 kB) - Acta Metallurgica Slovaca - TUKE

mag07.pdf (150 kB) - Acta Metallurgica Slovaca - TUKE

mag07.pdf (150 kB) - Acta Metallurgica Slovaca - TUKE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 15, 2009, 2 (117 - 125) 117<br />

DESIGN AND VERIFICATION OF THE MATHEMATICAL MODEL<br />

FOR DETECTING THE THROUGHPUT OF THE COMPRESSOR STATIONS<br />

Vaszi ZS. , Varga A.<br />

Department of Furnaces and Thermal Technology, Faculty of Metallurgy, TechnicalUniversity<br />

in Košice, Slovakia<br />

NAVRHNUTIE A OVERENIE MATEMATICKÉHO MODELU PRE ZISTENIE<br />

PRIEPUSTNOSTI KOMPRESOROVEJ STANICE<br />

Vaszi ZS. , Varga A.<br />

Katedra pecí a teplotechniky, Hutnícka fakulta, Technická univerzita Košice, Slovensko<br />

Abstrakt<br />

V čase hospodárskej krízy sa dostáva do popredia úspora plynu aj pri jeho preprave.<br />

KS1 – Veľké Kapušany je hlavnou preberacou stanicou, kde ruský plyn vstupuje do Slovenskej<br />

republiky, a preto jeho priepustnosť je veľmi dôležitý pre celý tranzit. V uplynulom roku<br />

EUSTREAM a.s. prepravilo viac ako 76, 2 miliard metrov kubických zemného plynu. Aj keď<br />

táto spoločnosť udržuje dôležitú pozíciu v rámci európskych prepravných systémov je veľmi<br />

dôležitá efektívna preprava takéhoto množstva zemného plynu. V čase keď už dodávka zemného<br />

plynu z východného smeru nie je viac samozrejmosťou ešte viac vstupuje do popredia úspora<br />

deného plynu či už pri preprave, alebo pri distribúcii. Príspevok sa zaoberá priepustnosťou<br />

jednotlivých kompresorových agregátov v závislosti od vstupných parametrov, ako aj návrhom<br />

matematickeho modelu, a prepisom daného modelu do programu. Výstupy z programu sa dajú<br />

využiť pre vytváranie kombinácie prevádzkovaných kompresorových agregátov. Pomocou<br />

tohto programu je možné zistiť aj vplyv teploty plynu na prepravné parametre jednotlivých<br />

agregátov. Výsledkom riešenia je analýza priepustnosti vybraných druhov strojov pri<br />

zabezpečovaní požiadavky na dopravu denného objemového množstva plynu v rozsahu od 110<br />

do 230 mil.m 3 v závislosti od vstupného tlaku, kompresného pomeru, teploty okolia ako aj<br />

sledovanie vplyvu teploty plynu na prepravu plynu.<br />

Riešenie danej problematiky sa napíšu do troch bodov:<br />

• Analýza pracovných charakteristík všetkých strojov, ktoré sú predmetom vzájomnej<br />

spolupráce a ich spracovanie do matematických vyjadrení.<br />

• Definovanie optimálnych pracovných režimov jednotlivých strojov.<br />

• Vyhodnotenie priepustnosti jednotlivých agregátov.<br />

Abstract<br />

In the time of the economic crisis the saving of gas in its transport had came to the<br />

forefront. The main taking – over station is KS1 – Veľké Kapušany, where Russian gas enters<br />

the Slovak Republic, and therefore the throughput is very important for the entire transit.<br />

Eustream a.s. transported more than 76,2 billion cubic meters of natural gas in last year.<br />

Although the company maintains an important position in European transport systems is a very<br />

important the effective transport of this natural gas quantity. At a time when the natural gas is<br />

not supplies from the eastern direction is more obvious to saving gas, whether in transport or<br />

distribution. The paper describes the throughput of each compressor set, depending on the input


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 15, 2009, 2 (117 - 125) 118<br />

parameters, as well as design of the algorithm and mathematical approach in form of software.<br />

This software can be used for creating the combination of operating compressor aggregates.<br />

With this software it is possible to detect the effect of temperature on gas transport parameters of<br />

the individual aggregates. Results of the analysis is the permeability of certain types of<br />

machinery to ensure the requirements for the transport of gas daily mass in the range from 110<br />

to 230 mil.m 3 according to the input pressure, compression ratio, the ambient temperature as<br />

well as monitoring the impact of temperature of gas in gas transport.<br />

The solution of the problem is described in the following three points:<br />

• Analysis of the working characteristics of all machines that are the subject of mutual<br />

cooperation, and their incorporation into mathematical terms.<br />

• Defining the optimal working regimes of the individual machines.<br />

• Evaluation of the permeability of different aggregates<br />

Key words: Compressor station, mathematical model, throughput, compressor set<br />

1. Introduction<br />

Turbo compressors are not work under the conditions for which they were designed,<br />

i.e. under conditions, which are reflected in the design of the flow cross-section, blade angles<br />

and so on. It is obvious that, depending on the factors that affect the operation of the compressor<br />

changed will be the compression and efficiency. Compression, efficiency and input power vary<br />

depending on the parameters of the inlet gas. The parameters of the inlet gas have major impact<br />

on the overall throughput of compressor stations.<br />

2. Characteristics of compressor stations<br />

There are 4 compressor stations representing the major technological complexes in<br />

the mutual distance of about 115 km in the transit pipeline on the territory of the Slovak<br />

Republic. Characteristics of the individual stations with the number of aggregates are given in<br />

Tab 1.<br />

Table 1 Distribution and number of aggregates<br />

Major technological<br />

Veľké Kapušany<br />

equipments<br />

Jablonov nad<br />

Turňou<br />

Veľké Zlievce<br />

Ivanka pri Nitre<br />

TS 6 MW 23 21 22 22<br />

ES 25 MW 3 3 3 -<br />

T 23 MW 1 1 2 4<br />

R 28 MW 3 2 - -<br />

These technological devices provide the required transport by increasing the pressure<br />

level to compensate the pressure loss in pipes and to ensure the contracted amount of pressure<br />

and transport of the natural gas to the border taking over points.<br />

Compression station KS1 - Veľké Kapušany is the most important point in the transit<br />

system in Slovakia and therefore its throughput determines the performance of the transit system<br />

of the Slovak Republic. Information about compressor aggregates are in Tab 2.


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 15, 2009, 2 (117 - 125) 119<br />

Table 2 Compressor aggregates<br />

Aggregates<br />

Range speed<br />

(sp.min -1 )<br />

Max usable<br />

speed.<br />

(sp.min -1 )<br />

Pursuit of<br />

the<br />

projected<br />

(MW)<br />

Max power<br />

Summer<br />

(MW)<br />

Winter<br />

(MW)<br />

Number of<br />

aggregates<br />

max.<br />

Immed<br />

use<br />

Maximum<br />

compression<br />

ratio<br />

GT750-<br />

6 MW<br />

3800 - 5600 5300 6 5,5 6 19 16 1,22 3)<br />

NP<br />

PGT 25<br />

3250 - 6500 6200 22,67 19 1) 20,5 1) 1 1 2) 1,46<br />

Cooper –<br />

Rolls<br />

3120 - 5050 4700 27,426 25 28 3 3 2) 1,7<br />

Electrical<br />

drives 2600 - 3900 3700 25 25 25 3 2 1,45<br />

GE ** 4250 - 6405 6300 34 3 1,75<br />

1)<br />

Restrictions on the quantity of emissions generated in the further improvement of performance exceed the limit sets<br />

2)<br />

Under operation may also be 3CR with 1NP, but in practice operate only 3 aggregates and one is left in reserve.<br />

3)<br />

In the two-stage operation the compression ratio is. 1.44 max.<br />

**) New aggregates in KS1<br />

3. Calculation of the throughput of different aggregates<br />

The problem of the aggregate sets in operation, depending on the required volume of<br />

gas transport through the compressor station, inlet gas pressure, the compression ratio and the<br />

ambient temperature, must be solved as the throughput of gas through the individual aggregates<br />

of KS and conditions of the operation of individual drives depending on the ambient<br />

temperature.<br />

To solute this problem, it is necessary to undergo subsequent steps:<br />

• to revise the characteristics of the individual aggregates and drives based on a graphic<br />

form according to the mathematical regression analysis using the software Fotofilter<br />

and Excel to create universal characteristics of individual aggregates:<br />

⎛<br />

⎜<br />

M ⋅ T<br />

ε = f<br />

⎜<br />

⎝<br />

P1<br />

1 ,<br />

n ⎞<br />

⎟<br />

T ⎟<br />

1 ⎠<br />

P k<br />

⎛ M ⋅ T<br />

= f ⎜<br />

⎜<br />

⎝<br />

P1<br />

1 ,<br />

⎞ ⎛<br />

n M ⋅ T<br />

⎟<br />

T ⎟<br />

⎟ ⎞<br />

⎜<br />

n<br />

η = f<br />

1 ,<br />

(1)<br />

k<br />

1 ⎠ ⎝ P1<br />

T1<br />

⎠<br />

and to determine the basic parameters of the drives.<br />

η = f ( P , n ) P f ( P ,η , t )<br />

t<br />

k<br />

t<br />

t<br />

= (2)<br />

k<br />

• to design the mathematical model for the calculation of the throughput of the individual<br />

aggregates under required output parameters at KS1, depending on the input<br />

parameters, p 1 , t 1 , t a of the individual aggregates,<br />

• to execute a simulations of the impact of the input parameters p 1 , T 1 , on the throughput<br />

of the individual aggregates at KS1,<br />

• to process data obtained from the simulations based on regression analysis into the<br />

polynomial dependencies:<br />

n = f ( q)<br />

P k<br />

= f ( q)<br />

P t<br />

= f ( q)<br />

e k<br />

= f ( q)<br />

f ( q)<br />

t<br />

ok<br />

e t<br />

= (3)


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 15, 2009, 2 (117 - 125) 120<br />

4. Algorithm of the program for calculation<br />

• input parameters p 1 , t 1 , ε, t ok<br />

• calculation of terms<br />

M<br />

x =<br />

min<br />

min<br />

.<br />

P<br />

1<br />

T<br />

1<br />

and<br />

M max. T<br />

1<br />

x<br />

max<br />

= (4)<br />

P1<br />

and other parameters of compressors and drives - P k , η k , n tt , η tt , P t e k , e tt for the given input<br />

parameters p 1 , t 1 ε, based on the polynomial equations for : ε, P k , P t,max , η k , n tt , e k , e tt .<br />

• adjustment of the above calculated x to q 20 ( gas throughput adjusted for t = 20 o C)<br />

• output data : data sets for the corresponding aggregates : i, n k , q 20, , P k, , η k, , n tt, , η t,t ,<br />

P tmax ,, e k ,, e tt ,


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 15, 2009, 2 (117 - 125) 121<br />

5. Acquisition of data sets in program EXCEL:<br />

Obtained data sets related to the constants n and Pk for compressors for variety of<br />

input pressures p 1 , compression ratios ε and ambient temperature ta are processed in<br />

program„Excel“ into the polynomial dependencies for each aggregate :<br />

3 2<br />

n = a q + b q + c q + d<br />

p<br />

p<br />

p<br />

p<br />

(5)<br />

and for each turbine:<br />

3 2<br />

P = a q + b q + c q + d<br />

k<br />

k<br />

k<br />

P = a q + b q + c q + d<br />

3 2<br />

;<br />

t, max t t t t tt<br />

k<br />

k<br />

; e<br />

k<br />

=Pk/q (6)<br />

e = Ptmax/q (7)<br />

Verification of the mathematical approach<br />

To be able to exploit the mathematical models for the simulations using the input<br />

parameters, it is necessary to verify the above based on the practical measurements at KS1<br />

provided in Tab.3.<br />

Table 3 Throughput KS1<br />

Measured data<br />

KS1<br />

Calculated data<br />

Q 0 P 1 P 2 T 1 P+R+E ČKD 6MW Q 0 del KS1<br />

(mil.m 3 /d)<br />

(20°C)<br />

(MPa) (°C) I II<br />

(mil.m 3 /d)<br />

(20°C)<br />

258,45 4,9 6,51 17 0+2+1 5 4 255 1,33<br />

248 4,5 6,19 17 0+2+1 5 4 248 0<br />

(%)<br />

Q 0<br />

P 1<br />

P 2<br />

T 1<br />

P p<br />

P k<br />

- natural gas volume related to the commercial conditions m3/d<br />

- gas input pressure at KS1 resp.KS2<br />

- gas output pressure at KS1 resp.KS2<br />

- gas input temperature at KS1 resp.KS2<br />

- output pressure from KS1<br />

- input pressure to KS2<br />

del_KS1 – difference between measured and calculated data of gas volume<br />

P+R+E: number of machines under operation (Pignone, Cooper, electro-drive, CKD)<br />

ČKD 6MW: number of machines under operation (CKD- 6MW) I – first level ; II – second level<br />

6. Results<br />

Gas transport and related energy consumption depend beside the parameters p 1 , ε and<br />

ta also on the input gas temperature t 1 , which lays within the range of 17 – 23 °C.<br />

Based on the above described procedures, executed were the calculations of<br />

temperature t 1 effect on the transported gas volume q, compressor capacity P k and capacity of<br />

turbine P t . Obtained results are given in Fig 1.


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 15, 2009, 2 (117 - 125) 122


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 15, 2009, 2 (117 - 125) 123<br />

Fig.1 Effect of input gas temperature on the transporting parameters of the compressor for p 1=5 MPa; ε=1,4<br />

Based on graphs analysis, it follows out that the input gas temperature does not effect<br />

essentially the transport parameters of the individual aggregates and therefore this temperature is<br />

not considered when calculated further the database and the calculations are executed for the<br />

input gas temperature t 1 = 20 °C.<br />

The described program provides the datasets as depending on p 1 , ε and t a..<br />

These datasets from program EXCEL defined may be the limits of the gas throughput<br />

for the individual aggregates operation (q min , q max ) and graphs :<br />

n, P k , P t = f(q) (8)<br />

for the corresponding input parameters p 1 , ε and t ok , expressed in form of the polynomial<br />

equations.


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 15, 2009, 2 (117 - 125) 124<br />

Fig.2 Energy nominal consumption of the compressor and turbine as depending on the natural gas throughput<br />

Based on the above graphs, it follows out that the energy nominal consumption of<br />

compressor or turbine, when defining the optimum combination of the co-operation of the<br />

individual machines in the requested amount of gas transport under defined input parameters p 1 ,<br />

ε and t ok, , in essentially affected by the energy consumption e t or e k . The most suitable variant<br />

is the combination of the aggregates with the lowest nominal energy consumption.<br />

Graph on the relationship e = f (q) provide the information that with the increased gas<br />

throughput the nominal energy consumption for all considered aggregates falls.<br />

7. Conclusion<br />

The aim of this article is to analyse the throughput of the compressor station KS1 –<br />

Veľké Kapušany and design of the suitable mathematical model. In the article described is the<br />

algorithm of the program, based on the mathematical description of the process. The above<br />

provided the tool by the aid of which determined could be the effect of the transported gas<br />

temperature upon the transport parameters of the individual aggregates. Designed mathematical<br />

model was verified and proved the inaccuracy up to 2 percent. Software Program based on the<br />

mathematical description of the process enables also to define the optimal combinations of<br />

aggregates for the daily transport of gas within the range of 110 to 230 mil.m 3 as depending on<br />

the entry pressure, compression ration and ambient temperature. The suitable optimum<br />

combinations of the aggregates in the compression station is necessary mainly due to the<br />

reduction of the natural gas consumption in this station, needed for gas transport via transit<br />

pipeline.<br />

Literature<br />

[1] Nohel J.: Tepelné turbíny a turbokompresory. Bratislava : 1988, 393 s., str. 231 - 234<br />

[2] Stanovenie priepustnosti KS1 Veľké Kapušany. Správa SjF a HF <strong>TUKE</strong>, jún 2006<br />

[3] Varga A.: Doprava a využitie plynov 1. Košice 2004


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 15, 2009, 2 (117 - 125) 125<br />

[4] Optimalizácia spolupráce vybraných strojov pri zabezpečení požiadavky nízkych<br />

prepravných množstiev, Správa HF a SjF <strong>TUKE</strong>, máj 2009<br />

[5] Andrejčíková M .: Energia pre planétu nie je zadarmo. In.: Výskumnovedecké aktivity<br />

katedier zameraných na marketing a obchod s dôrazom na _Obnoviteľné_ zdroje energie.<br />

Zborník z medzinárodnej vedeckej konferencie, Vysoké Tatry 7.-8.5.2008. Košice: EU<br />

PHF Košice, 2008. ISBN 978-80-225-2580-0<br />

[6] Jandačka J., Malcho M.: Analýza merania objemového množstva zemného plynu bez<br />

prepočítavania na obchodnú jednotku; SLOVGAS 3/2007, str.17, ISSN1335-3853

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!