DLAs in Cosmological SPH Simulations:

DLAs in Cosmological SPH Simulations: DLAs in Cosmological SPH Simulations:

physics.unlv.edu
from physics.unlv.edu More from this publisher

<strong>DLAs</strong> <strong>in</strong> <strong>Cosmological</strong> <strong>SPH</strong><br />

<strong>Simulations</strong>:<br />

the “metallicity problem”<br />

Ken Nagam<strong>in</strong>e (Harvard-CfA)<br />

Nov 2003<br />

Volker Spr<strong>in</strong>gel (MPA)<br />

Lars Hernquist (Harvard-CfA)<br />

(astro-ph/0302187, 0305409)


Outl<strong>in</strong>e<br />

<br />

<br />

<br />

<br />

<br />

Brief <strong>in</strong>troduction<br />

<strong>Cosmological</strong> simulations<br />

DLA cross section & abundance<br />

Physical properties: S * , S SFR , Z/Z <br />

The “metallicity problem”<br />

Conclusions & Issues


Damped Lyman-a Absorbers (<strong>DLAs</strong>)<br />

<br />

Quasar absorption system:<br />

NHI >210 20 cm -2<br />

<br />

<br />

Good probe of galaxy<br />

formation at high-z.<br />

Unclear orig<strong>in</strong>:<br />

disk?<br />

<br />

(Wolfe & Prochaska)<br />

protogalactic gas<br />

clumps?<br />

(Haehnelt, Ste<strong>in</strong>metz, &<br />

Rauch)<br />

(Peroux et al.)


<strong>Cosmological</strong> <strong>SPH</strong> <strong>Simulations</strong><br />

Framework: Flat LCDM model<br />

P-GADGET2: TreePM-<strong>SPH</strong> code (Spr<strong>in</strong>gel et al. 2000)<br />

-- cool<strong>in</strong>g/heat<strong>in</strong>g, UV background<br />

-- multiphase model for gas particles<br />

-- star formation & feedback (SN, galactic w<strong>in</strong>d)<br />

-- metal distribution<br />

Improved <strong>SPH</strong> formulation:<br />

‘Entropy formulation’<br />

Alleviates previous problems:<br />

overcool<strong>in</strong>g, smear<strong>in</strong>g of density<br />

discont<strong>in</strong>uity <br />

(Spr<strong>in</strong>gel & Hernquist 2002a,b)


Simulation Parameters


Spr<strong>in</strong>gel & Hernquist (2002)


Run<br />

Box<br />

[Mpc/h]<br />

Np<br />

M gas<br />

[M/h]<br />

m DM<br />

[M/h]<br />

e<br />

[kpc/h]<br />

z end<br />

w<strong>in</strong>d<br />

O3 10. 1443 3.7e6 2.4e7 2.8 2.75 none<br />

P3 10. 1443 3.7e6 2.4e7 2.8 2.75 weak<br />

Q3 10. 1443 3.7e6 2.4e7 2.8 2.75 strong<br />

Q4 10. 2163 1.1e6 7.2e6 1.9 2.75 strong<br />

Q5 10. 3243 3.3e5 2.1e6 1.2 2.75 strong<br />

D5 33.8 3243 1.3e7 8.2e7 4.2 1.00 strong<br />

G5 100. 3243 1.1e9 7.2e9 8.0 0.0 strong


Neutral Hydrogen Density


~400 kpc comv<br />

NHI<br />

~300 kpc<br />

<strong>DLAs</strong><br />

Q5 z=3


NHI<br />

<strong>DLAs</strong><br />

Q5


DLA Cross Section vs. Mhalo<br />

Power-law fit<br />

<br />

strong<br />

Previous study:<br />

Gardner et al. (2000)


Cumulative DLA Abundance<br />

Gardner<br />

<br />

<br />

: power-law fit<br />

obs.<br />

nST :<br />

Sheth & Tormen<br />

analytic mass fcn.


Evolution of DLA Abundance<br />

Consistent w obs at z ³ 2.5<br />

(Peroux et al. 2003)<br />

Uncerta<strong>in</strong> at z < 2 because<br />

of <strong>in</strong>sufficient res.


NHI<br />

Mstar<br />

MZ<br />

<strong>DLAs</strong><br />

SFR<br />

metallicity


N HI<br />

DLA<br />

M<br />

*<br />

SFR<br />

Z/Z<br />

M Z


The “metallicity problem”<br />

* Simulated áZ/Zñ too high<br />

(comparable to LBGs)<br />

Existence of high NHI,<br />

high Z/Z systems.<br />

<br />

[Same problems found by Cen<br />

et al.]<br />

Selection effect?<br />

Dust Ext<strong>in</strong>ction?<br />

Incomplete feedback ?<br />

obs


The l<strong>in</strong>k to the “miss<strong>in</strong>g metal problem”<br />

(Pett<strong>in</strong>i)<br />

(Wolfe et al. 2003)<br />

“Where are the metals?”


Conclusions & Issues<br />

Hydrodynamic simulations cont<strong>in</strong>ue to improve.<br />

WHI(z) , dN/dz, S * , S SFR look ok @ z³3.<br />

(w. improved <strong>SPH</strong> formulation, SF & SN feedback, & resolution)<br />

But…., the “metallicity problem” (cf. “miss<strong>in</strong>g metal<br />

problem”)<br />

more sophisticated treatment needed.<br />

Even stronger feedback? Unlikely.<br />

Hide metals <strong>in</strong> hot phase? Possible.<br />

Galaxies: fa<strong>in</strong>t-end, proximity effect / Ly-a forest<br />

Use full resources. Reveal<strong>in</strong>g the disagreement w<br />

obs helps improv<strong>in</strong>g the simulations.


Additional Slides


f(N) of each halo


Distribution Function f(N)<br />

Gamma-distribution<br />

fit


Stellar Mass Density vs. NHI<br />

Positive correlation<br />

btw S star and NHI.<br />

Star-to-gas ratio:<br />

~ 1 (z=4.5)<br />

~ 3 (z=3)<br />

~ 10 (z=1)<br />

~ 20 (z=0)


Projected SFR density vs. NHI<br />

Positive correlation<br />

btw SFR & NHI<br />

Kennicutt Law<br />

Î SFR = (2:5æ0:7) â 10 à 4<br />

(Î gas=1:25â 10 20 cm à 2 ) 1:4æ0:15<br />

[M ì =yr=kpc 2 ]


SFR vs. Metallicity


Evolution of Mean DLA Metallicity


PDF of DLA <strong>in</strong>terception rate


Host Galaxy Magnitude vs. NHI<br />

<br />

Wide range of<br />

NHI absorption<br />

systems should be<br />

associated with<br />

LBGs.


Galaxy Metallicity<br />

LBGs: ~1/3 Z/Z<br />

(Pett<strong>in</strong>i 1999)<br />

<br />

<br />

Consistent result<br />

seen <strong>in</strong> Eulerian sims.<br />

(Nagam<strong>in</strong>e 2002)<br />

LBGs


Effect of Resolution<br />

Q3 (2.78 kpc/h) Q4 (1.85 kpc/h) Q5 (1.23 kpc/h)


Effect of Resolution (II)<br />

Q3 (2.78 kpc/h) Q4 (1.85 kpc/h) Q5 (1.23 kpc/h)


Effect of W<strong>in</strong>d<br />

O3 (none) P3 (weak) Q3 (strong)


Effect of W<strong>in</strong>d (II)<br />

O3 (none) P3 (weak) Q3 (strong)


~400 kpc comv<br />

M metal<br />

~300 kpc comv<br />

metallicity


~400 kpc comv ~300 kpc comv<br />

<strong>DLAs</strong><br />

Mstar


~400 kpc comv ~300 kpc comv<br />

<strong>DLAs</strong><br />

S SF


~400 kpc comv<br />

Mstar<br />

~300 kpc comv<br />

metallicity

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!