11.02.2014 Views

Density Functional Theory and the Local Density Approximation

Density Functional Theory and the Local Density Approximation

Density Functional Theory and the Local Density Approximation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The First Principles Approach<br />

it is free of adjustable parameters<br />

it treats <strong>the</strong> electrons explicitly<br />

cost of <strong>the</strong> calculation limits system size <strong>and</strong> simulation time<br />

electron<br />

nucleus<br />

Hˆ<br />

({ R },<br />

{ r }) = E ({ R },<br />

{ r })<br />

N , e!<br />

N , e J i N , e!<br />

N , e<br />

J<br />

i<br />

where<br />

H ˆ<br />

N e<br />

= Tˆ<br />

N<br />

+ Tˆ<br />

e<br />

+ Vˆ<br />

N ! N<br />

+ Vˆ<br />

N ! e<br />

+ Vˆ<br />

,<br />

e!<br />

e<br />

Born-Oppenheimer <strong>Approximation</strong><br />

Electron mass much smaller than nuclear mass:<br />

Timescale associated with nuclear motion much slower than that<br />

associated with electronic motion<br />

Electrons follow instantaneously <strong>the</strong> motion of <strong>the</strong> nuclei,<br />

remaining always in <strong>the</strong> same stationary state of <strong>the</strong> Hamiltonian<br />

#<br />

Hˆ<br />

({ R },<br />

{ r }) = " ({ R }) ({ r })<br />

N , e J i N J<br />

!<br />

({ R },<br />

{ r }) = E ({ R },<br />

{ r })<br />

N , e!<br />

N , e J i N , e!<br />

N , e<br />

i<br />

J<br />

depends only parametrically on {R J }<br />

i<br />

Born-Oppenheimer approximation decouples <strong>the</strong> electronic problem<br />

from <strong>the</strong> ionic problem. The electronic problem is:<br />

({ r }) = E ({ r })<br />

H ˆ ! !<br />

i<br />

i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!