10.02.2014 Views

A Brief Introduction to Space Plasma Physics.pdf - Institute of ...

A Brief Introduction to Space Plasma Physics.pdf - Institute of ...

A Brief Introduction to Space Plasma Physics.pdf - Institute of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ESS 200C - <strong>Space</strong> <strong>Plasma</strong> <strong>Physics</strong><br />

Winter Quarter 2006-2007<br />

Date Topic<br />

1/8 Organization and <strong>Introduction</strong><br />

<strong>to</strong> <strong>Space</strong> <strong>Physics</strong> I<br />

1/10 <strong>Introduction</strong> <strong>to</strong> <strong>Space</strong> <strong>Physics</strong> II<br />

1/17 <strong>Introduction</strong> <strong>to</strong> <strong>Space</strong> <strong>Physics</strong> III<br />

1/19 The Sun I<br />

1/22 The Sun II<br />

1/24 The Solar Wind I<br />

1/29 The Solar Wind II<br />

1/31 First Exam<br />

2/5 Bow Shock and Magne<strong>to</strong>sheath<br />

2/7 The Magne<strong>to</strong>sphere I<br />

Raymond J. Walker<br />

Schedule <strong>of</strong> Classes<br />

Date Topic<br />

2/14 The Magne<strong>to</strong>sphere II<br />

2/16 The Magne<strong>to</strong>sphere III<br />

2/21 Planetary Magne<strong>to</strong>spheres<br />

2/23 The Earth’s Ionosphere<br />

2/26 Subs<strong>to</strong>rms<br />

3/5 Aurorae<br />

3/7 Planetary Ionospheres<br />

3/12 Pulsations<br />

3./14 S<strong>to</strong>rms and Review<br />

Second Exam


ESS 200C – <strong>Space</strong> <strong>Plasma</strong><br />

<strong>Physics</strong><br />

• There will be two examinations and homework assignments.<br />

• The grade will be based on<br />

– 35% Exam 1<br />

– 35% Exam 2<br />

– 30% Homework<br />

• References<br />

– Kivelson M. G. and C. T. Russell, <strong>Introduction</strong> <strong>to</strong> <strong>Space</strong><br />

<strong>Physics</strong>, Cambridge University Press, 1995.<br />

– Gombosi, T. I., <strong>Physics</strong> <strong>of</strong> the <strong>Space</strong> Environment, Cambridge<br />

University Press, 1998<br />

– Kellenrode, M-B, <strong>Space</strong> <strong>Physics</strong>, An <strong>Introduction</strong> <strong>to</strong> <strong>Plasma</strong>s and<br />

Particles in the Heliosphere and Magne<strong>to</strong>spheres, Springer, 2000.<br />

– Walker, A. D. M., Magne<strong>to</strong>hydrodynamic Waves in <strong>Space</strong>, <strong>Institute</strong><br />

<strong>of</strong> <strong>Physics</strong> Publishing, 2005.


<strong>Space</strong> <strong>Plasma</strong> <strong>Physics</strong><br />

• <strong>Space</strong> physics is concerned with the interaction <strong>of</strong><br />

charged particles with electric and magnetic fields in<br />

space.<br />

• <strong>Space</strong> physics involves the interaction between the<br />

Sun, the solar wind, the magne<strong>to</strong>sphere and the<br />

ionosphere.<br />

• <strong>Space</strong> physics started with observations <strong>of</strong> the<br />

aurorae.<br />

– Old Testament references <strong>to</strong> auroras.<br />

– Greek literature speaks <strong>of</strong> “moving accumulations<br />

<strong>of</strong> burning clouds”<br />

– Chinese literature has references <strong>to</strong> auroras prior<br />

<strong>to</strong> 2000BC


• Aurora over Los Angeles (courtesy V.<br />

Peroomian)


– Galileo theorized that aurora is caused by air rising out <strong>of</strong><br />

the Earth’s shadow <strong>to</strong> where it could be illuminated by<br />

sunlight. (Note he also coined the name aurora borealis<br />

meaning “northern dawn”.)<br />

– Descartes thought they are reflections from ice crystals.<br />

– Halley suggested that auroral phenomena are ordered by<br />

the Earth’s magnetic field.<br />

– In 1731 the French philosopher de Mairan suggested they<br />

are connected <strong>to</strong> the solar atmosphere.


• By the 11th century the<br />

Chinese had learned that<br />

a magnetic needle points<br />

north-south.<br />

• By the 12th century the<br />

European records<br />

mention the compass.<br />

• That there was a<br />

difference between<br />

magnetic north and the<br />

direction <strong>of</strong> the compass<br />

needle (declination) was<br />

known by the 16th<br />

century.<br />

• William Gilbert (1600)<br />

realized that the field was<br />

dipolar.<br />

• In 1698 Edmund Halley<br />

organized the first<br />

scientific expedition <strong>to</strong><br />

map the field in the<br />

Atlantic Ocean.


The <strong>Plasma</strong> State<br />

• A plasma is an electrically neutral ionized<br />

gas.<br />

– The Sun is a plasma<br />

– The space between the Sun and the Earth<br />

is “filled” with a plasma.<br />

– The Earth is surrounded by a plasma.<br />

– A stroke <strong>of</strong> lightning forms a plasma<br />

– Over 99% <strong>of</strong> the Universe is a plasma.<br />

• Although neutral a plasma is composed <strong>of</strong><br />

charged particles- electric and magnetic<br />

forces are critical for understanding plasmas.


The Motion <strong>of</strong> Charged Particles<br />

• Equation <strong>of</strong> motion<br />

m<br />

r<br />

dv<br />

dt<br />

r<br />

= qE<br />

r r<br />

+ qv × B +<br />

• SI Units<br />

– mass (m) - kg<br />

– length (l) - m<br />

– time (t) - s<br />

– electric field (E) - V/m<br />

– magnetic field (B) - T<br />

– velocity (v) - m/s<br />

– F g stands for non-electromagnetic forces (e.g. gravity) -<br />

usually ignorable.<br />

r<br />

F g


• B acts <strong>to</strong> change the motion <strong>of</strong> a charged particle<br />

only in directions perpendicular <strong>to</strong> the motion.<br />

– Set E = 0, assume B along z-direction.<br />

mv&<br />

mv&<br />

v&&<br />

x<br />

v&&<br />

y<br />

x<br />

y<br />

=<br />

qv<br />

y<br />

= −qv<br />

2<br />

qv&<br />

yB<br />

q vxB<br />

= = −<br />

2<br />

m m<br />

2 2<br />

q vyB<br />

= −<br />

2<br />

m<br />

– Equations <strong>of</strong> circular motion with angular frequency<br />

(cyclotron frequency or gyro frequency<br />

Ω = qB<br />

c<br />

m<br />

– If q is positive particle gyrates in left handed sense<br />

– If q is negative particle gyrates in a right handed sense<br />

B<br />

x<br />

B<br />

2


• Radius <strong>of</strong> circle ( r c ) - cyclotron radius or Larmor<br />

radius or gyro radius. v = ρ Ω<br />

mv<br />

qB<br />

– The gyro radius is a function <strong>of</strong> energy.<br />

– Energy <strong>of</strong> charged particles is usually given in electron volts<br />

(eV)<br />

– Energy that a particle with the charge <strong>of</strong> an electron gets in<br />

falling through a potential drop <strong>of</strong> 1 Volt- 1 eV = 1.6X10 -19<br />

Joules (J).<br />

• Energies in space plasmas go from electron Volts <strong>to</strong><br />

kiloelectron Volts (1 keV = 10 3 eV) <strong>to</strong> millions <strong>of</strong> electron Volts<br />

(1 meV = 10 6 eV)<br />

• Cosmic ray energies go <strong>to</strong> gigaelectron Volts ( 1 geV = 10 9 eV).<br />

• The circular motion does no work on a particle<br />

r r<br />

F ⋅v<br />

=<br />

r<br />

dv<br />

m<br />

dt<br />

r<br />

⋅v<br />

⊥<br />

ρ<br />

c<br />

=<br />

c<br />

1<br />

d(<br />

2<br />

mv<br />

=<br />

dt<br />

2<br />

⊥<br />

)<br />

c<br />

r r r<br />

= qv ⋅(<br />

v × B)<br />

= 0<br />

Only the electric field can energize particles!


• The electric field can modify the particles motion.<br />

– Assume E r ≠ 0 but B r still uniform and F g =0.<br />

– Frequently in space physics it is ok <strong>to</strong> set E<br />

r<br />

⋅ B r<br />

= 0<br />

• Only E r<br />

can accelerate particles along B r<br />

• Positive particles go along E and negative particles go<br />

along − E<br />

• Eventually charge separation wipes out E<br />

E ⊥<br />

– has a major effect on motion.<br />

• As a particle gyrates it moves along E r and gains energy<br />

• Later in the circle it losses energy.<br />

• This causes different parts <strong>of</strong> the “circle” <strong>to</strong> have different radii -<br />

it doesn’t close on itself.<br />

r r<br />

r E × B<br />

=<br />

u E<br />

2<br />

B<br />

• Drift velocity is perpendicular <strong>to</strong> and<br />

• No charge dependence, therefore no currents<br />

E r<br />

B r


• Any force capable <strong>of</strong> accelerating and decelerating<br />

charged particles can cause<br />

r r<br />

them <strong>to</strong> drift.<br />

r F × B<br />

u F<br />

=<br />

2<br />

qB<br />

– If the force is charge independent the drift motion will<br />

depend on the sign <strong>of</strong> the charge and can form<br />

perpendicular currents.<br />

• Changing magnetic fields cause a drift velocity.<br />

– If B r changes over a gyro-orbit the radius <strong>of</strong> curvature will<br />

change.<br />

mv⊥<br />

– ρc<br />

= gets smaller when the particle goes in<strong>to</strong> a region <strong>of</strong><br />

qB<br />

stronger B. Thus the drift is opposite <strong>to</strong> that <strong>of</strong> E<br />

r B<br />

r<br />

r r × motion.<br />

r<br />

−1<br />

2 ∇B<br />

× B<br />

1 2 B × ∇B<br />

u g<br />

=<br />

2<br />

mv⊥<br />

=<br />

3 2<br />

mv⊥<br />

3<br />

qB<br />

qB<br />

– u g depends on the charge so it can yield perpendicular<br />

currents.


• The change in the direction <strong>of</strong> the magnetic field<br />

along a field line can cause motion.<br />

– The curvature <strong>of</strong> the magnetic field line introduces a drift<br />

motion.<br />

• As particles move along the field they undergo centrifugal<br />

acceleration.<br />

2<br />

r<br />

F<br />

mv<br />

R<br />

nˆ<br />

• R c<br />

is the radius <strong>of</strong> curvature <strong>of</strong> a field line ( = −(<br />

bˆ<br />

⋅∇)<br />

bˆ<br />

)<br />

where<br />

Rc<br />

r<br />

B<br />

bˆ = , nˆ is perpendicular <strong>to</strong> B r<br />

and points away from the center<br />

B<br />

<strong>of</strong> curvature, v is the component <strong>of</strong> velocity along B r<br />

r<br />

u<br />

c<br />

=<br />

mv<br />

• Curvature drift can cause currents.<br />

=<br />

c<br />

Rˆ<br />

c<br />

r<br />

B×<br />

( bˆ<br />

⋅∇)<br />

bˆ<br />

2 2<br />

ˆ<br />

qB<br />

2<br />

r<br />

mv B×<br />

n<br />

= −<br />

2<br />

R qB<br />

c


• The Concept <strong>of</strong> the Guiding Center<br />

v r<br />

– Separates the motion ( ) <strong>of</strong> a particle in<strong>to</strong> motion<br />

perpendicular ( ) and parallel ( v ) <strong>to</strong> the magnetic field.<br />

v<br />

⊥<br />

– To a good approximation the perpendicular motion can<br />

consist <strong>of</strong> a drift ( ) and the gyro-motion ( )<br />

r<br />

v<br />

=<br />

r<br />

v<br />

v D<br />

– Over long times the gyro-motion is averaged out and the<br />

particle motion can be described by the guiding center<br />

motion consisting <strong>of</strong> the parallel motion and drift. This is very<br />

useful for distances l such that ρ c<br />

l


• Maxwell’s equations<br />

– Poisson’s Equation<br />

∇ ⋅ E r<br />

=<br />

ρ<br />

ε 0<br />

• E r is the electric field<br />

• ρ is the charge density<br />

• ε is the electric permittivity (8.85 X 10 -12 0<br />

Farad/m)<br />

– Gauss’ Law (absence <strong>of</strong> magnetic monopoles)<br />

∇ ⋅ B r<br />

= 0<br />

• is the magnetic field<br />

B r


– Faraday’s Law<br />

– Ampere’s Law<br />

r<br />

∇× B =<br />

• c is the speed <strong>of</strong> light.<br />

• Is the permeability <strong>of</strong> free space, H/m<br />

0<br />

• is the current density<br />

r<br />

r ∂B<br />

∇× E = −<br />

∂t<br />

1<br />

c<br />

2<br />

r<br />

∂E<br />

∂t<br />

r<br />

+ µ J<br />

−7<br />

µ µ = 4π ×<br />

J r<br />

0<br />

0<br />

10


• Maxwell’s equations in integral form<br />

r 1<br />

∫ E ⋅ ndA ˆ = ∫ ρ dV<br />

A<br />

ε 0<br />

– A is the area, dA is the differential element <strong>of</strong> area<br />

– nˆ is a unit normal vec<strong>to</strong>r <strong>to</strong> dA pointing outward.<br />

– V is the volume, dV is the differential volume element<br />

ˆn '<br />

∫<br />

∫<br />

A<br />

C<br />

r<br />

B ⋅ nd ˆ A =<br />

v r<br />

E ⋅ ds = −<br />

0<br />

r<br />

∂B<br />

∂t<br />

'<br />

⋅nˆ<br />

dF = −<br />

∂Φ<br />

∂ t<br />

– is a unit normal vec<strong>to</strong>r <strong>to</strong> the surface element dF in the<br />

direction given by the right hand rule for integration around<br />

C, and is magnetic flux through the surface.<br />

ds<br />

r<br />

Φ<br />

– is the differential element<br />

r<br />

around C.<br />

r r ∂E<br />

'<br />

∫ B ⋅ds<br />

= 2 n dF J<br />

C<br />

c ∫ ⋅ ˆ + µ<br />

0<br />

∂t<br />

∫<br />

∫<br />

1<br />

ˆ<br />

'<br />

⋅n dF


• The first adiabatic invariant<br />

r<br />

∂B<br />

r<br />

– = −∇× E says that changing B r<br />

drives E r<br />

(electromotive<br />

∂t<br />

force). This means that the particles change energy in<br />

changing magnetic fields.<br />

– Even if the energy changes there is a quantity that remains<br />

constant provided the magnetic field changes slowly enough.<br />

– µ is called the magnetic moment. In a wire loop the<br />

magnetic moment is the current through the loop times the<br />

area.<br />

µ<br />

1 2<br />

2<br />

mv =<br />

⊥ =<br />

B<br />

– As a particle moves <strong>to</strong> a region <strong>of</strong> stronger (weaker) B it is<br />

accelerated (decelerated).<br />

const.


• For a coordinate in which the motion is<br />

periodic the action integral<br />

J<br />

i<br />

= ∫ pidqi<br />

= constant<br />

is conserved.<br />

rHere pr<br />

i is the rcanonical<br />

momentum ( p = mv + qA where A is the<br />

vec<strong>to</strong>r potential).<br />

r r 2πm<br />

• For a gyrating particle J1 = ∫ p⊥<br />

⋅ds<br />

= µ<br />

q<br />

• The action integrals are conserved when the<br />

properties <strong>of</strong> the system change slowly<br />

compared <strong>to</strong> the period <strong>of</strong> the coordinate.


• The magnetic mirror<br />

– As a particle gyrates the current will be<br />

I =<br />

q<br />

T c<br />

where<br />

T c<br />

= π<br />

Ω<br />

c<br />

– The force on a dipole magnetic moment is<br />

where<br />

A = π r<br />

IA<br />

=<br />

π v<br />

2<br />

c<br />

2<br />

⊥<br />

2π<br />

Ω<br />

v<br />

= π<br />

Ω<br />

q Ω<br />

c<br />

2<br />

c<br />

=<br />

2<br />

⊥<br />

2<br />

c<br />

mv<br />

2B<br />

r<br />

dB<br />

F = −<br />

r µ ⋅∇B<br />

= −µ<br />

r<br />

dz<br />

µ = µ bˆ<br />

2<br />

⊥<br />

=<br />

2 µ


B r<br />

• The force is along and away from the direction <strong>of</strong><br />

increasing B.<br />

• Since E = 0 and kinetic energy must be conserved<br />

1 2 1 2 2<br />

2<br />

mv =<br />

2<br />

m(<br />

v + v⊥)<br />

a decrease in v must yield an increase in v⊥<br />

• Particles will turn around when<br />

B =<br />

1<br />

mv<br />

2<br />

2<br />

µ


• The second adiabatic invariant<br />

– The integral <strong>of</strong> the parallel momentum over one<br />

complete bounce between mirrors is constant (as<br />

long as B doesn’t change much in a bounce).<br />

J<br />

= ∫<br />

s<br />

s<br />

1<br />

2<br />

2mv<br />

ds<br />

= const.<br />

– Using conservation <strong>of</strong> energy and the first<br />

adiabatic invariant<br />

J<br />

= ∫<br />

s<br />

s<br />

1<br />

2<br />

B<br />

2<br />

2mv(1<br />

− )<br />

1<br />

ds<br />

B<br />

here B m is the magnetic field at the mirror point.<br />

m<br />

= const.


– As particles bounce they will drift<br />

because <strong>of</strong> gradient and<br />

curvature drift motion.<br />

– If the field is a dipole their<br />

trajec<strong>to</strong>ries will take them around<br />

the planet and close on<br />

themselves.<br />

• The third adiabatic invariant<br />

– As long as the magnetic field<br />

doesn’t change much in the time<br />

required <strong>to</strong> drift around a rplanet<br />

the magnetic flux Φ = ∫ B ⋅ nˆ<br />

dA<br />

inside the orbit must be constant.<br />

– Note it is the <strong>to</strong>tal flux that is<br />

conserved including the flux<br />

within the planet.


• Limitations on the invariants<br />

µ<br />

– is constant when there is little change in the field’s<br />

strength over a cyclotron path.<br />

∇B<br />

B<br />

– All invariants require that the magnetic field not change much in the<br />

time required for one cycle <strong>of</strong> motion<br />

1<br />

B<br />


The Properties <strong>of</strong> a <strong>Plasma</strong><br />

• A plasma as a collection <strong>of</strong> particles<br />

– The properties <strong>of</strong> a collection <strong>of</strong> particles can be described<br />

by specifying how many there are in a 6 dimensional volume<br />

called phase space.<br />

• There are 3 dimensions in “real” or configuration space and 3<br />

dimensions in velocity space.<br />

• The volume in phase space is<br />

dvdr<br />

• The number <strong>of</strong> particles in a phase space volume is<br />

where f is called the distribution function.<br />

– The density <strong>of</strong> particles <strong>of</strong> species “s” (number per unit<br />

volume)<br />

– The average velocity (bulk flow velocity)<br />

r<br />

u<br />

s<br />

r<br />

(<br />

, t)<br />

=<br />

dv<br />

r r r<br />

ns (<br />

, t)<br />

= ∫ fs<br />

(<br />

, v,<br />

t)<br />

dv<br />

x<br />

dv<br />

y<br />

dv<br />

z<br />

dxdydz<br />

r r r r r<br />

= vf (<br />

, v,<br />

t)<br />

dv / f (<br />

, v,<br />

t)<br />

dv<br />

∫<br />

s<br />

∫ s<br />

r r<br />

f (<br />

, v,<br />

t)<br />

dvdr


– Average random energy<br />

r r 2<br />

− = ∫<br />

2 r r r<br />

1<br />

ms ( v us<br />

) ms<br />

( v − us<br />

) fs<br />

(<br />

, v,<br />

t)<br />

dv / fs<br />

(<br />

, v,<br />

t)<br />

dv<br />

r<br />

1<br />

2<br />

2<br />

– The partial pressure <strong>of</strong> s is given by<br />

p<br />

n<br />

s<br />

s<br />

2<br />

N<br />

=<br />

( ) 2 3r −<br />

1 2<br />

(<br />

2ms<br />

( v us<br />

)<br />

where N is the number <strong>of</strong> independent velocity components<br />

(usually 3).<br />

r<br />

∫<br />

– In equilibrium the phase space distribution is a Maxwellian<br />

distribution<br />

r r<br />

⎡ 1<br />

2<br />

r r<br />

( )<br />

( − ) ⎤<br />

2<br />

ms<br />

v us<br />

fs<br />

, v = As<br />

exp⎢<br />

⎥⎦<br />

⎣ kTs<br />

where<br />

A<br />

s<br />

= n<br />

s<br />

m<br />

2π<br />

kT


• For mona<strong>to</strong>mic particles in equilibrium<br />

1 2<br />

2m<br />

( ) NkT<br />

s<br />

v us<br />

= / 2<br />

p<br />

s<br />

=nskTs<br />

where k is the Boltzman constant (k=1.38x10 -23 JK -1 )<br />

• For mona<strong>to</strong>mic particles in equilibrium<br />

m v<br />

r − u<br />

r 2<br />

= NkT<br />

1<br />

2<br />

( ( ) ) 2<br />

• This is true even for magnetized particles.<br />

• The ideal gas law becomes<br />

s<br />

r<br />

− r<br />

s<br />

p = n<br />

s<br />

s<br />

kT<br />

s<br />

s


– Other frequently used distribution functions.<br />

• The bi-Maxwellian distribution<br />

⎡ 1<br />

r r<br />

ms<br />

v − u<br />

'<br />

2<br />

f ( ) = ⎢<br />

s<br />

, v As<br />

exp −<br />

⎢ kT<br />

⎣<br />

s<br />

– where<br />

s s s ⎜ s s ⎟<br />

⎝ ⎠<br />

– It is useful when there is a difference between the distributions<br />

perpendicular and parallel <strong>to</strong> the magnetic field<br />

• The kappa distribution<br />

f<br />

s<br />

r<br />

'<br />

A<br />

r<br />

( r,<br />

v)<br />

=<br />

A<br />

Κ characterizes the departure from Maxwellian form.<br />

– E Ts is an energy.<br />

κs<br />

⎡<br />

⎢1<br />

+<br />

⎣<br />

2<br />

( ) ⎤ r r<br />

⎡ 1<br />

2<br />

( ) ⎤<br />

⎥⎦<br />

1<br />

2<br />

m<br />

s<br />

⎥ exp⎢−<br />

⎥<br />

⎦ ⎣<br />

( v − u )<br />

sκ Ts<br />

s<br />

− u<br />

– At high energies E>>κE Ts it falls <strong>of</strong>f more slowly than a Maxwellian<br />

(similar <strong>to</strong> a power law)<br />

κ → ∞<br />

⎛<br />

⎜T<br />

3<br />

2<br />

= A T<br />

⊥<br />

T<br />

1<br />

2<br />

⎞<br />

⎟<br />

– For it becomes a Maxwellian with temperature kT=E Ts<br />

r<br />

E<br />

r<br />

2<br />

2<br />

⎤<br />

⎥<br />

⎦<br />

m<br />

s<br />

v<br />

−κ<br />

−1<br />

⊥<br />

kT<br />

⊥s<br />

⊥s


• What makes an ionized gas a plasma?<br />

– The electrostatic potential <strong>of</strong> an isolated ion ϕ =<br />

q<br />

4πε 0<br />

r<br />

– The electrons in the gas will be attracted <strong>to</strong> the ion and will reduce<br />

the potential at large distances.<br />

– If we assume neutrality Poisson’s equation around a test charge<br />

q 0<br />

is<br />

∇<br />

– Expanding in a Taylor series for r>0 and for both<br />

–<br />

ϕ<br />

r − ρ q<br />

⎡ ⎛ ⎞ ⎛ ⎞⎤<br />

0 3 en0<br />

eϕ<br />

− eϕ<br />

( ) = = − δ ( r ) + exp⎜<br />

⎟ − exp⎜<br />

⎟⎥ ⎦<br />

2 r<br />

ε<br />

0<br />

electrons and ions<br />

∇<br />

ϕ<br />

r<br />

2<br />

ε<br />

0<br />

en ⎡<br />

⎢<br />

ε<br />

0 ⎣<br />

eϕ<br />

kT<br />

ε<br />

0<br />

⎢<br />

⎣<br />

eϕ<br />

⎤<br />

⎥<br />

kTion<br />

⎦<br />

⎜<br />

⎝ kT<br />

⎟<br />

⎠<br />

eϕ kT<br />

⎜<br />

⎝<br />

e<br />

kT ion<br />


ϕ =<br />

−r<br />

λ<br />

qe D<br />

4π<br />

ε 0<br />

r<br />

•The Debye length ( ) is<br />

where n is the electron number density and now e<br />

is the electron charge.<br />

•The number <strong>of</strong> particles within a Debye sphere<br />

N<br />

D<br />

3<br />

4π<br />

nλ<br />

=<br />

D<br />

3<br />

λ<br />

needs <strong>to</strong> be large for shielding <strong>to</strong> occur<br />

(N D >>1). Far from the central charge the electrostatic<br />

force is shielded.<br />

D<br />

λ D<br />

⎛ 0kT<br />

= ⎜ ne<br />

2<br />

⎝<br />

ε<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

2


• The plasma frequency<br />

– Consider a slab <strong>of</strong> plasma <strong>of</strong> thickness L.<br />

– At t=0 displace the electron part <strong>of</strong> the slab by


– The frequency <strong>of</strong> this oscillation is the plasma frequency<br />

ω<br />

ω<br />

ω<br />

2<br />

p<br />

2<br />

pe<br />

0 ion<br />

– Because m ion >>m e<br />

ω ≈<br />

2<br />

pi<br />

= ω<br />

2<br />

pe<br />

2<br />

e n0<br />

=<br />

ε<br />

0m<br />

2<br />

e n<br />

=<br />

ε m<br />

+ ω<br />

e<br />

0<br />

p<br />

ω pe<br />

2<br />

pi


• A note on conservation laws<br />

– Consider a quantity that can be moved from place <strong>to</strong> place.<br />

f r<br />

– Let be the flux <strong>of</strong> this quantity – i.e. if we have an element <strong>of</strong> area<br />

then is the amount <strong>of</strong> the quantity passing the area<br />

element per unit time.<br />

– Consider a volume V <strong>of</strong> space, bounded by a surface S.<br />

– If σ is the density <strong>of</strong> the substance then the <strong>to</strong>tal amount in the<br />

volume is<br />

r r<br />

f ⋅δ<br />

A<br />

∫σ dV<br />

– The rate at which material is lost through the surface is<br />

d<br />

r r<br />

∫σ<br />

dV = −∫ f ⋅ dA<br />

dt<br />

– Use Gauss’ theorem<br />

V<br />

– An equation <strong>of</strong> the preceeding form means that the quantity whose<br />

density is σ is conserved.<br />

∫<br />

V<br />

V<br />

⎧∂σ<br />

⎨ + ∇ ⋅<br />

⎩ ∂t<br />

∂σ<br />

= −∇ ⋅<br />

∂t<br />

S<br />

r⎫<br />

f ⎬dV<br />

⎭<br />

r<br />

f<br />

= 0<br />

r r<br />

∫ f ⋅dA<br />

S<br />

δA r


• Magne<strong>to</strong>hydrodynamics (MHD)<br />

– The average properties are governed by the basic<br />

conservation laws for mass, momentum and energy in a<br />

fluid.<br />

– Continuity equation<br />

∂n<br />

∂t<br />

s<br />

+ ∇ ⋅ n<br />

– S s and L s represent sources and losses. S s -L s is the net rate<br />

at which particles are added or lost per unit volume.<br />

– The number <strong>of</strong> particles changes only if there are sources<br />

and losses.<br />

s<br />

r<br />

u<br />

– S s ,L s ,n s , and u s can be functions <strong>of</strong> time and position.<br />

– Assume S s =0 and L s =0, ρ s= m<br />

sn<br />

, s ∫ ρ sdr<br />

= M<br />

s where M s is<br />

the <strong>to</strong>tal mass <strong>of</strong> s and dr is a volume element (e.g. dxdydz)<br />

∂M<br />

s<br />

r ∂M<br />

s<br />

r r<br />

+ ∇ ⋅<br />

sus<br />

dr = +<br />

sus<br />

⋅ds<br />

∂t<br />

∫ (ρ )<br />

∂t<br />

∫ ρ<br />

where ds<br />

r is a surface element bounding the volume.<br />

s<br />

=<br />

S<br />

s<br />

−<br />

L<br />

s


– Momentum equation<br />

r<br />

∂us<br />

r r r<br />

r r r<br />

ρ<br />

s<br />

( + us<br />

⋅∇us<br />

) + msus<br />

( Ss<br />

− Ls<br />

) = −∇ps<br />

+ ρqsE<br />

+ J<br />

s<br />

× B + ρsF<br />

∂t<br />

ρ<br />

= q<br />

n<br />

r<br />

J =<br />

where qs s s is the charge density, s s s s is the<br />

current density, and the last term is the density <strong>of</strong> nonelectromagnetic<br />

forces<br />

∂ r<br />

– The opera<strong>to</strong>r ( + u s<br />

⋅∇)<br />

is called the convective derivative<br />

∂t<br />

and gives the <strong>to</strong>tal time derivative resulting from intrinsic<br />

time changes and spatial motion.<br />

– If the fluid is not moving (u s =0) the left side gives the net<br />

change in the momentum density <strong>of</strong> the fluid element.<br />

– The right side is the density <strong>of</strong> forces<br />

• If there is a pressure gradient then the fluid moves <strong>to</strong>ward lower<br />

pressure.<br />

• The second and third terms are the electric and magnetic<br />

forces.<br />

q<br />

n<br />

r<br />

u<br />

g<br />

m<br />

s


u s ⋅∇ u s<br />

0<br />

– The term means that the fluid transports<br />

momentum with it.<br />

• Combine the species for the continuity and<br />

momentum equations<br />

– Drop the sources and losses, multiply the continuity<br />

equations by m s , assume n p =n e and add.<br />

Continuity<br />

∂ρ<br />

r<br />

+ ∇ ⋅( ρ u)<br />

=<br />

∂t<br />

– Add the momentum equations and use m e


• Energy equation<br />

∂<br />

(<br />

∂t<br />

1<br />

2<br />

2<br />

r r r<br />

1 2<br />

ρ u + U)<br />

+∇⋅[(<br />

2<br />

ρu<br />

+ U)<br />

u + pu + q]<br />

=<br />

q r<br />

where is the heat flux, U is the internal energy<br />

density <strong>of</strong> the mona<strong>to</strong>mic plasma ( U = nNkT / 2) and<br />

N is the number <strong>of</strong> degrees <strong>of</strong> freedom<br />

q r<br />

treated by making approximations so it can be handled by<br />

the other variables.<br />

the fluid element)<br />

−γ<br />

∂p<br />

r ∂ρ<br />

r<br />

p = const.<br />

+ u ⋅∇p<br />

= c<br />

2<br />

s<br />

( + u ⋅∇ρ<br />

– adds three unknowns <strong>to</strong> our set <strong>of</strong> equations. It is usually<br />

– Make the adiabatic assumption (no change in the entropy <strong>of</strong><br />

ρ or<br />

)<br />

∂t<br />

∂t<br />

2<br />

where c s is the speed <strong>of</strong> sound c s<br />

= γ p ρ and γ = c p<br />

c v<br />

c p and c v are the specific heats at constant pressure and<br />

constant volume. It is called the polytropic index. In<br />

thermodynamic equilibrium γ = ( N + 2) N = 5 / 3<br />

r r r r<br />

J ⋅E<br />

+ ρu<br />

⋅F<br />

g<br />

m


• Maxwell’s equations<br />

r<br />

∂B<br />

r<br />

= −∇× E<br />

∂t<br />

r r<br />

∇× B = µ 0<br />

J<br />

– ∇ ⋅ B r = 0 doesn’t help rbecause<br />

∂(<br />

∇ ⋅ B)<br />

r<br />

= −∇ ⋅∇× E = 0<br />

∂t<br />

r r r<br />

– There are 14 unknowns in this set <strong>of</strong> equations - r<br />

E , B,<br />

J , u,<br />

ρ,<br />

p<br />

– We have 11 equations.<br />

• Ohm’s law<br />

– Multiply the momentum equations for each individual species<br />

by q s /m s and subtract<br />

r<br />

J<br />

r<br />

r r r 1 1 r r me<br />

∂J<br />

rr<br />

= σ {( E + u × B)<br />

+ ∇pe<br />

− J × B − [ + ∇ ⋅(<br />

Ju)]}<br />

2<br />

ne ne ne ∂t<br />

r r<br />

where J = ∑ qsnsusand σ is the electrical conductivity<br />

s


– Often the last terms on the right in Ohm’s Law can be dropped<br />

– If the plasma is collisionless, may be very large so<br />

• Frozen in flux<br />

r r r r<br />

J = σ ( E + u × B)<br />

σ<br />

r r r<br />

E + u × B = 0<br />

– Combining Faraday’s law ( ), and<br />

r<br />

∇× B<br />

Ampere’ law ( ) with<br />

r<br />

∂B<br />

∂t<br />

η<br />

m<br />

= 1 σ µ 0<br />

r<br />

r ∂B<br />

∇× E = −<br />

r r ∂rt<br />

r r<br />

= µ 0<br />

J J = σ ( E + u × B)<br />

r r r<br />

2<br />

= ∇× ( u × B)<br />

+ η ∇ B<br />

where is the magnetic viscosity<br />

– If the fluid is at rest this rbecomes a “diffusion” equation<br />

∂B<br />

r<br />

2<br />

= ηm∇<br />

B<br />

∂t<br />

– The magnetic field will exponentially decay (or diffuse) from a<br />

2<br />

conducting medium in a time τ D<br />

= L η where L B<br />

is the system size.<br />

m<br />

B<br />

m


– On time scales much shorter than<br />

r<br />

∂B<br />

∂t<br />

r r<br />

= ∇× ( u × B)<br />

– The electric field vanishes in the frame moving with the fluid.<br />

– Consider the rate <strong>of</strong> change <strong>of</strong> magnetic flux<br />

dΦ<br />

dt<br />

=<br />

d<br />

dt<br />

r<br />

∂B<br />

∂t<br />

∫ B ⋅ndA<br />

= ∫ ⋅ ndA + ∫ B ⋅(<br />

u ×<br />

A<br />

r<br />

ˆ<br />

– The first term on the right is caused by the temporal changes<br />

in B<br />

– The second term is caused by motion <strong>of</strong> the boundary<br />

– The term is the area swept out per unit time<br />

A<br />

r r<br />

u × dl<br />

0<br />

– Use S<strong>to</strong>ke’s theorem<br />

Φ r<br />

d ⎛ ∂<br />

⎞<br />

= ∫ B r r<br />

⎜ ( ) ⎟<br />

− ∇× u × B<br />

⋅ nˆ<br />

=<br />

dt ⎝ ∂<br />

dA<br />

A<br />

t<br />

⎠<br />

– If the fluid is initially on surface s as it moves through the<br />

system the flux through the surface will remain constant<br />

even though the location and shape <strong>of</strong> the surface change.<br />

ˆ<br />

τ D<br />

C<br />

r<br />

r<br />

r<br />

dl )


F B<br />

• Magnetic pressure and tension<br />

=<br />

r<br />

J ×<br />

r<br />

B<br />

=<br />

1 2<br />

)<br />

µ<br />

( ∇× B)<br />

× B = −∇B<br />

2µ<br />

0<br />

+ ( B ⋅∇ B<br />

0<br />

r<br />

r<br />

r<br />

r<br />

µ<br />

0<br />

2<br />

– p B<br />

= B<br />

A magnetic pressure analogous <strong>to</strong> the plasma<br />

2µ<br />

pressure ( )<br />

β ≡<br />

B<br />

p<br />

– 2 A “cold” plasma has β


2<br />

– bˆ<br />

B ⋅∇B<br />

ˆ ˆ∇B<br />

cancels the parallel component<br />

2<br />

− ∇B 2µ<br />

0<br />

component <strong>of</strong> the magnetic pressure exerts a force on the<br />

<strong>of</strong> the term. Thus only the perpendicular<br />

plasma.<br />

= bb<br />

µ<br />

0<br />

2<br />

µ<br />

0<br />

2<br />

2<br />

ˆ<br />

– ( B ˆ ˆ nB<br />

) b ⋅∇b<br />

= −(<br />

) is the magnetic tension<br />

µ<br />

0 µ<br />

0R C<br />

and is directed antiparallel <strong>to</strong> the radius <strong>of</strong><br />

curvature (R C ) <strong>of</strong> the field line. Note that nˆ is<br />

directed outward.


•Some elementary wave concepts<br />

–For a plane wave propagating in the x-direction with<br />

wavelength λ and frequency f, the oscillating quantities<br />

can be taken <strong>to</strong> be proportional <strong>to</strong> sines and cosines.<br />

For example the pressure in a sound wave propagating<br />

along an organ pipe might vary like<br />

p<br />

=<br />

p0 sin( kx −ωt)<br />

–A sinusoidal wave can be described by its frequency<br />

k r<br />

r r r r<br />

r r<br />

B( r,<br />

t)<br />

= B0 cos(<br />

r<br />

k ⋅<br />

−ωt<br />

v<br />

) + i sin( k ⋅<br />

−ωt)<br />

r<br />

B( r,<br />

t)<br />

= B0 exp{ i(<br />

k ⋅<br />

−ωt)}<br />

and wave vec<strong>to</strong>r . (In the organ pipe the frequency is<br />

f and ω = 2π f . The wave number is k = 2π λ ).<br />

r<br />

( )<br />

ω


• The exponent gives the phase <strong>of</strong> the wave.<br />

The phase velocity specifies how fast a feature<br />

<strong>of</strong> a mono<strong>to</strong>nic wave is moving<br />

v ph<br />

=<br />

ω r<br />

k<br />

2<br />

k<br />

•Information propagates at the group velocity. A<br />

wave can carry information provided it is formed<br />

from a finite range <strong>of</strong> frequencies or wave<br />

numbers. The group velocity is given by<br />

∂<br />

v g<br />

= r<br />

ω<br />

∂k<br />

•The phase and group velocities are calculated<br />

and waves are analyzed by determining the<br />

dispersion relation<br />

ω = ω(k)


• When the dispersion relation shows asymp<strong>to</strong>tic<br />

behavior <strong>to</strong>ward a given frequency, ω res<br />

, v g goes <strong>to</strong><br />

zero, the wave no longer propagates and all the wave<br />

energy goes in<strong>to</strong> stationary oscillations. This is called a<br />

resonance.


• MHD waves - natural wave modes <strong>of</strong> a<br />

magnetized fluid<br />

– Sound waves in a fluid<br />

• Longitudinal compressional oscillations which propagate<br />

at<br />

c s<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

∂<br />

∂<br />

p ⎞<br />

⎟<br />

ρ ⎠<br />

1<br />

2<br />

⎛ γ p<br />

= ⎜<br />

⎝ ρ<br />

1<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

2<br />

⎡<br />

• ⎛ kT ⎞⎤<br />

c s<br />

= ⎢γ<br />

⎜ ⎟⎥and is comparable <strong>to</strong> the thermal speed.<br />

⎣ ⎝ m ⎠⎦


– Incompressible Alfvén waves<br />

• Assume σ → ∞ , incompressible fluid with B r background<br />

0<br />

field and homogeneous<br />

z<br />

B 0<br />

J<br />

b, u<br />

y<br />

• Incompressibility<br />

x<br />

∇ ⋅u r = 0<br />

• We want plane wave solutions b=b(z,t), u=u(z,t), b z<br />

=u z<br />

=0<br />

• Ampere’s law gives the current<br />

r<br />

1<br />

∂ b<br />

J = − iˆ<br />

µ 0<br />

∂ z<br />

u r ⋅∇<br />

• Ignore convection ( )=0<br />

r<br />

∂u<br />

ρ = −∇p<br />

+<br />

∂t<br />

r r<br />

J × B


∂p<br />

∂x<br />

• Since = 0 , = 0 and = 0 the x-component <strong>of</strong><br />

momentum becomes<br />

• Faraday’s law gives<br />

• The y-component <strong>of</strong> the momentum equation<br />

becomes<br />

J y<br />

J z<br />

∂ux<br />

∂p<br />

ρ = −<br />

∂t<br />

∂x<br />

r<br />

u = uj ˆ<br />

r<br />

E = −uB iˆ<br />

∂<br />

u y<br />

∂t<br />

0<br />

∂b<br />

∂t<br />

+ ( J<br />

∂E<br />

= −<br />

∂z<br />

• Differentiating Faraday’s law and substituting the y-<br />

component <strong>of</strong> momentum<br />

2<br />

∂ b<br />

=<br />

2<br />

∂t<br />

x<br />

y<br />

1 r r<br />

= − J × B<br />

B<br />

0<br />

B<br />

=<br />

0<br />

=<br />

− b<br />

B<br />

0<br />

0<br />

ρ<br />

0<br />

2<br />

∂ u<br />

∂z∂t<br />

y<br />

J<br />

∂u<br />

∂z<br />

z<br />

B0<br />

∂b<br />

µ ρ ∂z<br />

2 2<br />

⎛ B ⎞ ∂ b<br />

=<br />

⎜<br />

⎟<br />

2<br />

⎝ µ<br />

0<br />

ρ ⎠ ∂z<br />

) = 0


1<br />

2<br />

2<br />

C ⎛ B ⎞<br />

A ⎜ ⎟<br />

⎝ µ<br />

0<br />

ρ ⎠<br />

• The most general solution is b = b( z ± C t ) . This is a<br />

where = ⎜ ⎟ is called the Alfvén velocity.<br />

disturbance propagating along magnetic field lines at the<br />

Alfvén velocity.<br />

2<br />

∂ b<br />

2<br />

∂t<br />

=<br />

C<br />

∂<br />

u<br />

2<br />

2<br />

A 2<br />

∂z<br />

A


• Compressible solutions<br />

– In general incompressibility will not always apply.<br />

– Usually this is approached by assuming that the system<br />

starts in equilibrium and that perturbations are small.<br />

• Assume uniform B 0<br />

, perfect conductivity with equilibrium<br />

pressure p 0<br />

and mass density ρ 0<br />

ρ = ρ 0<br />

+ ρ<br />

p<br />

r<br />

B<br />

r<br />

u<br />

r<br />

J<br />

r<br />

E<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

= p<br />

r<br />

= B<br />

r<br />

= u<br />

r<br />

= J<br />

r<br />

= E<br />

0<br />

0<br />

+ p<br />

r<br />

+ b


– Continuity<br />

– Momentum<br />

– Equation <strong>of</strong> state ∇p<br />

=<br />

– Differentiate the momentum equation in time, use Faraday’s<br />

law and the ideal MHD condition<br />

where<br />

∂ρ<br />

r<br />

= −ρ0(<br />

∇ ⋅u)<br />

∂t<br />

r<br />

∂u<br />

1 r r<br />

ρ0 = −∇p<br />

− ( B0<br />

× ( ∇× b))<br />

∂t<br />

µ<br />

0<br />

∂p<br />

( ) 0<br />

∇ρ<br />

= Cs<br />

∂ρ<br />

2<br />

∇ρ<br />

r r r<br />

E = −u<br />

× B0<br />

r<br />

∂b<br />

r r r<br />

= −(<br />

∇× E)<br />

= ∇× ( u × B0<br />

)<br />

∂t<br />

2 r<br />

∂ u 2 r r<br />

r r<br />

− C ∇(<br />

∇ ⋅ ) + × ( ∇× ( ∇× ( ∇× ( ×<br />

2 s<br />

u CA<br />

u C<br />

∂t<br />

r r<br />

=<br />

C A<br />

B<br />

1<br />

0 ) 2<br />

( µ ρ<br />

A<br />

))) = 0


– For a plane wave solution<br />

– The dispersion relationship between the frequency ( ) and<br />

the propagation vec<strong>to</strong>r ( ) becomes<br />

This came from replacing derivatives in time and space by<br />

– Case 1<br />

r<br />

r<br />

r<br />

r<br />

r<br />

u<br />

r<br />

~ exp[ i(<br />

k<br />

r ⋅ −ω<br />

t)]<br />

ω<br />

k r r r r r r r r r r r<br />

k )[( C ⋅ k ) u − ( C ⋅u)<br />

k − ( k ⋅u<br />

C ] = 0<br />

2 2 2<br />

− ω u + ( Cs<br />

+ CA)(<br />

k ⋅u)<br />

k + ( CA<br />

⋅<br />

A<br />

A<br />

)<br />

A<br />

k<br />

r ⊥<br />

r<br />

B 0<br />

2 r<br />

ω u<br />

∂<br />

→ −iω<br />

∂t<br />

r<br />

∇ → ik<br />

r<br />

∇⋅ → ik ⋅<br />

r<br />

∇× → ik ×<br />

= ( C<br />

2<br />

s<br />

+<br />

C<br />

2<br />

A<br />

r r r<br />

)( k ⋅u)<br />

k


• The fluid velocity must be along k r and perpendicular <strong>to</strong><br />

0<br />

B r<br />

0<br />

k r u r<br />

• These are magne<strong>to</strong>sonic waves<br />

– Case 2<br />

( k<br />

B r r<br />

1<br />

2<br />

2<br />

v<br />

ph<br />

= k ( ω ) = ± ( C<br />

s+<br />

C<br />

k<br />

k r B r<br />

0<br />

2 2 2 r<br />

r<br />

2 2 2 r r<br />

CA<br />

−ω<br />

) u + (( Cs<br />

CA)<br />

−1)<br />

k ( CA<br />

⋅u)<br />

CA<br />

= 0<br />

r<br />

• A longitudinal mode with u k<br />

r<br />

with dispersion relationship ω<br />

k<br />

(sound waves) r<br />

• A transverse mode with k ⋅u<br />

r<br />

ω<br />

= 0 and = ± C A<br />

(Alfvén<br />

waves)<br />

k<br />

2<br />

A<br />

)<br />

= ±<br />

C s


• Alfven waves<br />

propagate parallel <strong>to</strong><br />

the magnetic field.<br />

•The tension force acts<br />

as the res<strong>to</strong>ring force.<br />

•The fluctuating<br />

quantities are the<br />

electromagnetic field<br />

and the current density.


– Arbitrary angle between k r and B r<br />

0<br />

V A =2C S<br />

B r<br />

0<br />

V A<br />

S<br />

I<br />

F<br />

Phase Velocities

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!