VTTF VLSI Test Technology Future - Laboratory for Reliable ...

VTTF VLSI Test Technology Future - Laboratory for Reliable ... VTTF VLSI Test Technology Future - Laboratory for Reliable ...

larc.ee.nthu.edu.tw
from larc.ee.nthu.edu.tw More from this publisher

Electronic Design Automation and <strong>Test</strong> 2002<br />

<strong>VTTF</strong><br />

<strong>VLSI</strong> <strong>Test</strong> <strong>Technology</strong> <strong>Future</strong><br />

Chauchin Su<br />

Department of Electrical and Control Engineering<br />

National Chiao Tung University<br />

Hsinchu, Taiwan 300<br />

http://ccsu.cn.nctu.edu.tw/<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.1


ITRS 2001 Summary<br />

T Nodes<br />

2001<br />

2003<br />

2005<br />

2007<br />

2010<br />

2013<br />

2016<br />

Gate L (nm)*<br />

90<br />

65<br />

45<br />

32<br />

22<br />

16<br />

11<br />

DRAM HPitch<br />

130<br />

100<br />

80<br />

65<br />

45<br />

32<br />

22<br />

Memory (Gbits)<br />

0.54<br />

10.7<br />

2.15<br />

4.29<br />

8.59<br />

32<br />

64<br />

Logic Size (MTx)<br />

69<br />

110<br />

174<br />

276<br />

552<br />

1104<br />

2209<br />

On-Chip Clk(GHz)<br />

1.7<br />

3.1<br />

5.2<br />

6.7<br />

12<br />

19<br />

28<br />

Off-Chip Clk(GHz)<br />

1.7<br />

3.1<br />

5.2<br />

6.7<br />

12<br />

19<br />

28<br />

Signal IO Pins<br />

1500<br />

1700<br />

2000<br />

2200<br />

2400<br />

2700<br />

3000<br />

Min Vdd (V)<br />

1.1<br />

1..0<br />

0.9<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

* Off-Chip Clk is <strong>for</strong> high speed peripheral buses<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.2


Market Drivers<br />

Portable and Wireless<br />

Function: 2x / 2 years<br />

Broad Band<br />

Bandwidth: 2x / 9 months<br />

Function: 20% increase / year<br />

Internet Switching<br />

Bandwidth: 4x / 3-4 years<br />

Consumer<br />

Time-to-Market: < 12 months<br />

Function: novelty<br />

Computer<br />

Speed: 2x / 2 years<br />

Form Factor: Shrinking size<br />

Automotive<br />

Ruggedness<br />

Reliability and Safety<br />

Mass Storage<br />

Density: 60% increase / year<br />

Speed: 2x by 2005<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.3


System Drivers<br />

Microprocessor (MPU)<br />

Microprocessors<br />

Memories<br />

Reprogrammable (FPGA)<br />

Analog / Mixed-Signal (AMS)<br />

RF Circuits<br />

Analog Circuits<br />

Analog / Digital Converters<br />

System on Chip (SoC)<br />

A yet-Evolving Product<br />

Integrates MPU and AMS IPs<br />

Hardware / Software Codesign<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.4


System on Chip Overview<br />

High<br />

Transistor<br />

Count<br />

High<br />

Pin<br />

Count<br />

SoC<br />

High<br />

Speed<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.5


SoC - System on Chip<br />

ASIC<br />

IP<br />

System on Board<br />

System on Chip<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.6


SoC - The Benifits<br />

• Reduction in<br />

• Size<br />

• Weight<br />

• Cost<br />

• Time<br />

• Power<br />

• Increase in<br />

• Profit<br />

• Powerfulness<br />

• Portability<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.7


SoC - The Emerging Issues<br />

<br />

<br />

• Integration<br />

− Soft Core<br />

− Firm Core<br />

− Hard Core<br />

• Description<br />

− Documentation<br />

− Simulation<br />

− Verification<br />

− Security<br />

• <strong>Test</strong>ing<br />

− High Speed<br />

− Mixed Signal<br />

− RF <strong>Test</strong>ing<br />

− Varieties<br />

<br />

<br />

NTHU DTC 2002 P.8


SoC - Applications<br />

Computer<br />

SoC<br />

Communication<br />

Consumer<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.9


SoC - Computers<br />

Monitor<br />

KeyBoard<br />

Mouse<br />

P Ports<br />

S Ports<br />

USB<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

BIOS<br />

PU<br />

CPU<br />

MMU<br />

Cache<br />

RAM<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

Audio<br />

FireWire<br />

Ethernet<br />

USB<br />

Floppy<br />

HardDisk<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.10


SoC - Computers<br />

Monitor<br />

KeyBoard<br />

Mouse<br />

P Ports<br />

S Ports<br />

USB<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

BIOS<br />

PU<br />

SoC<br />

CPU MMU<br />

Cache<br />

RAM<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

Processor<br />

Audio<br />

FireWire<br />

Ethernet<br />

USB<br />

Floppy<br />

HardDisk<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.11


SoC - Communications<br />

ADC<br />

Encode<br />

Digital<br />

Modulation<br />

DAC<br />

DAC<br />

Decode<br />

Digital<br />

Demod<br />

ADC<br />

STR<br />

VCXO<br />

PLL<br />

Freq<br />

Synth<br />

Difficulties<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.12


SoC - Consumer Electronics<br />

Audio<br />

Video<br />

Servo<br />

VoCoder MD DCC CD<br />

Digital Camera Digital Camcorder<br />

CD CDROM DVD Robot<br />

Image<br />

Sensor<br />

LCD<br />

Display<br />

ADC<br />

DAC<br />

Video<br />

Encode<br />

Video<br />

Encode<br />

MPU<br />

Memory<br />

Mass Storage<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.13


SoC – Multiple Technologies<br />

Logic<br />

SRAM<br />

Flash<br />

E-DRAM<br />

CMOS RF<br />

FPGA<br />

FRAM<br />

MEMS<br />

Chemical Sensors<br />

Electro-Optical<br />

Electro-Biological<br />

98 00 02 04 06 08 10 12<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.14


SoC Trends –PDA SoC-LP Driver<br />

Year<br />

2001<br />

2004<br />

2007<br />

2010<br />

2013<br />

2016<br />

<strong>Technology</strong> (nm)<br />

130<br />

90<br />

65<br />

45<br />

32<br />

22<br />

Supply (V)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.5<br />

0.4<br />

Frequency (MHz)<br />

150<br />

300<br />

450<br />

600<br />

900<br />

1200<br />

Per<strong>for</strong>m (GOPs)<br />

0.3<br />

2<br />

15<br />

103<br />

720<br />

5042<br />

Avg Power (W)<br />

0.1<br />

0.1<br />

0.1<br />

0.1<br />

0.1<br />

0.1<br />

Stdby Pwr (mW)<br />

2.1<br />

2.1<br />

2.1<br />

2.1<br />

2.1<br />

2.1<br />

Battery (Wh/Kg)<br />

120<br />

200<br />

200<br />

400<br />

400<br />

-<br />

Applications<br />

Still<br />

Image<br />

Web<br />

Mailer<br />

Schdl<br />

Real Time Video<br />

TV Telephone<br />

Voice Recogn.<br />

Authentication<br />

RT Interpretation<br />

TV Telephone<br />

Voice Recogn<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.15


Grand Challenges<br />

90nm<br />

65nm<br />

45nm<br />

Maximum Quality Design Productivity (Design)<br />

Power Management (Design)<br />

High Speed Device Interface (<strong>Test</strong>)<br />

Highly Integrated Design and SoCs (<strong>Test</strong>)<br />

New Reliability Screens (<strong>Test</strong>)<br />

22nm<br />

11nm<br />

2001 2003 2005 2007 2010 2013 2015<br />

<br />

<br />

Global Wiring Issues (Interconnect)<br />

Noise Management (Design)<br />

Error-Tolerant Design<br />

<br />

<br />

NTHU DTC 2002 P.16


<strong>Test</strong> Difficult Challenges<br />

90nm<br />

65nm<br />

45nm<br />

22nm<br />

11nm<br />

High Speed Device Interface<br />

Highly Integrated Design<br />

Reliability Screens<br />

Manufacturing <strong>Test</strong> Cost<br />

Modeling and Simulation<br />

2001 2003 2005 2007 2010 2013 2015<br />

<br />

<br />

DUT to ATE Interface<br />

<strong>Test</strong> Methodology<br />

Defect Analysis<br />

Failure Analysis<br />

Disruptive Device Technologies<br />

<br />

<br />

NTHU DTC 2002 P.17


<strong>Test</strong> Difficult Challenges - Revisit<br />

90nm<br />

65nm<br />

45nm<br />

22nm<br />

11nm<br />

High Speed Device Interface<br />

Highly Integrated Design<br />

Reliability Screens<br />

Manufacturing <strong>Test</strong> Cost<br />

Modeling and Simulation<br />

2001 2003 2005 2007 2010 2013 2015<br />

<br />

<br />

DUT to ATE Interface<br />

<strong>Test</strong> Methodology<br />

Defect Analysis<br />

Failure Analysis<br />

Disruptive Device Technologies<br />

<br />

<br />

NTHU DTC 2002 P.18


<strong>Test</strong> Difficult Challenges<br />

• High Speed Device Interface<br />

– High frequency and high pin count test socket<br />

– High speed serial interface requires high speed source/capture and<br />

jitter analysis. FDT/DFM techniques must be developed.<br />

– Device interface must not degrade BW, especially <strong>for</strong> LVDS.<br />

• Highly Integrated Design<br />

– Structure and specific DFT <strong>for</strong> embedded specialized cores.<br />

– Analog DFT and BIST techniques to simplify test interface.<br />

– RF and audio circuit embedded in large noisy digital blocks.<br />

– <strong>Test</strong> reuse <strong>for</strong> reusable cores in complex designs.<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.19


<strong>Test</strong> Difficult Challenges<br />

•Reliability Screens<br />

– Limited existing methodologies: burn-in v.s. thermal runaway, IDDq v.s<br />

large background current.<br />

– Identify novel infant mortality defect stress conditions.<br />

•Manufacturing <strong>Test</strong> Cost<br />

– Cost reduction: massively parallel, wafer level test, wafer level burn in.<br />

– Through DFT to reduce test pin count and time and equipment reuse.<br />

– <strong>Test</strong> standards to enable test content reuse and manufacturing agility.<br />

•Modeling and Simulation<br />

– Logic and timing accurate simulation of the ATE, DIB, and DUT.<br />

– Accurate simulation model <strong>for</strong> pin electronics, power supply, and DIB.<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.20


<strong>Test</strong> Trend – <strong>Test</strong> <strong>Technology</strong> Requirements<br />

• Potential Yield Losses<br />

• Automated <strong>Test</strong> Equipment Cost<br />

• <strong>Test</strong> and Yield Learning<br />

• IDDQ <strong>Test</strong>ing<br />

• High Frequency Serial Communications<br />

• High Per<strong>for</strong>mance ASIC <strong>Test</strong> Requirement<br />

• High Per<strong>for</strong>mance Microprocessor <strong>Test</strong> Requirement<br />

• Low End Microcontroller <strong>Test</strong> Requirements<br />

• Mixed Signal <strong>Test</strong>ing<br />

• Equipment <strong>for</strong> <strong>Test</strong>ing Devices Designed with DFT<br />

• Semiconductor Memories <strong>Test</strong> Requirements<br />

• Reliability <strong>Technology</strong> Requirements<br />

• Material Handling <strong>Technology</strong> Requirement<br />

• Device Interface <strong>Technology</strong> Requirement<br />

• Potential Solutions<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.21


<strong>Test</strong> Challenges – Yield Losses<br />

90nm<br />

600ps<br />

40 ps<br />

75nm<br />

Device Period<br />

450ps<br />

30ps<br />

60nm<br />

Resolution (5%)<br />

300ps<br />

20ps<br />

45nm<br />

Overall Timing Accuracy<br />

150ps<br />

10ps<br />

30nm<br />

2001 2002 2003 2004 2005 2006 2007<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.22


<strong>Test</strong> Challenges – Yield Losses<br />

1.8ns<br />

2ns<br />

0.3ns<br />

Device Period: 2ns<br />

Timing Accuracy: 0.2ns<br />

Timing <strong>Test</strong> at: 1.8ns<br />

Guard Band: 0.2ns<br />

Yield Loss: ~5%<br />

Device Period: 0.3ns<br />

Timing Accuracy: 0. 1ns<br />

Timing <strong>Test</strong> at: 0.2ns<br />

Guard Band 0.1ns<br />

Yield Loss: 30~40%<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.23


<strong>Test</strong> Trend – ATE Equipment Cost<br />

<strong>Test</strong>Cost = b + ∑ ( m×<br />

x)<br />

n<br />

<strong>Test</strong>er Segment<br />

b<br />

Base Cost<br />

m<br />

Cost Per Pin<br />

x<br />

Pin Count<br />

High Per<strong>for</strong>mance ASIC/MPU<br />

Mixed Signal<br />

250 ~ 400K<br />

250 ~ 350K<br />

2.7 ~ 6K<br />

3 ~ 18K<br />

512<br />

128 ~ 192<br />

DFT <strong>Test</strong>er<br />

100 ~ 350K 0.15 ~ 0.65K 512 ~ 2500<br />

Low End Microcontroller/ASIC<br />

Commodity Memory<br />

RF<br />

200 ~ 350K<br />

200+<br />

200+<br />

1.2 ~ 2.5K<br />

0.8 ~ 1K<br />

~ 50K<br />

256 ~ 1024<br />

1024<br />

32<br />

* DFT and BIST are main stream in high end digital but penetration<br />

into analog and SoC.<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.24


<strong>Test</strong> Trend – <strong>Test</strong> and Yield Learning<br />

• Software-based fault localization tools.<br />

– Based on pass/fail test, voltage test, and IDDq test results.<br />

– Integrating layout-based likelihood and/or in-line test results.<br />

• Hardware-based fault localization methodologies.<br />

– Multiple physical measurement points<br />

– Fault distinguishing and diagnosis oriented test generation<br />

– Design <strong>for</strong> debug or on-line repair.<br />

• Non-destructive inspection<br />

– Monitoring timing-varying signal<br />

– Laser Voltage Probe (LVP)<br />

– Picosecond Imageing Circuit Analysis (PICA)<br />

– X-ray tomography<br />

• Signature analysis techniques <strong>for</strong> failure analysis<br />

– Tighter coupling between design, timing, and diagnosis tools.<br />

– Integration of process monitoring structure into diagnostics.<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.25


<strong>Test</strong> Trend – IDDq <strong>Test</strong>ing<br />

Year<br />

2001<br />

2003<br />

2005<br />

2008<br />

2002<br />

2002<br />

IDDQmax (mA)<br />

30–70<br />

70-150<br />

150-400<br />

400-1.6A<br />

1.6-8A<br />

8-20A<br />

• Use Delta IDDQ or IDDQ ratio<br />

• Transient and charged-base Idd techniques.<br />

• Subtrate biasing to control Vt.<br />

• Power supply partitioning<br />

• IDDQ measurement <strong>for</strong> multiple Vdd voltage<br />

• IDDQ limits based on comparison with neighboring dies.<br />

• IDDQ limits as a function of other parameters (speed)<br />

• Built-in IDDQ sensor or on-chip measurement aids.<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.26


<strong>Test</strong> Trend – High Frequency Serial Communication<br />

2001<br />

2.5Gbps<br />

2002<br />

3.125G<br />

2004<br />

10Gbps<br />

2006<br />

40Gbps<br />

2016<br />

80Gbps<br />

• Giga bit serial I/Os<br />

– SerDes, SONET/SDH, Gigabit Ethernet, Fiber Channel, Serial ATA,<br />

Infiniband, Flat Panel Link,RAMBus, LVDS, TMDS, etc.<br />

• Frequency<br />

– CMOS: 3.125Gbps (‘01), SiGel: 10Gbps, GaAs and InP: 40Gbps<br />

• Port Count:<br />

– 20-80 pairs in 2001, 100+ pairs in 2002.<br />

• Jitter Measurement:<br />

– 2.5Gbps SerDes: PP Jitter=40ps,


<strong>Test</strong> Trend – Mixed Signal <strong>Test</strong><br />

ADC<br />

Encode<br />

Digital<br />

Modulation<br />

DAC<br />

DAC<br />

Decode<br />

Digital<br />

Demod<br />

ADC<br />

STR<br />

VCXO<br />

PLL<br />

Freq<br />

Synth<br />

Difficulties<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.28


ATS 2000 Panel Discussion<br />

Mixed Signal <strong>Test</strong>ing:<br />

Is Mixed-Signal Design-<strong>for</strong>-<strong>Test</strong> on Its Ways?<br />

<br />

<br />

Chauchin Su<br />

Department of Electrical Engineering, National Central University<br />

Chung-Li, Taiwan 32054, R.O.C.<br />

http://www.ee.ncu.edu.tw/~ccsu<br />

ccsu@ee.ncu.edu.tw<br />

<br />

<br />

NTHU DTC 2002 P.29


The Answer is<br />

YES<br />

NO<br />

MAY<br />

BE<br />

SO<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.30


250nm<br />

200nm<br />

150nm<br />

100nm<br />

Yes. From Digital Point of View<br />

• Look at the DFT/BIST roadmap of digital circuits.<br />

• Look at the SIA roadmap (ITRS 1999).<br />

Mixed Signal Instrument<br />

BIST/DFT<br />

Probe & <strong>Test</strong> Socket<br />

IDDQ <strong>Test</strong>ing<br />

<strong>Test</strong> Development Time<br />

50nm<br />

1997 1999 2001 2003 2006 2009 2012<br />

<br />

<br />

Fault Model<br />

Rules to <strong>Test</strong><br />

Standard <strong>Test</strong><br />

Software<br />

DFT<br />

Failure Analysis<br />

<br />

<br />

NTHU DTC 2002 P.31


No, From Practical Point of View<br />

• Analog circuit designers design perfect circuits.<br />

• No one dare to change it.<br />

v s<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.32


May Be. It will never happen.<br />

• Analog are giving up ground to digital.<br />

• The per<strong>for</strong>mance becomes very critical.<br />

RF, IF, BB, AD/DA, Digital<br />

RF, IF, AD/DA, Digital<br />

RF, AD/DA, Digital<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.33


May Be. It will never happen.<br />

• Analog design is an endless game.<br />

• Ft is always 10 times the operating frequency.<br />

T Nodes<br />

1997<br />

1999<br />

2001<br />

2003<br />

2006<br />

2009<br />

2012<br />

Feature Size (nm)<br />

250<br />

180<br />

150<br />

130<br />

100<br />

70<br />

50<br />

Supply Voltage<br />

2.5~1.8<br />

1.8~1.5<br />

1.6~1.3<br />

1.5~1.2<br />

1.2~0.9<br />

0.9~0.6<br />

0.8~0.5<br />

Frequency (GHz)<br />

1.8~2.5<br />

2.5~3.5<br />

3.0~4.0<br />

3.5~5.0<br />

5.0~6.5<br />

6.5~9.5<br />

9.5~13<br />

Current (uA)<br />

100<br />

75<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Fmax<br />

25<br />

35<br />

40<br />

50<br />

65<br />

90<br />

120<br />

Ft<br />

20<br />

30<br />

35<br />

40<br />

55<br />

75<br />

100<br />

Noise Figure<br />

2<br />

1.5<br />

1.3<br />

1.2<br />

30<br />

>35<br />

>40<br />

>40<br />

>40<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.34


So. <strong>Test</strong> Resource Partitioning<br />

Analog<br />

Analog<br />

ADC<br />

DAC<br />

MPU<br />

RAM<br />

External<br />

Instrument<br />

Loop<br />

Back<br />

Digital<br />

DSP<br />

ROM<br />

• Specialized DFT and BIST <strong>for</strong> digital modules.<br />

• ATE assisted DFT/BIST <strong>for</strong> analog modules<br />

• External instruments are responsible <strong>for</strong> reference<br />

signal generation.<br />

• DSP and MPU are the resources <strong>for</strong> analog signal<br />

metrology and response analysis.<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.35


<strong>Test</strong> Trend – Potential Solutions<br />

DFT/BIST Methodology<br />

Current DFT/BIST/IDDQ<br />

New DFT/BIST/IDDQ<br />

Aanlog DFT/BIST<br />

Design Owns <strong>Test</strong><br />

Cost of <strong>Test</strong><br />

100% DFT/BIST<br />

Standard <strong>Test</strong> Lib<br />

Design to <strong>Test</strong><br />

<strong>Test</strong> Reuse<br />

High Per<strong>for</strong>mance Interface<br />

> GHz Interface<br />

+/-1% Temp Control<br />

Reliability Screen<br />

New Acceleration Mechanism<br />

01 03 05 07 09 11 13 15<br />

Research Development Production<br />

<br />

<br />

01 03 05 07 09 11 13 15<br />

<br />

<br />

NTHU DTC 2002 P.36


System on Chip<br />

Design and <strong>Test</strong>?<br />

Analog<br />

Analog<br />

ADC<br />

DAC<br />

MPU<br />

RAM<br />

Digital<br />

DSP<br />

ROM<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.37


So, Come and Join <strong>VTTF</strong> Taiwan.<br />

<strong>VTTF</strong>: <strong>VLSI</strong> <strong>Test</strong> <strong>Technology</strong> Forum<br />

http://eda.ee.nthu.edu.tw/<strong>VTTF</strong>/<br />

<br />

<br />

<br />

<br />

NTHU DTC 2002 P.38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!