FFLO and related phases

FFLO and related phases FFLO and related phases

03.02.2014 Views

FFLO and related phases Daniel Agterberg – University of Wisconsin - Milwaukee Thanks to Paolo Frigeri, Nobuhiko Hayashi, Manfred Sigrist (ETH-Zurich), Huiqiu Yuan, Myron Salamon (UIUC), Akihisha Koga (Osaka University) , Raminder Kaur, Shantanu Mukherjee, and Zhichao Zheng (UWM) Lecture 4: Broken Parity Superconductors - continuation FFLO and Helical Phases Fractional Vortices in FFLO Making a charge 4e superconductor in 2D

<strong>FFLO</strong> <strong>and</strong> <strong>related</strong> <strong>phases</strong><br />

Daniel Agterberg – University of Wisconsin - Milwaukee<br />

Thanks to Paolo Frigeri, Nobuhiko Hayashi, Manfred Sigrist (ETH-Zurich),<br />

Huiqiu Yuan, Myron Salamon (UIUC), Akihisha Koga (Osaka University) ,<br />

Raminder Kaur, Shantanu Mukherjee, <strong>and</strong> Zhichao Zheng (UWM)<br />

Lecture 4:<br />

Broken Parity Superconductors - continuation<br />

<strong>FFLO</strong> <strong>and</strong> Helical Phases<br />

Fractional Vortices in <strong>FFLO</strong><br />

Making a charge 4e superconductor in 2D


Superconductivity<br />

Broken Inversion appears through:<br />

First derive the gap equation within weak-coupling<br />

assuming Δ


Spin Susceptibility


Spin-Susceptibility-Triplet: Sr 2 RuO 4<br />

Spin triplet: Sr 2 RuO 4<br />

The spin-susceptibility is<br />

unchanged when Hod=0<br />

K. Ishida et al., Nature 396, 658 (1998).<br />

J.A.Duffy et al. , PRL 85, 5412 (2000).


Spin Susceptibility<br />

singlet<br />

Note α>>Δ for CePt 3 Si<br />

L.P. Gorkov <strong>and</strong> E.I. Rashba, PRL 87 036004 (2001).<br />

P.A. Frigeri, DFA, M. Sigrist, New J.Phys. 6 115 (2004).<br />

triplet<br />

Spin susceptibility becomes the same for singlet <strong>and</strong> triplet


Experimental Results<br />

CeIrSi 3 : Rashba<br />

Mukuda et al PRL 2010


Strong SO: Two B<strong>and</strong> System


CePt 3 Si<br />

• The protected spin-triplet state for<br />

CePt 3 Si is:<br />

• Symmetry requires that g(k) vanishes<br />

at points on the Fermi surface:


CePt 3 Si – line nodes<br />

• The protected spin-triplet state has point<br />

nodes for k x =k y =0.<br />

• Line nodes have been observed<br />

Bonalde, PRL 2005 Izawa, PRL 2005


CePt 3 Si<br />

A small s-wave mixing changes the point-nodes<br />

of the protected d(k) to line nodes.<br />

A similar story applies to Li 2 Pt 3 B <strong>and</strong> Li 2 Pd 3 B


<strong>FFLO</strong>, PDW, <strong>and</strong> single-q<br />

(helical) states


Singlet pairing in a Zeeman field: <strong>FFLO</strong><br />

Key Point of FF <strong>and</strong> LO: Pairing between fermions with different<br />

Fermi surfaces leads to “finite momentum” pairing states (<strong>FFLO</strong>).<br />

(FF)<br />

(LO)<br />

These <strong>phases</strong> sensitive to disorder<br />

The general class of such states in known as pair density wave<br />

(PDW) states.


Broken Parity Case<br />

Broken parity <strong>and</strong> magnetic field: no symmetries left to ensure k<br />

<strong>and</strong> –k both lie on the Fermi surface.<br />

Will focus microscopic theory on Rashba case with field in plane.<br />

Observation of simultaneous ferromagnetism <strong>and</strong> superconductivity<br />

at LaAlO 3 <strong>and</strong> SrTiO 3 provides a 2D application of this problem.


Parity Broken Case<br />

k+q<br />

-k+q<br />

field<br />

No ASOC With ASOC With ASOC <strong>and</strong><br />

Zeeman Field<br />

Can pair every state on one Fermi surface.<br />

two b<strong>and</strong>s prefer opposite q vectors.<br />

The


Phase Diagram<br />

Multiple q-phase<br />

N 1 =N 2 , δN=0<br />

Multiple q-phase<br />

δN=0.05<br />

H<br />

Single-q phase<br />

H<br />

Uniform phase<br />

Single-q (helical) phase<br />

T/Tc<br />

T/Tc<br />

Single-q phase:<br />

Multiple-q phase:<br />

Two different values of q appear – why?


Ginzburg L<strong>and</strong>au origin of helical Phase<br />

In broken parity superconductors – new terms appear in<br />

the GL theory (Lifschitz invariants)<br />

Induces a “single q” solution in a uniform magnetic field<br />

with<br />

Lifschitz invariant origin suggests helical phase will exist<br />

even with impurities. Helical phase has no super current.


Single Phase Tc Results for Rashba<br />

Barzykin <strong>and</strong> Gorkov, PRL (2002); DFA, Physica C (2003);<br />

Kaur, DFA, Sigrist PRL (2004); DFA <strong>and</strong> Kaur PRB (2007);<br />

Dimitrova <strong>and</strong> Feigel’man , PRB (2007); Samokhin, PRB (2008);<br />

Mineev <strong>and</strong> Samokhin (2008).<br />

Michaeli, Potter, Lee, cond-mat (2011)<br />

(LaAlO 3 /SrTiO 3 interfaces)<br />

Survives to high Fields in disordered 2D Rashba


Ginzburg-L<strong>and</strong>au-Wilson<br />

Theory of <strong>FFLO</strong> states


Theory of ψ Qx <strong>and</strong> ψ -Qx <br />

<strong>FFLO</strong>-like phase:<br />

symmetry!<br />

General feature:<br />

Gauge invariance<br />

Translational invariance


St<strong>and</strong>ard Vortex<br />

The free energy has a U(1) gauge invariance.<br />

Consider a line-defect in the wave function:<br />

Far from the vortex core<br />

φ<br />

The flux contained by a vortex is quantized


<strong>FFLO</strong> “Vortices”<br />

(n,m) vortices. Consider (1,0) vortex in a phase where the<br />

magnitudes of the components far from the vortex core are<br />

equal<br />

then<br />

(1,1) vortex is usual Abrikosov vortex with flux Φ 0


LO Phase ½ vortices<br />

U(1)xU(1) symmetry implies Ψ -Q <strong>and</strong> Ψ Q single valued<br />

PDW displacement “phonon” field<br />

usual phase field<br />

Single valued :<br />

Charge Density :<br />

Edge dislocation in charge density from ½ vortex<br />

Uniform SC (charge 4):


2D superfluid: thermal<br />

excitation of vortices<br />

• Free energy governed by phase<br />

fluctuations:<br />

• The energy of a vortex is:<br />

• The entropy is:<br />

above which vortices proliferate<br />

below Tc


Thermal Fluctuations in LO superfluids<br />

Energy of ½ vortex :<br />

Energy of single vortex :<br />

Energy of single dislocation :<br />

CDW<br />

PDW<br />

Disordered<br />

4SF


Superconductors<br />

Summary: 2D LO Phase<br />

A screens 1/r leading to a finite energy vortex<br />

Dislocations still cost log(R/a) energy.<br />

CDW order survives while SC order does not. (Agterberg <strong>and</strong> Tsunetsugu 2008)<br />

Rotationally invariant superfluids<br />

δQ screens 1/r leading to a finite energy dislocation, vortices cost log(R/a) energy.<br />

Charge 4 superfluid order survives while CDW order does not. (Radzihovsky <strong>and</strong> Vishwanath<br />

PRL 2009)<br />

Berg, Fradkin, Kivelson argue charge 4e SC without rotational invariance (Nature Physics<br />

2009) – last slide

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!