31.01.2014 Views

Stiftung Tierärztliche Hochschule Hannover Kinetische und ...

Stiftung Tierärztliche Hochschule Hannover Kinetische und ...

Stiftung Tierärztliche Hochschule Hannover Kinetische und ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Stiftung</strong> <strong>Tierärztliche</strong> <strong>Hochschule</strong> <strong>Hannover</strong><br />

<strong>Kinetische</strong> <strong>und</strong> elektromyographische Bewegungsanalyse beim H<strong>und</strong> mit<br />

reversibel induzierter Hinterhandlahmheit<br />

INAUGURAL – DISSERTATION<br />

zur Erlangung des Grades einer Doktorin der Veterinärmedizin<br />

- Doctor medicinae veterinariae -<br />

(Dr. med. vet.)<br />

vorgelegt von<br />

Stefanie Fischer<br />

Höxter<br />

<strong>Hannover</strong> 2013


Wissenschaftliche Betreuung:<br />

1. Prof. Dr. Ingo Nolte<br />

Klinik für Kleintiere<br />

2. PD Dr. Nadja Schilling<br />

Institut für Spezielle Zoologie <strong>und</strong><br />

Evolutionsbiologie, Jena<br />

1. Gutachter: Prof. Dr. Ingo Nolte<br />

2. Gutachter: Prof. Dr. Peter Stadler<br />

Tag der mündlichen Prüfung: 27.05.2013<br />

Diese Arbeit wurde im Rahmen des Graduiertenkolleg Biomedizintechnik des SFB<br />

599 (finanziert durch die Deutsche Forschungsgemeinschaft), der<br />

Berufsgenossenschaft Nahrungsmittel <strong>und</strong> Gastgewerbe Erfurt <strong>und</strong> der<br />

<strong>Hannover</strong>schen Gesellschaft zur Förderung der Kleintiermedizin (HGFK) gefördert.


Meiner Familie


Der erste Teil dieser Arbeit ist bei folgender Zeitschrift online publiziert:<br />

• The Veterinary Journal<br />

Compensatory load redistribution in walking and trotting dogs with hind<br />

limb lameness<br />

Stefanie Fischer, Alexandra Anders, Ingo Nolte, Nadja Schilling<br />

DOI: 10.1016/j.tvjl.2013.04.09<br />

Der zweite Teil dieser Arbeit ist bei folgender Zeitschrift eingereicht:<br />

• PloS One<br />

Adaptations in muscle activity to induced hindlimb lameness in trotting<br />

dogs<br />

Stefanie Fischer, Ingo Nolte, Nadja Schilling


Teile dieser Dissertation wurden als Poster auf folgenden Fachtagungen präsentiert:<br />

• SFB599 Kolloquium 2012<br />

Electromyographical and computerized gait analyses in dogs with and<br />

without hindlimb lameness<br />

• 21. Jahrestagung der Fachgruppe “Innere Medizin <strong>und</strong> Klinische<br />

Labordiagnostik” der DVG<br />

Muskelfunktionsdiagnostik beim trabenden H<strong>und</strong> mit<br />

Hinterhandlahmheit


Inhaltsverzeichnis<br />

Inhaltsverzeichnis<br />

1. Einleitung <strong>und</strong> Literaturüberblick .................................................................. 11<br />

2. Material <strong>und</strong> Methoden ................................................................................... 17<br />

2.1. H<strong>und</strong>e ........................................................................................................ 17<br />

2.2. Datenaufzeichnung .................................................................................. 17<br />

2.2.1. <strong>Kinetische</strong> Messungen ........................................................................ 18<br />

2.2.2. Elektromyographische Messungen ..................................................... 18<br />

2.3. Datenanalyse ............................................................................................ 18<br />

3. Studie I ............................................................................................................. 19<br />

3.1. Abstract ..................................................................................................... 20<br />

3.2. Introduction .............................................................................................. 21<br />

3.3. Materials and Methods ............................................................................. 23<br />

3.3.1. Animals ............................................................................................... 23<br />

3.3.2. Study design ....................................................................................... 23<br />

3.3.3. Data collection and analysis ................................................................ 24<br />

3.3.4. Statistical analyses .............................................................................. 25<br />

3.4. Results ...................................................................................................... 25<br />

3.4.1. Load distribution .................................................................................. 25<br />

3.4.2. Symmetry indices ................................................................................ 26<br />

3.4.3. Relative stance duration ...................................................................... 26<br />

3.5. Discussion ................................................................................................ 26<br />

3.6. Conclusion ................................................................................................ 30<br />

3.7. Acknowledgements .................................................................................. 30<br />

3.8. References ................................................................................................ 30<br />

3.9. Tables and Figures ................................................................................... 36<br />

4. Studie II ............................................................................................................ 43<br />

4.1. Abstract ..................................................................................................... 44<br />

4.2. Introduction .............................................................................................. 45<br />

4.3. Materials and Methods ............................................................................. 47<br />

4.3.1. Ethics statement .................................................................................. 47<br />

4.3.2. Animals and experimental design ....................................................... 47<br />

4.3.3. Data collection ..................................................................................... 48<br />

4.3.4. Data analysis ....................................................................................... 49<br />

4.3.5. Statistical analyses .............................................................................. 50<br />

4.4. Results ...................................................................................................... 50<br />

4.4.1. M. triceps brachii (N=7)....................................................................... 50<br />

4.4.2. M. vastus lateralis (N=7) ..................................................................... 51<br />

4.4.3. M. longissimus dorsi (N=5).................................................................. 51<br />

4.5. Discussion ................................................................................................ 52<br />

4.5.1. M. tricpes brachii ................................................................................. 52<br />

4.5.2. M. vastus lateralis ............................................................................... 53


Inhaltsverzeichnis<br />

4.5.3. M. longissimus dorsi ............................................................................ 55<br />

4.6. Concluding remarks ................................................................................. 57<br />

4.7. Acknowledgements .................................................................................. 58<br />

4.8. References ................................................................................................ 58<br />

4.9. Tables and Figures ................................................................................... 66<br />

5. Diskussion ....................................................................................................... 71<br />

6. Zusammenfassung .......................................................................................... 78<br />

7. Summary .......................................................................................................... 81<br />

8. Literaturverzeichnis ........................................................................................ 83<br />

9. Danksagung ................................................................................................... 103


Abkürzungsverzeichnis<br />

Abkürzungsverzeichnis<br />

In dieser Arbeit wurden folgende Kurzformen verwendet:<br />

CoM<br />

EMG<br />

F c<br />

F i<br />

Fx<br />

Fy<br />

Fz<br />

GRF<br />

H c<br />

H i<br />

HD<br />

IFz<br />

L3<br />

L4<br />

MFz<br />

OA<br />

OEMG<br />

PFz<br />

Post op<br />

SD<br />

Körpermasseschwerpunkt<br />

Elektromyographie<br />

Kontralaterale Vordergliedmaße<br />

Ipsilaterale Vordergliedmaße<br />

Mediolaterale Bodenreaktionskraft<br />

Kraniokaudale Bodenreaktionskraft<br />

Vertikale Bodenreaktionskraft<br />

Bodenreaktionskräfte<br />

Kontralaterale Hintergliedmaße<br />

Ipsilaterale Hintergliedmaße<br />

Hüftgelenksdysplasie<br />

Vertikaler Impuls<br />

3. Lendenwirbel<br />

4. Lendenwirbel<br />

Mittlere vertikale Bodenreaktionskraft<br />

Osteoarthrose<br />

Oberflächen-Elektromyographie<br />

Maximale vertikale Bodenreaktionskraft<br />

Nach der Operation<br />

Standardabweichung


Einleitung <strong>und</strong> Literaturüberblick<br />

1. Einleitung <strong>und</strong> Literaturüberblick<br />

Lahmheit ist durch eine Funktionseinschränkung einer Gliedmaße gekennzeichnet,<br />

die zu Veränderungen des Bewegungsablaufes bei der Fortbewegung führt. Um<br />

abzuschätzen, welche Kurz- <strong>und</strong> Langzeitfolgen für den Bewegungsapparat des<br />

H<strong>und</strong>es damit verb<strong>und</strong>en sein können, muss man zuerst verstehen, wie die<br />

Funktionseinschränkung kompensiert wird. Da diese Kompensationsmechanismen<br />

beim H<strong>und</strong> noch nicht ausreichend verstanden sind, wie im Folgenden ausgeführt<br />

wird, die Kenntnis der veränderten Gangparameter jedoch die Gr<strong>und</strong>lage für<br />

weiterführende medizinische Maßnahmen <strong>und</strong> neue therapeutische Ansätze<br />

darstellt, ist es notwendig, weitere Untersuchungen durchzuführen.<br />

Die Bewegungen des H<strong>und</strong>es <strong>und</strong> damit auch deren Veränderungen aufgr<strong>und</strong> einer<br />

Lahmheit werden mittels folgender etablierter Gangparameter bzw. Techniken<br />

beschrieben:<br />

Als sogenannte metrische Gangparameter werden die zeitlich-räumlichen<br />

Charakteristika der Bodenkontakte aller Gliedmaßen anhand von Länge <strong>und</strong> Dauer<br />

des Schrittzyklus sowie seiner Subphasen —Stand- <strong>und</strong> Schwingphase— <strong>und</strong> der<br />

relativen Abfolge der Fußungen zueinander beschrieben. Eine bewährte<br />

Darstellungsform der zeitlichen Parameter sind beispielsweise die Fußfallmuster<br />

nach Hildebrand (HILDEBRAND 1966; Abb.1).<br />

Abb. 1: Fußfallmuster eines ges<strong>und</strong>en H<strong>und</strong>es in Schritt <strong>und</strong> Trab (Mittelwert ± Standardabweichung).<br />

Ein Schrittzyklus beschreibt die Zeit vom Auffußen bis zum Wiederauffußen derselben Gliedmaße; Die<br />

schwarzen Balken zeigen die mittlere Zeit (±SD), die sich die Gliedmaße innerhalb eines Schrittzyklus<br />

in der Standphase befindet. H c : kontralaterale Hintergliedmaße, F c : kontralaterale Vordergliedmaße,<br />

F i : ipsilaterale Vordergliedmaße, H i : ipsilaterale Hintergliedmaße (aus Studie I, Abb. 1).<br />

11


Einleitung <strong>und</strong> Literaturüberblick<br />

Das Teilgebiet der Kinematik beschreibt die zeitlich-räumlichen Beziehungen der<br />

Körperabschnitte zueinander bzw. zum Raum. Anhand von kinematischen Daten<br />

lassen sich die Bewegungen der einzelnen Segmente, sowie unterschiedliche<br />

Winkelparameter der zu untersuchenden Gliedmaßen erfassen (DECAMP et al.<br />

1993; ALLEN et al. 1994; RAGETLY et al. 2010). Hiermit kann z. B. gezeigt werden,<br />

ob es beim lahmenden H<strong>und</strong> in bestimmten Gelenken zu einer vermehrten oder<br />

verminderten Extension bzw. Flexion kommt, was wiederum Auswirkungen auf das<br />

gesamte Gangbild des H<strong>und</strong>es haben kann.<br />

<strong>Kinetische</strong> Gangparameter stellen einen weiteren Teilbereich dar. Die während der<br />

Lokomotion vom H<strong>und</strong> auf den Boden ausgeübten Kräfte werden als<br />

Bodenreaktionskräfte erfasst. Zur besseren Veranschaulichung werden sie in ihre<br />

drei orthogonalen Vektoren zerlegt: vertikal (Fz), kraniokaudal (Fy) <strong>und</strong> mediolateral<br />

(Fx) (BUDSBERG 1987; MCLAUGHLIN 2001). Die Bodenreaktionskräfte geben<br />

Aufschluss über die Richtung <strong>und</strong> Höhe der externen Kräfte, die während der<br />

Standphase auf die Gliedmaße einwirken. Hierbei wird insbesondere die vertikale<br />

Kraft Fz zur quantitativen Beurteilung einer Lahmheit <strong>und</strong> zur Evaluierung der<br />

Gewichtsumverteilung zwischen den Gliedmaßen herangezogen.<br />

Einen zusätzlichen Analysebereich liefert die Elektromyographie (EMG). Obwohl<br />

kinesiologisches EMG zu den Standardmethoden der Bewegungsanalyse in der<br />

Humanmedizin gehört, wird es in der Veterinärmedizin noch so gut wie nicht<br />

verwendet. Als der „Motor“ von Bewegungen ist die Muskulatur aber von<br />

besonderem Interesse <strong>und</strong> daher in die Funktionsanalyse des Bewegungsapparates<br />

einzubeziehen. Die EMG gibt Auskunft über das Aktivitätsmuster der Muskeln<br />

während unterschiedlicher Bewegungen. Das Rekrutierungsmuster ausgesuchter<br />

Muskeln kann beispielsweise nicht-invasiv mittels oberflächenelektromyographischer<br />

Aufzeichnungen (OEMG) beurteilt werden.<br />

Von den genannten Möglichkeiten der Bewegungsbeurteilung konzentrieren sich die<br />

Untersuchungen der vorliegenden Arbeit auf die Veränderungen der zeitlichräumlichen<br />

Charakteristika der Bodenkontakte, der vertikalen Bodenreaktionskräfte<br />

(Fz) aller Gliedmaßen <strong>und</strong> des Aktivierungsmusters ausgewählter Muskeln beim<br />

lahmenden H<strong>und</strong> im Vergleich zum physiologischen Gangbild. In der vorliegenden<br />

12


Einleitung <strong>und</strong> Literaturüberblick<br />

Arbeit wird der Fokus speziell auf die Gangveränderungen bedingt durch eine<br />

Hinterhandlahmheit gelegt, da mehr als die Hälfte der muskuloskelettalen Probleme<br />

beim H<strong>und</strong> durch Gelenkserkrankungen der Hintergliedmaße verursacht werden (v.a.<br />

Hüfte <strong>und</strong> Knie; JOHNSON et al. 1994). Bezogen auf diese drei Analysebereiche —<br />

Metrik, Kinetik, EMG— lässt sich der aktuelle Kenntnisstand für H<strong>und</strong>e mit<br />

Hinterhandlahmheit folgendermaßen zusammenfassen:<br />

Veränderungen von zeitlich-räumlichen Gangparametern wurden bisher entweder in<br />

Bezug auf die Schrittlänge (z. B. DECAMP et al. 1996; RAGETLY et al. 2010;<br />

SANCHEZ-BUSTINDUY et al. 2010), die Schrittdauer (z. B. RAGETLY et al. 2010)<br />

oder die Schrittfrequenz (z. B. BENNETT et al. 1996; DECAMP et al. 1996)<br />

untersucht. Eine Abnahme der Schrittlänge im betroffenen Bein (DECAMP et al.<br />

1996; SANCHEZ-BUSTINDUY et al. 2010), sowie eine Abnahme der Schrittdauer<br />

der geschädigten im Vergleich mit der klinisch ges<strong>und</strong>en Gliedmaße (RAGETLY et<br />

al. 2010) wurde bei H<strong>und</strong>en mit kranialem Kreuzbandriss festgestellt. Bei H<strong>und</strong>en mit<br />

Hüftgelenksdysplasie (HD) kam es im Vergleich mit der Kontrollgruppe in der stärker<br />

erkrankten Gliedmaße zu einer Zunahme der Schrittlänge (BENNETT et al. 1996).<br />

Eine Differenzierung von Stand- <strong>und</strong> Schwingphase wurde bisher nur vereinzelt<br />

vorgenommen (z. B. VILENSKY et al. 1994; BENNETT et al. 1996; RAGETLY et al.<br />

2010; DE MEDEIROS et al. 2011; BÖDDEKER et al. 2012). Hier zeigten alle H<strong>und</strong>e<br />

mit kranialem Kreuzbandriss eine verkürzte Standphasendauer der betroffenen<br />

Gliedmaße (VILENSKY et al. 1994; RAGETLY et al. 2010; DE MEDEIROS et al.<br />

2011; BÖDDEKER et al. 2012). H<strong>und</strong>e mit HD zeigten im Vergleich mit der<br />

Kontrollgruppe weder eine Zu- oder Abnahme in der Standphasendauer noch der<br />

Schrittfrequenz (BENNETT et al. 1996). Komplette Fußfallmuster, die sowohl<br />

Veränderungen der Stand- <strong>und</strong> der Schwingphase als auch zeitliche Beziehungen<br />

zwischen allen Extremitäten <strong>und</strong> die Abfolge der Fußungen bei einer<br />

Hinterhandlahmheit aufzeigen, gibt es bisher nicht.<br />

Bisherige kinetische Studien haben in Bezug auf die veränderte Belastungssituation<br />

bei H<strong>und</strong>en mit Hinterhandlahmheit entweder nur die betroffene Hintergliedmaße<br />

untersucht (z. B. CROSS et al. 1997; HOELZLER et al. 2004; CONZEMIUS et al.<br />

2005; EVANS et al. 2005; MADORE et al. 2007; PUNKE et al. 2007) oder beide<br />

13


Einleitung <strong>und</strong> Literaturüberblick<br />

Hintergliedmaßen verglichen (z. B. BUDSBERG et al. 1988; VOSS et al. 2008;<br />

RAGETLY et al. 2010; BÖDDEKER et al. 2012; SEIBERT et al. 2012). Bei den<br />

genannten Studien wurde die jeweils betroffene Gliedmaße weniger belastet (Fz<br />

vermindert), wohingegen die kontralaterale Hintergliedmaße, sofern untersucht,<br />

vermehrt belastet wurde (Fz erhöht). Ob es bei einer Hinterhandlahmheit auch zu<br />

einer Gewichtsumverteilung auf die Vordergliedmaßen kommt, ist aufgr<strong>und</strong> der<br />

widersprüchlichen Bef<strong>und</strong>lage ungeklärt (z. B. ja: DUPUIS et al. 1994; nein: RUMPH<br />

et al. 1993; RUMPH et al. 1995; JEVENS et al. 1996; KATIC et al. 2009).<br />

Zahlreiche EMG-Studien haben in der Vergangenheit die Aktivitätsmuster einer<br />

Reihe von Gliedmaßen- <strong>und</strong> Rückenmuskeln beim ges<strong>und</strong>en trabenden H<strong>und</strong><br />

beschrieben (NOMURA et al. 1966; TOKURIKI 1973; GOSLOW et al. 1981;RITTER<br />

et al. 2001; CARRIER et al. 2006; CARRIER et al. 2008; SCHILLING et al. 2009;<br />

SCHILLING u. CARRIER 2009; SCHILLING u. CARRIER 2010; DEBAN et al. 2012),<br />

aber nur wenige Studien haben die Veränderungen der Muskelrekrutierung in<br />

Adaptation an eine Lahmheit untersucht (HERZOG et al. 2003; ZANEB et al. 2009;<br />

BOCKSTAHLER et al. 2012a). OEMG bietet im Gegensatz zum intramuskulären<br />

EMG eine weniger invasive Methode, welche in der Humanmedizin routinemäßig<br />

angewendet wird (SUTHERLAND 2001). In der Veterinärmedizin gibt es nur<br />

vereinzelt OEMG-Studien, die die Muskelrekrutierung von ges<strong>und</strong>en (LAUER et al.<br />

2009; BOCKSTAHLER et al. 2009) <strong>und</strong> lahmen H<strong>und</strong>en (BOCKSTAHLER et al.<br />

2012a) untersucht haben. In der zuletzt genannten Arbeit wurden die<br />

Rekrutierungsmuster des M. vastus lateralis, des M. biceps femoris <strong>und</strong> des M.<br />

glutaeus medius von ges<strong>und</strong>en <strong>und</strong> an Hüftgelenksarthrose (OA) erkrankten H<strong>und</strong>en<br />

verglichen. Bei den H<strong>und</strong>en mit OA zeigte sich in allen drei Hinterbeinmuskeln<br />

während der frühen Schwingphase eine verminderte Aktivität <strong>und</strong> während der<br />

frühen Standphase im M. vastus lateralis <strong>und</strong> im M. glutaeus medius eine höhere<br />

Aktivität. Kommt es bei einer Hinterhandlahmheit auch zu einer<br />

Gewichtsumverteilung nach kranial, ist zu erwarten, dass die Muskulatur der<br />

Vorderextremitäten ebenfalls Veränderungen im Rekrutierungsmuster aufzeigt.<br />

Darüber hinaus hat keine der bisher vorliegenden OEMG-Studien den Rücken in die<br />

Untersuchung mit einbezogen. Daher bleibt die Rolle der Rückenmuskulatur bei der<br />

14


Einleitung <strong>und</strong> Literaturüberblick<br />

Kompensation einer Hinterhandlahmheit offen. Zusammenfassend lässt sich<br />

feststellen, dass es beim lahmen H<strong>und</strong> keine Studien gibt, welche die<br />

Aktivierungsmuster der ausgewählten Muskeln aller vier Gliedmaßen sowie des<br />

Rückens simultan untersucht haben.<br />

Ziel der vorliegenden Arbeit ist es, einen Beitrag zum Verständnis der<br />

Lahmheitskompensation des H<strong>und</strong>es zu leisten. Hierfür sollen im Hinblick auf eine<br />

Hinterhandlahmheit die Veränderungen in ausgewählten metrischen, kinetischen <strong>und</strong><br />

elektromyographischen Parametern untersucht werden. Folgende Fragen stehen in<br />

dieser Arbeit im Vordergr<strong>und</strong>: 1) Sind bei einem H<strong>und</strong> mit Hinterhandlahmheit<br />

zeitliche Verschiebungen im Schrittzyklus aller vier Gliedmaßen festzustellen?<br />

Hierfür werden Fußfallmuster erstellt, welche die Veränderungen der zeitlichen<br />

Gangparameter von Stemm- <strong>und</strong> Vorschwingphase sowie die Folge der<br />

Bodenkontakte darstellen. 2) Wird zur Entlastung der betroffenen Gliedmaße das<br />

Gewicht ausschließlich zur kontralateralen Extremität verlagert oder sind alle vier<br />

Gliedmaßen in ihrer vertikalen Kraft verändert? Zur Beantwortung dieser Frage<br />

werden maximale <strong>und</strong> mittlere Kraft sowie der Impuls von Fz von allen vier<br />

Gliedmaßen synchron analysiert. 3) Inwiefern ändern sich die Aktivierungsmuster<br />

ausgewählter Bein- <strong>und</strong> Rückenmuskeln? Hierzu sollen erstmalig die Veränderungen<br />

der Rekrutierungsmuster vom M. triceps brachii, M. vastus lateralis <strong>und</strong> M.<br />

longissimus dorsi in Bezug auf zeitliche Verläufe <strong>und</strong> die Amplitudenhöhe untersucht<br />

werden. Die Ergebnisse dieser Arbeit können durch ein besseres Verständnis der<br />

Kompensationsmechanismen des H<strong>und</strong>es neue Ansätze für Therapien <strong>und</strong><br />

Rehabilitationsmaßnahmen (z. B. Physiotherapie) liefern.<br />

Alle Gangparameter sind von der Geschwindigkeit bzw. der Gangart abhängig.<br />

Beispielsweise steigt die maximale vertikale Kraft mit zunehmender Geschwindigkeit<br />

an (z. B. BUDSBERG 1987; RIGGS et al. 1993; MCLAUGHLIN u. ROUSH 1994;<br />

DECAMP 1997; RENBERG et al. 1999; BERTRAM et al. 2000; MCLAUGHLIN 2001;<br />

EVANS et al. 2003; MÖLSA et al. 2010; VOSS et al. 2010). Da eventuell Lahmheiten<br />

visuell nur im Trab, aber nicht im Schritt auszumachen sind (QUINN et al. 2007;<br />

VOSS et al. 2007), ist anzunehmen, dass sich die jeweiligen<br />

Kompensationsmechanismen zwischen den Gangarten unterscheiden. Aus diesem<br />

15


Einleitung <strong>und</strong> Literaturüberblick<br />

Gr<strong>und</strong> werden die beiden symmetrischen Gangarten, die auch bei der klinischen<br />

Lahmheitsevaluation herangezogen werden —Schritt <strong>und</strong> Trab— bei der<br />

Untersuchung der oben genannten Fragen berücksichtigt.<br />

Die Veränderungen im Bewegungsablauf beim lahmenden im Vergleich zum<br />

nichtlahmenden H<strong>und</strong> wurden mit Hilfe der computergestützten Ganganalyse unter<br />

Verwendung eines instrumentierten Laufbandes dokumentiert, das die gleichzeitige<br />

Erfassung der metrischen, kinetischen <strong>und</strong> elektromyographischen Daten erlaubt.<br />

Um einen direkten Vergleich der physiologischen <strong>und</strong> pathologischen Werte bei ein<br />

<strong>und</strong> demselben Individuum zu ermöglichen <strong>und</strong> somit die Variabilität in den<br />

Ergebnissen aufgr<strong>und</strong> von Grad <strong>und</strong> Ursache der Lahmheit oder auch Alter,<br />

Körpergröße <strong>und</strong> Körperbau zu reduzieren, wurde hier das Modell der induzierten<br />

Lahmheit herangezogen, <strong>und</strong> es wurden ausschließlich H<strong>und</strong>e einer Rasse —dem<br />

Beagle— eingesetzt. Den H<strong>und</strong>en wurde dafür eine mittelgradige, reversible, distale<br />

Hinterhandlahmheit mit Hilfe einer „Stein im Schuh“-Methode induziert. Dies<br />

ermöglicht die genaue Bestimmung des Lahmheitsgrades <strong>und</strong> legt eine genaue<br />

Lokalisation für die Ursache der Lahmheit fest, welche sich bei allen untersuchten<br />

Probanden leicht reproduzieren ließ.<br />

Die Ergebnisse dieser Arbeit werden in zwei getrennten Studien präsentiert, um eine<br />

angemessene Einordnung der einzelnen Bef<strong>und</strong>e in die vorhandene Datenlage <strong>und</strong><br />

eine eingehendere Diskussion dieser zu erlauben. Dabei werden in der ersten Studie<br />

die in dieser Arbeit erhobenen kinetischen <strong>und</strong> metrischen Daten mit den<br />

Ergebnissen bereits publizierter Arbeiten verglichen, welche H<strong>und</strong>e mit klinischen<br />

<strong>und</strong> induzierten Lahmheiten ganganalytisch untersucht haben. Es wird diskutiert<br />

inwiefern die Ergebnisse auf den klinisch lahmen H<strong>und</strong> übertragen werden können<br />

<strong>und</strong> welche Auswirkungen Lahmheiten generell auf die Belastung der übrigen<br />

Gliedmaßen haben. Die zweite Studie konzentriert sich auf die Veränderungen in<br />

den Aktivierungsmustern der ausgewählten Bein- <strong>und</strong> Rückenmuskeln, die mit einer<br />

Lahmheit einhergehen. Hierzu werden die erstmalig mittels OEMG erhobenen<br />

Aktivierungsmuster des M. triceps brachii <strong>und</strong> des M. longissimus dorsi zuerst mit<br />

vorhandenen Bef<strong>und</strong>en intramuskulärer Ableitungen verglichen, um das methodische<br />

Vorgehen für diese beiden Muskeln zu verifizieren. Anschließend werden die<br />

16


Material <strong>und</strong> Methoden<br />

Unterschiede im Rekrutierungsmuster aller untersuchten Muskeln zwischen<br />

ges<strong>und</strong>en <strong>und</strong> lahmenden H<strong>und</strong>en diskutiert <strong>und</strong> in die aktuelle Bef<strong>und</strong>lage<br />

eingeordnet.<br />

2. Material <strong>und</strong> Methoden<br />

2.1. H<strong>und</strong>e<br />

Insgesamt wurden in dieser Studie neun klinisch ges<strong>und</strong>e Beagle mit einem Alter von<br />

4 ± 1 Jahren (Mittelwert ± Standardabweichung) untersucht. Das mittlere<br />

Körpergewicht der zwei weiblichen <strong>und</strong> sieben männlichen H<strong>und</strong>e betrug 15,1 ± 1,1<br />

kg. Alle H<strong>und</strong>e gehörten zur Beagle-Population der Klinik für Kleintiere der <strong>Stiftung</strong><br />

<strong>Tierärztliche</strong> <strong>Hochschule</strong> <strong>Hannover</strong>. Die H<strong>und</strong>e wurden allgemein <strong>und</strong> orthopädisch<br />

untersucht, um eine Lahmheit bzw. eine eventuell vorliegende Erkrankung am<br />

Bewegungsapparat auszuschließen. Zu Beginn der Studie wurden die Beagle an das<br />

Laufen auf dem Laufband gewöhnt <strong>und</strong> die Datenaufzeichnung startete, sobald sich<br />

die H<strong>und</strong>e gleichmäßig <strong>und</strong> entspannt auf dem Laufband bewegten. Zur reversiblen<br />

Lahmheitsinduktion wurde eine mit Watte gepolsterte Styroporkugel (Durchmesser<br />

von 9,5 oder 16 mm) zwischen Haupt- <strong>und</strong> die Vorderballen positioniert <strong>und</strong> mittels<br />

Mullbinde <strong>und</strong> Klebeband für die Dauer der Untersuchung unter der Pfote der<br />

rechten Hintergliedmaße fixiert (s. Abb.1 in Abdelhadi et al. 2012). Alle<br />

Untersuchungen wurden in Übereinstimmung mit dem Deutschen Tierschutzgesetz<br />

durchgeführt <strong>und</strong> durch das Niedersächsische Landesamt für Verbraucherschutz <strong>und</strong><br />

Lebensmittelsicherheit (LAVES) geprüft <strong>und</strong> genehmigt (Nr. 12/0717).<br />

2.2. Datenaufzeichnung<br />

Die simultane Aufzeichnung der metrischen, kinetischen <strong>und</strong> elektromyographischen<br />

Daten erfolgte im Schritt (0,9 m/s) <strong>und</strong> im Trab (1,4 m/s) jeweils zuerst ohne <strong>und</strong><br />

dann mit induzierter Hinterhandlahmheit auf einem instrumentierten Laufband.<br />

17


Material <strong>und</strong> Methoden<br />

2.2.1. <strong>Kinetische</strong> Messungen<br />

Die Aufzeichnung der kinetischen Daten erfolgte durch vier in das Laufband<br />

integrierte Kraftmessplatten (Model 4060-08, Bertec Corporation, Columbus, Ohio,<br />

USA). Es wurden die Bodenreaktionskräfte (Aufzeichnungsrate 1000 Hz) in vertikaler<br />

(Fz), kraniokaudaler (Fy) <strong>und</strong> mediolateraler (Fx) Richtung für jede Gliedmaße<br />

separat aufgezeichnet. Die vertikale Bodenreaktionskraft wurde zur objektiven<br />

Bestimmung des induzierten Lahmheitsgrades herangezogen.<br />

2.2.2. Elektromyographische Messungen<br />

Oberflächenelektromyographische Ableitungen wurden vom M. triceps brachii an<br />

beiden Vordergliedmaßen, vom M. vastus lateralis an beiden Hintergliedmaßen <strong>und</strong><br />

vom M. longissimus dorsi auf Höhe L3/L4 beidseits unter der Verwendung von<br />

selbstklebenden Oberflächen-Gelelektroden (H93SG; Arbo; Tyco Healthcare,<br />

Deutschland) durchgeführt. Hierfür wurde das Hautareal über dem zu<br />

untersuchenden Muskel rasiert, gereinigt <strong>und</strong> entfettet, bevor die Elektroden an den<br />

mittels skelettaler Landmarken definierten Stellen angebracht wurden (Abb. 1 in<br />

Studie II). Die Ableitfläche der Elektroden betrug 1,6 cm im Durchmesser <strong>und</strong> der<br />

Elektrodenabstand war 2,5 cm. Die Oberflächenelektroden wurden immer von dem<br />

gleichen Untersucher an der vorher definierten Lokalisation angebracht, um die<br />

Variabilität der Platzierung zwischen den H<strong>und</strong>en so gering wie möglich zu halten.<br />

2.3. Datenanalyse<br />

Die Auswertung der kinetischen <strong>und</strong> elektromyographischen Daten wurde anhand<br />

von 10 aufeinanderfolgenden Schrittzyklen pro H<strong>und</strong> <strong>und</strong> Gangart durchgeführt. Die<br />

in Vicon Nexus (Vicon Motion Systems Ltd, Oxford, UK) aufgezeichneten vertikalen<br />

Bodenreaktionskräfte <strong>und</strong> elektromyographischen Daten wurden zuerst zeitnormiert<br />

<strong>und</strong> dann in Microsoft Excel (Excel, Microsoft Corp, Redmond, Wash, USA) für die<br />

weitere Bearbeitung exportiert. Das weitere Vorgehen bei der Datenaufbereitung <strong>und</strong><br />

die jeweilige statistische Auswertung sind detailliert in Fischer et al. subm. (Studie I<br />

<strong>und</strong> II) beschrieben.<br />

18


Studie I<br />

3. Studie I<br />

Die folgende Studie wurde am 08.10.2012 bei The Veterinary Journal eingereicht.<br />

Akzeptiert am 12.04.2013.<br />

Compensatory load redistribution in walking and trotting dogs with hind limb<br />

lameness<br />

S. Fischer a , A. Anders a , I. Nolte a , N. Schilling b *<br />

a<br />

University of Veterinary Medicine <strong>Hannover</strong>, Fo<strong>und</strong>ation, Small Animal Clinic,<br />

<strong>Hannover</strong>, Germany<br />

b<br />

Friedrich-Schiller-University, Institute of Systematic Zoology and Evolutionary<br />

Biology, Jena, Germany<br />

* Corresponding author<br />

19


Studie I<br />

3.1. Abstract<br />

This study evaluated adaptations in vertical force and temporal gait parameters to<br />

hind limb lameness in walking and trotting dogs. Eight clinically normal adult Beagles<br />

were allowed to ambulate on an instrumented treadmill at their preferred speed while<br />

the gro<strong>und</strong> reaction forces were recorded for all limbs before and after a moderate,<br />

reversible, hind limb lameness was induced. At both gaits, vertical force was<br />

decreased in the ipsilateral and increased in the contralateral hind limb. While peak<br />

force increased in the ipsilateral forelimb, no changes were observed for mean force<br />

and impulse when the dogs walked or trotted. In the contralateral forelimb, the peak<br />

force was unchanged, but the mean force significantly increased during walking and<br />

trotting; vertical impulse increased only during walking. Relative stance duration<br />

increased in the ipsilateral hind limb when the dogs trotted. In the contralateral fore<br />

and hind limbs, relative stance duration increased during walking and trotting, but<br />

decreased in the ipsilateral forelimb during walking. Analysis of load redistribution<br />

and temporal gait changes during hind limb lameness showed that compensatory<br />

mechanisms were similar regardless of gait. The centre of mass consistently shifted<br />

to the contralateral body side and cranio-caudally to the side opposite the affected<br />

limb. These biomechanical changes indicate substantial short- and long-term effects<br />

of hind limb lameness on the musculoskeletal system.<br />

Keywords: Canine, Gait analysis; Hind limb lameness; Force plate<br />

20


Studie I<br />

3.2. Introduction<br />

More than half of the musculoskeletal problems in dogs are caused by joint diseases<br />

affecting the hind limb (i.e. hip and knee; Johnson et al., 1994) and are commonly<br />

associated with alterations in the gait (i.e. lameness) due to the animal’s effort to<br />

unload the affected limb. The biomechanical consequences of orthopaedic diseases,<br />

such as hip dysplasia and cranial cruciate ligament rupture, have been evaluated by<br />

investigating the load bearing characteristics of either the affected hind limb only<br />

(Gordon et al., 2003; Hoelzler et al., 2004; Conzemius et al., 2005; Evans et al.,<br />

2005; Madore et al., 2007) or both hind limbs (Budsberg et al., 1988; Voss et al.,<br />

2008; Ragetly et al., 2010; Böddeker et al., 2012; Seibert et al., 2012). Fewer studies<br />

have evaluated the effects of hind limb lameness on the forelimbs (Rumph et al.,<br />

1993, 1995; Dupuis et al., 1994; Jevens et al., 1996; Katic et al., 2009).<br />

Nevertheless, unloading one limb causes biomechanical adaptations in all remaining<br />

limbs and results in an irregular gait pattern and a compensatory redistribution of limb<br />

loading.<br />

During the standard orthopaedic examination, dogs are usually ambulated at different<br />

speeds and gaits to diagnose lameness. Since locomotor forces increase with speed<br />

and depend on gait (Riggs et al., 1993; McLaughlin and Roush, 1994; Renberg et al.,<br />

1999; Evans et al., 2003; Voss et al., 2010), not only may lameness be more<br />

apparent during trotting compared to walking (Quinn et al., 2007; Voss et al., 2007),<br />

but the compensatory mechanism used by the animal may differ. Additionally, the<br />

f<strong>und</strong>amental biomechanical differences between walking and trotting (i.e. legs<br />

behaving like inverted pendula vs. ‘pogo sticks’; Cavagna et al., 1977) may result in<br />

differences in the locomotor adaptations to lameness. Previous studies have<br />

evaluated induced hind limb lameness in trotting dogs (O’Connor et al., 1989; Rumph<br />

et al., 1993, 1995; Dupuis et al., 1994) or clinical lameness in walking dogs<br />

(Budsberg et al., 1988; Katic et al., 2009; Böddeker et al., 2012). It is uncertain if<br />

dogs show the same locomotor adaptations to hind limb lameness when walking and<br />

trotting.<br />

21


Studie I<br />

In dogs, as in most quadrupedal mammals, fore and hind limbs play different<br />

functional roles during locomotion (Gray, 1968). The forelimbs exert a net-braking<br />

force, while the hind limbs exert a net-propulsive force during steady state locomotion<br />

(Budsberg et al., 1987; Riggs et al., 1993; Bertram et al., 1997; Lee et al.,1999).<br />

Forelimbs function as compliant struts (Carrier et al., 2008), whereas hind limbs<br />

function as levers (Schilling et al., 2009). Regardless of gait, the forelimbs bear a<br />

greater proportion of the dog’s bodyweight (BW) in comparison with the hind limbs<br />

(Budsberg et al., 1987; Rumph et al., 1994; Bertram et al., 2000; Bockstahler et al.,<br />

2007; Voss et al., 2010). Therefore, when the function of a limb is partially lost, the<br />

dog’s mechanism to cope with this loss has been expected to differ depending on<br />

whether a fore or a hind limb is affected (Roy, 1971; Leach et al., 1977). To gain a<br />

better <strong>und</strong>erstanding of the compensatory load-shifting mechanisms in lame dogs,<br />

we induced a moderate, reversible, load-bearing hind limb lameness in Beagles while<br />

they were walking and trotting on an instrumented treadmill, and evaluated the<br />

changes in the gro<strong>und</strong> reaction force (GRF) and temporal gait parameters. Force<br />

plate analysis was used because it is an accurate and objective way of evaluating<br />

limb function and provides a reproducible measurement of the load bearing<br />

characteristics of the limbs. Inducing hind limb lameness allowed for a direct<br />

comparison of the gait parameters between so<strong>und</strong> and lame dogs and the precise<br />

determination of the degree and cause of lameness.<br />

The aims of this study were: (1) to determine changes occurring in the vertical GRF,<br />

i.e. peak vertical forces (PFz), mean vertical forces (MFz) and vertical impulse (IFz),<br />

as well as the temporal gait parameters (i.e. footfall pattern, relative stance duration)<br />

in all four limbs; (2) to determine whether the observed locomotor adaptations<br />

differed between the gaits; and (3) to determine whether the compensatory<br />

mechanisms in response to hind limb lameness differed from the ones used to cope<br />

with forelimb lameness. To address the latter, we compared our results with the ones<br />

from a previous study (Abdelhadi et al., 2013), which used the same experimental<br />

design and therefore allowed for a direct comparison of load redistribution strategies.<br />

22


Studie I<br />

3.3. Materials and Methods<br />

3.3.1. Animals<br />

Eight Beagles aged 4 ± 1 years (mean ± standard deviation, SD) were used in this<br />

study. The sample size sufficient for this study was determined using Win Episcope<br />

2.0 with a level of confidence of 95%, a power of 80% and the outcome measures<br />

PFz, MFz and IFz (Thrusfield et al., 2001). The BW (mean ± SD) of the two females<br />

and six males was 15.2 ± 1.1 kg. All dogs belonged to the Beagle population of the<br />

Small Animal Clinic of the University of Veterinary Medicine, <strong>Hannover</strong>, Germany.<br />

Inclusion criteria were absence of lameness (see results) and orthopaedic<br />

abnormalities in the previous clinical examination. Before data collection, the dogs<br />

were habituated to ambulating on the treadmill. Data collection started as soon as the<br />

dogs were walking and trotting smoothly and comfortably. All experiments were<br />

carried out in accordance with the German Animal Welfare guidelines of the State of<br />

Lower Saxony (approval number 12/0717).<br />

3.3.2. Study design<br />

To allow for comparison of the compensatory load redistribution mechanisms in<br />

forelimb vs. hind limb lameness, the same experimental protocol as in Abdelhadi et<br />

al. (2013) was used in the current study, but lameness was induced in the right hind<br />

limb (i.e. ipsilateral hind limb, Hi). Before inducing lameness, each Beagle walked<br />

(0.9 m/s) and trotted (1.4 m/s) on a horizontal treadmill. Despite the short temporal<br />

overlap in gro<strong>und</strong> contacts between the forelimbs at the faster gait (duty factor, D ><br />

0.5; i.e. running walk according to Hildebrand (1966); Fig. 1), from a mechanical point<br />

of view, this gait represented a trot (i.e. using spring-mass mechanics; Cavagna et<br />

al., 1977) and will subsequently be referred to as trot. The selected speeds were<br />

determined during the habituation sessions, as were the preferred speeds for the<br />

dogs at the respective gait. At these speeds, the dogs ambulated smoothly and<br />

comfortably matched the treadmill speed, which allowed us to record single limb<br />

forces (see below).<br />

After recording the control trials, a moderate and reversible hind limb lameness was<br />

induced using a small sphere, which was coated with cotton gauze and taped <strong>und</strong>er<br />

23


Studie I<br />

the paw with adhesive tape and bandages. The size of the sphere (9.5 or 16.0 mm in<br />

diameter) depended on the degree of lameness it induced in a given dog. The<br />

degree of lameness was evaluated based on the GRF data. To be able to compare<br />

our data with previous results (Abdelhadi et al., 2013), we aimed at an unloading of<br />

~30–40% with regard to PFz (in %BW) compared with the so<strong>und</strong> condition.<br />

3.3.3. Data collection and analysis<br />

Data collection and analysis are described in detail in Abdelhadi et al. (2013). A<br />

treadmill with four separate belts and force plates <strong>und</strong>erneath each belt (Model 4060-<br />

08, Bertec) was used to record single limb GRF (sampling rate 1000 Hz). Data were<br />

recorded and evaluated to ensure a sufficient number of valid steps using Vicon<br />

Nexus (Vicon). Control data comprising at least 5–10 trials, each lasting up to 30 s<br />

and covering between 48 and 65 strides, were recorded for each dog while walking<br />

and trotting comfortably at the selected speed. After a break of approximately 15 min,<br />

lameness was induced and the data collection repeated. To evaluate kinetic<br />

changes, 10 valid consecutive strides were selected for each dog, gait and condition.<br />

Mean ± SD for PFz, MFz and IFz were calculated for all four limbs. Additionally,<br />

relative stance duration (i.e. duration of stance phase as percentage of total stride<br />

duration = D), as well as symmetry indices for the vertical forces of the fore and hind<br />

limbs, were determined. After manual identification of the footfall events in Vicon<br />

Nexus using the GRF, the force data were time normalised to 100% of the stance<br />

duration of the respective limb and transferred to Microsoft Excel for further analysis.<br />

The vertical force parameters were then normalised to the dog’s BW using the<br />

following equation:<br />

GRFs (%BW) = Fz * 100/(BM *9.81).<br />

These BW-normalised data were used to compare the load-bearing<br />

characteristics among the four limbs before and after lameness was induced (Steiss<br />

et al., 1982):<br />

24


Studie I<br />

% BW bearing = Fz of the limb/total Fz of all limbs*100.<br />

Symmetry in the vertical force and temporal variables was quantified using the<br />

following equation (Herzog et al., 1989):<br />

(3) SI = 100*(Xi – Xc)/(0.5*(Xi + Xc)).<br />

In this equation, X represents the mean value of PFz, MFz or IFz of the ipsilateral (i)<br />

and the contralateral (c) limbs from the 10 steps. Footfall patterns and D were<br />

evaluated to test for significant differences in the temporal gait parameters due to<br />

lameness. A stride cycle begins with the contact of the affected limb (ipsilateral hind<br />

limb, Hi) and ends with its subsequent touch-down. Therefore, one locomotor cycle<br />

comprises one complete stance and one complete swing phase of the reference<br />

limb.<br />

3.3.4. Statistical analyses<br />

Data were tested for normal distribution using the Kolmogorov–Smirnov test. The<br />

significance of the differences in PFz, MFz and IFz between the so<strong>und</strong> and lame<br />

conditions was determined using one-way analysis of variance (ANOVA) for repeated<br />

measures, followed by a post hoc Tukey test. Paired t tests were used to compare<br />

relative stance durations between so<strong>und</strong> and lame conditions. P values


Studie I<br />

peak in the m-shaped force curve (Fig. 2). In the contralateral hind limb, PFz, MFz<br />

and IFz increased significantly at both gaits. Additionally, PFz increased significantly<br />

during walking and trotting in the ipsilateral forelimb, while no significant changes<br />

were observed in MFz and IFz. While PFz remained unchanged, MFz significantly<br />

increased during both walking and trotting in the contralateral forelimb. In this limb,<br />

IFz increased during walking, but not during trotting (Fig. 3).<br />

3.4.2. Symmetry indices<br />

For the so<strong>und</strong> condition, no asymmetry was detected between the right and left<br />

forelimb, or between the right and left hind limb, either during trotting or during<br />

walking (Table 2). After lameness was induced, asymmetry significantly increased in<br />

all GRF parameters of the hind limbs during walking and trotting. Symmetry indices<br />

for PFz and IFz for the forelimbs indicated significant changes for walking but not for<br />

trotting.<br />

3.4.3. Relative stance duration<br />

In the lame condition, relative stance duration significantly increased in the ipsilateral<br />

hind limb while the dogs were trotting; thereby lift-off was significantly delayed (Table<br />

3; Fig. 1). Relative stance duration was significantly increased in the contralateral<br />

forelimb and hind limb during walking and trotting compared to the so<strong>und</strong> condition.<br />

This increased stance duration was associated with a significant later lift-off of the<br />

contralateral forelimb during walking and of the contralateral hind limb during trotting.<br />

Relative stance duration significantly decreased in the ipsilateral forelimb during<br />

walking.<br />

3.5. Discussion<br />

Prior to the induction of lameness, we observed no significant differences in GRF<br />

values (PFz, MFz and IFz) between the two forelimbs and the two hind limbs in<br />

walking and trotting dogs. Correspondingly, the calculated symmetry indices were in<br />

the normal range (


Studie I<br />

2007), which indicated symmetrical load distribution between the two forelimbs and<br />

the two hind limbs. The values of this study compared well with previous<br />

observations in dogs (Budsberg et al., 1993; Fanchon and Grandjean, 2007; Voss et<br />

al., 2008). Each forelimb bore about 30% and each hind limb about 20% of the dog’s<br />

BW. Comparison with previous results (Budsberg et al., 1987; Jevens et al., 1993;<br />

Rumph et al., 1994; Bertram et al., 2000; Bockstahler et al., 2007) confirmed that the<br />

Beagles in the current study were so<strong>und</strong> and affirmed that the data collected before<br />

hind limb lameness was induced were valid as a control.<br />

In most published studies in which hind limb lameness was induced in dogs, the<br />

vertical GRF parameters (PFz, MFz and IFz) were significantly lower in the affected<br />

limb (Fig. 3) and IFz and PFz were increased in the contralateral hind limb (O’Connor<br />

et al., 1989; Rumph et al., 1993, 1995; Dupuis et al., 1994; Jevens et al., 1996), the<br />

exceptions to these studies being Budsberg (2001) and Ballagas et al. (2004).<br />

However, adaptations in the vertical GRF parameters in forelimbs varied among<br />

studies (Fig. 3). Similar to the observations in induced lameness, most clinical<br />

studies observed a decrease in GRF values in the affected hind limb and an increase<br />

in these values in the contralateral hind limb, while the results for the forelimbs varied<br />

again among the studies (Fig. 3). Taken together, comparison of the results from this<br />

study with clinical studies shows that the load redistribution pattern observed in<br />

walking dogs which were lame due to stifle disease was most comparable with the<br />

results from this study.<br />

A confo<strong>und</strong>ing factor when comparing different studies is that one or more<br />

parameters critical to the recorded gait parameters may vary. For example, speed,<br />

gait or breeds have been shown to affect GRF characteristics (Riggs et al., 1993;<br />

McLaughlin and Roush, 1994; Renberg et al., 1999; Evans et al., 2003; Mölsa et al.,<br />

2010; Voss et al., 2010, 2011). Furthermore, differences in data collection (e.g. force<br />

plates in a walkway vs. instrumented treadmill) or the degree and cause of lameness<br />

(e.g. location within the limb or induced vs. clinical lameness) may have an impact on<br />

the compensatory load shifting. For example, unloading of the affected limb in dogs<br />

with induced stifle joint lameness due to transaction of the craniate cruciate ligament<br />

or synovitis (33–81% reduction in PFz; O’Connor et al., 1989; Rumph et al., 1993,<br />

27


Studie I<br />

1995; Dupuis et al., 1994; Jevens et al., 1996; Budsberg, 2001; Ballagas et al., 2004)<br />

generally produced a greater effect than in dogs with clinical stifle or hip joint<br />

lameness (2–18%; Budsberg et al., 1988; Hofmann, 2002; Katic et al., 2009;<br />

Böddeker et al., 2012). This may partially explain why the locomotor adaptations to<br />

hind limb lameness observed in this study, inducing a 34 ± 9% reduction in PFz,<br />

compared better with the more severe lameness studied previously (Dupuis et al.,<br />

1994).<br />

To limit variability in the results introduced by differences among patient populations<br />

and the experimental setting, and to allow for the direct comparison between the<br />

so<strong>und</strong> and the lame condition in the same individual, lameness was induced in this<br />

study instead of enrolling patients. Furthermore, the induced lameness model<br />

controlled for the cause and degree of lameness. Therefore, in contrast to clinical<br />

patients, which may only show lameness during faster gaits when greater locomotor<br />

forces act and thus the level of discomfort and pain increases, the degree of<br />

unloading was the same during walking and trotting in this study, forcing the animal<br />

to redistribute loading for both gaits.<br />

Despite profo<strong>und</strong> mechanical differences between the two gaits studied, such as the<br />

inverted pendulum vs. the spring-mass behaviour of the legs and thus differences in<br />

the trajectory of the centre of mass (CoM) of the body (Dickinson et al., 2000), the<br />

load redistribution was comparable in this study. In both gaits, the BW was shifted to<br />

the contralateral side and cranially. Only one difference was observed; IFz increased<br />

in the contralateral forelimb during walking, but did not significantly change during<br />

trotting (Fig. 3). Similarly, in dogs with induced forelimb lameness, load redistribution<br />

was comparable between walking and trotting (except PFz in the contralateral<br />

forelimb; Abdelhadi et al., 2013). Therefore, all other factors being equal (e.g. cause<br />

and degree of unloading, breed), dogs which walk and trot at their preferred speeds<br />

appear to redistribute the loading of the limbs in a similar way.<br />

Furthermore, during both walking and trotting, relative stance duration increased in<br />

both limbs contralateral to the affected limb. However, gait-dependent differences<br />

were observed in the stance adaptations of the ipsilateral limbs; relative stance<br />

duration decreased in the forelimb during walking and increased in the hind limb<br />

28


Studie I<br />

during trotting. The shorter contact time, associated with a larger peak force, most<br />

likely acted as a compensatory mechanism so that the mean force and impulse in the<br />

ipsilateral forelimb could be maintained. The longer contact times of both hind limbs<br />

during trotting resulted in a reduction of the shared swing phase of the hind limbs.<br />

During walking, the significant increase in the relative stance duration of the<br />

contralateral forelimb was first and foremost due to a later lift-off. Since this later liftoff<br />

is associated with a greater limb retroversion (S. Fischer unpublished<br />

observations), the paw of the contralateral forelimb would be placed closer to the<br />

CoM, which may facilitate the unloading of the affected hind limb (Roy, 1971).<br />

Compared to the so<strong>und</strong> condition, relative stance duration of the affected hind limb<br />

decreased significantly during walking, but not during trotting.<br />

In dogs, the cranio–caudal body mass distribution has been shown to vary slightly<br />

among breeds, but the forelimbs consistently bear a greater percentage of BW than<br />

the hind limbs. In the Beagles, as in other mesomorphic breeds, the forelimbs bear<br />

~60% and the hind limbs ~40% of the BW (Rumph et al., 1994; Bertram et al., 2000;<br />

Katic et al., 2009; Abdelhadi et al., 2013). Due to this difference in loading, the dog’s<br />

mechanism to cope with fore vs. hind limb lameness was expected to differ<br />

(O’Connor et al., 1989; Rumph et al., 1993, 1995; Dupuis et al., 1994; Jevens et al.,<br />

1996; Katic et al., 2009). However, the comparison of the changes in the vertical<br />

GRF values and the temporal gait parameters shows some striking similarities.<br />

Since the same experimental design, cause and degree of lameness were used, the<br />

results of the present study are comparable with those of Abdelhadi et al. (2013); in<br />

both studies, there were reductions in PFz at walk (35 ± 9% vs. 34 ± 4%,<br />

respectively) and trot (33 ± 9% vs. 34 ± 12%), respectively. While the ipsilateral hind<br />

limb showed no change when forelimb lameness was induced, PFz increased in the<br />

ipsilateral forelimb in hind limb lameness. However, this increase was combined with<br />

a decreased stance duration, which resulted in unchanged MFz and IFz, similar to<br />

the results for the ipsilateral hind limb in forelimb lameness (Abdelhadi et al., 2013).<br />

Thus, changes in load redistribution and temporal gait variables were very similar<br />

and appeared not to be dependent on whether a forelimb or a hind limb was affected.<br />

These observations suggest that: (1) gro<strong>und</strong> contact times decreased in the limb<br />

29


Studie I<br />

ipsilateral to the affected limb and increased in the contralateral limbs; and (2) the<br />

CoM was shifted to the contralateral body side and to the rear in forelimb lameness<br />

and to the front in hind limb lameness.<br />

3.6. Conclusion<br />

The lameness model used in this study controlled several parameters, which<br />

probably introduce variability in the results and permitted precise determination of the<br />

degree and cause of lameness. When all variables are comparable, dogs ambulating<br />

at their preferred speeds redistribute the load among the limbs and adapted their<br />

temporal gait parameters regardless of the gait and whether a forelimb or a hind limb<br />

is affected. Dogs unloaded the affected limb and shifted the CoM to the contralateral<br />

side and cranio- caudally to the side opposite to the affected limb.<br />

3.7. Acknowledgements<br />

The authors wish to thank J. Abdelhadi, A. Fuchs, V. Galindo-Zamora and D.<br />

Helmsmüller for discussions and their assistance in the data collection and analyses.<br />

This study was supported via a scholarship to SF by Modul Graduiertenkolleg<br />

Biomedizintechnik des SFB 599 f<strong>und</strong>ed by the German Research Fo<strong>und</strong>ation (DFG)<br />

(to IN), <strong>Hannover</strong>sche Gesellschaft zur Förderung der Kleintiermedizin e.V. (HGFK),<br />

and the Center of Interdisciplinary Prevention of Diseases related to Professional<br />

Activities (KIP) f<strong>und</strong>ed by the Berufsgenossenschaft Nahrungsmittel <strong>und</strong><br />

Gastgewerbe, Erfurt and the Friedrich-Schiller-University Jena (to NS).<br />

3.8. References<br />

Abdelhadi, J., Wefstaedt, P., Galindo-Zamora, V., Anders, A., Nolte, I., Schilling, N.,<br />

2013. Load redistribution in walking and trotting Beagles with induced forelimb<br />

lameness. American Journal of Veterinary Research 74, 34-39.<br />

Ballagas, A.J., Montgomery, R.D., Henderson, R.A., Gillette, R.L., 2004. Pre- and<br />

postoperative force plate analysis of dogs with experimentally transected cranial<br />

30


Studie I<br />

cruciate ligaments treated using tibial plateau leveling osteotomy. Veterinary<br />

Surgery 33, 187-190.<br />

Bertram, J.E.A., Lee, D.V., Case, H.N., Todhunter, R.J., 2000. Comparison of the<br />

trotting gaits of Labrador Retrievers and Greyho<strong>und</strong>s. American Journal of<br />

Veterinary Research 61, 832-838.<br />

Bertram, J.E.A., Lee, D.V., Todhunter, R.J., Foels, W.S., Williams, A.J., Lust, G.,<br />

1997. Multiple force platform analysis of the canine trot: a new approach to<br />

assessing basic characteristics of locomotion. Veterinary and Comparative<br />

Orthopaedics and Traumatology 10, 160-169.<br />

Bockstahler, B.A., Skalicky, M., Peham, C., Müller, M., Lorinson, D., 2007. Reliability<br />

of gro<strong>und</strong> reaction forces measured on a treadmill system in healthy dogs. The<br />

Veterinary Journal 173, 373-378.<br />

Böddeker, J., Drüen, S., Meyer-Lindberg, A., Fehr, M., Nolte, I., Wefstaedt, P., 2012.<br />

Computer-assisted gait analysis of the dog: Comparison of two surgical<br />

techniques for the ruptured cranial cruciate ligament. Veterinary and<br />

Comparative Orthopaedics and Traumatology 25, 11-21.<br />

Budsberg, S., 2001. Long-term temporal evaluation of gro<strong>und</strong> reaction forces during<br />

development of experimentally induced osteoarthritis in dogs. American Journal<br />

of Veterinary Research 62, 1207-1211.<br />

Budsberg, S., Verstraete, M.C., Soutas-Little, R.W., Flo, G.L., Probst, A., 1988. Force<br />

plate analyses before and after stabilization of canine stifles for cruciate injuries.<br />

American Journal of Veterinary Research 49, 1522-1524.<br />

Budsberg, S.C., Jevens, D.J., Brown, J., Foutz, T.L., DeCamp, C.E., Reece, L.,<br />

1993. Evaluation of limb symmetry indices, using gro<strong>und</strong> reaction forces in<br />

healthy dogs. American Journal of Veterinary Research 54, 1569-1574.<br />

Budsberg, S.C., Verstraete, M.C., Soutas-Little, R.W., 1987. Force plate analysis of<br />

the walking gait in healthy dogs. American Journal of Veterinary Research 48,<br />

915-918.<br />

Carrier, D.R., Deban, S.M., Fischbein, T., 2008. Locomotor function of forelimb<br />

protractor and retractor muscles of dogs: Evidence of strut-like behavior at the<br />

shoulder. Journal of Experimental Biology 211, 150-162.<br />

31


Studie I<br />

Cavagna, G.A., Hegl<strong>und</strong>, N.C., Taylor, C.R., 1977. Mechanical work in terrestrial<br />

locomotion: two basic mechanisms for minimizing energy expenditure. American<br />

Journal of Physiology 233, R243-R261.<br />

Conzemius, M.G., Evans, R.B., Besancon, M.F., Gordon, W.J., Horstman, C.L.,<br />

Hoefle, W.D., Nieves, M.A., Wagner, S.D., 2005. Effect of surgical technique on<br />

limb function after surgery for rupture of the cranial cruciate ligament in dogs.<br />

Journal of the American Veterinary Association 226, 232-236.<br />

Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehmann, S., 2000.<br />

How animals move: an integrative view. Science 288, 100-106.<br />

Dupuis, J., Harari, J., Papageorges, M., Gallina, A.M., Ratzlaff, M., 1994. Evaluation<br />

of fibular head transposition for repair of experimental cranial cruciate ligament<br />

injury in dogs. Veterinary Surgery 23, 1-12.<br />

Evans, R., Gordon, W., Conzemius, M., 2003. Effect of velocity on gro<strong>und</strong> reaction<br />

forces in dogs with lameness attributable to tearing of the cranial cruciate<br />

ligament. American Journal of Veterinary Research 64, 1479-1481.<br />

Evans, R.B., Horstman, C., Conzemius, M., 2005. Accuracy and optimization of force<br />

platform gait analysis in Labradors with cranial cruciate disease evaluated at a<br />

walking gait. Veterinary Surgery 34, 445-449.<br />

Fanchon, L., Grandjean, D., 2007. Accuracy of asymmetry indices of gro<strong>und</strong> reaction<br />

forces for diagnosis of hindlimb lameness in dogs. American Journal of<br />

Veterinary Research 68, 1089-1094.<br />

Gordon, W.J., Conzemius, M.G., Riedesel, E., Besancon, M.F., Evans, R., Wilke, V.,<br />

Ritter, M.J., 2003. The relationship between limb function and radiographic<br />

osteoarthrosis in dogs with stifle osteoarthrosis. Veterinary Surgery 32, 451-545.<br />

Gray, J., 1968. Animal locomotion. Norton, New York, 1-479.<br />

Herzog, W., Nigg, B.M., Read, L.J., Olsson, E., 1989. Asymmetries in gro<strong>und</strong><br />

reaction force patterns in normal human gait. Medicine and Science in Sports<br />

and Excercise 21, 110-114.<br />

Hildebrand, M., 1966. Analysis of the symmetrical gaits of tetrapods. Folia<br />

Biotheoretica 6, 9-22.<br />

32


Studie I<br />

Hoelzler, M.G., Millis, D.L., Francis, D.A., Weigel, J.P., 2004. Results of arthroscopic<br />

versus open arthrotomy for surgical management of cranial cruciate ligament<br />

deficiency in dogs. Veterinary Surgery 33, 146-153.<br />

Hofmann, D., 2002. Ganganalytisches Profil verschiedener Gelenkerkrankungen<br />

beim H<strong>und</strong>. Dissertation <strong>Tierärztliche</strong> Fakultät, Ludwig-Maximilians-Universität<br />

München, 1-127.<br />

Jevens, D.J., DeCamp, C.E., Hauptman, J., Braden, T.D., Richter, M., Robinson, R.,<br />

1996. Use of force-plate analysis of gait to compare two surgical techniques for<br />

treatment of cranial cruciate ligament rupture in dogs. American Journal of<br />

Veterinary Research 57, 389-393.<br />

Jevens, D.J., Hauptman, J.G., DeCamp, C.E., Budsberg, S.C., Soutas-Little, R.W.,<br />

1993. Contributions to variance in force-plate analysis of gait in dogs. American<br />

Journal of Veterinary Research 54, 612-615.<br />

Johnson, J.A., Austin, C., Breuer, G.J., 1994. Incidence of canine appendicular<br />

musculoskeletal disorders in 16 veterinary teaching hospitals from 1980 through<br />

1989. Veterinary and Comparative Orthopaedics and Traumatology 7, 56-69.<br />

Katic, N., Bockstahler, B.A., Müller, M., Peham, C., 2009. Fourier analysis of vertical<br />

gro<strong>und</strong> reaction forces in dogs with unilateral hindlimb lameness caused by<br />

degenerative disease of the hip joint and in dogs without lameness. American<br />

Journal of Veterinary Research 70, 118-126.<br />

Leach, D., Sumner-Smith, G., Dagg, A.I., 1977. Diagnosis of lameness in dogs: A<br />

preliminary study. Canadian Veterinay Journal 18, 58-63.<br />

Lee, D.V., Bertram, J.E., Todhunter, R.J., 1999. Acceleration and balance in trotting<br />

dogs. Journal of Experimental Biology 202, 3565-3573.<br />

Madore, E., Huneault, L., Moreau, M., Dupuis, J., 2007. Comparison of trot kinetics<br />

between dogs with stifle or hip arthrosis. Veterinary and Comparative<br />

Orthopaedics and Traumatology 20, 102-107.<br />

McLaughlin, R.M.J., Roush, J.K., 1994. Effects of subject stance time and velocity on<br />

gro<strong>und</strong> reaction forces in clinically normal greyho<strong>und</strong>s at the trot. American<br />

Journal of Veterinary Research 55, 1666-1671.<br />

33


Studie I<br />

Mölsa, S.H., Hielm-Björkman, A.K., Laitinen-Vapaavouri, O.M., 2010. Force platform<br />

analysis in clinically healthy Rottweilers: comparison with Labrador Retrievers.<br />

Veterinary Surgery 39, 701-707.<br />

O'Connor, B.L., Visco, D.M., Heck, D.A., 1989. Gait alterations in dogs after<br />

transection of the anterior cruciate ligament. Arthritis and Rheumatism 32, 1142-<br />

1147.<br />

Quinn, M.M., Keuler, N.S., Lu, Y., Faria, M.L.E., Muir, P., Markel, M.D., 2007.<br />

Evaluation of agreement between numerical rating scales, visual analogue<br />

scoring scales, and force plate gait analysis in dogs. Veterinary Surgery 36, 360-<br />

367.<br />

Ragetly, C.A., Griffon, D.J., Mostafa, A.A., Thomas, J.E., Hsiao-Wecksler, E.T., 2010.<br />

Inverse dynamics analysis of the pelvic limbs in Labrador retrievers with and<br />

without cranial cruciate ligament disease. Veterinary Surgery 39, 513-522.<br />

Renberg, W.C., Johnston, S.A., Ye, K., Budsberg, S.C., 1999. Comparison of stance<br />

time and velocity as control variables in force plate analysis of dogs. American<br />

Journal of Veterinary Research 60, 814-819.<br />

Riggs, C.M., DeCamp, C.E., Soutas-Little, R.W., Braden, T.D., Richter, M.A., 1993.<br />

Effects of subject velocity on force plate-measured gro<strong>und</strong> reaction forces in<br />

healthy Greyho<strong>und</strong>s at the trot. American Journal of Veterinary Research 54,<br />

1523-1526.<br />

Roy, W.E., 1971. Examination of the canine locomotor system. Veterinary Clinics of<br />

North America: Small animal practice 1, 53-70.<br />

Rumph, P.F., Kincaid, S.A., Baird, D.K., Kammermann, J.R., Visco, D.M., Goetze,<br />

L.F., 1993. Vertical gro<strong>und</strong> reaction force distribution during experimentally<br />

induced acute synovitis in dogs. American Journal of Veterinary Research 54,<br />

365-369.<br />

Rumph, P.F., Kincaid, S.A., Baird, D.K., Kammermann, J.R., West, M.S., 1995.<br />

Redistribution of vertical gro<strong>und</strong> reaction force in dogs with experimentally<br />

induced chronic hindlimb lameness. Veterinary Surgery 24, 384-389.<br />

Rumph, P.F., Lander, J.E., Kincaid, S.A., Baird, D.K., Kammermann, J.R., Visco,<br />

D.M., 1994. Gro<strong>und</strong> reaction force profiles from force platform gait analyses of<br />

34


Studie I<br />

clinically normal mesomorphic dogs at the trot. American Journal of Veterinary<br />

Research 55, 756-761.<br />

Schilling, N., Fischbein, T., Yang, E.P., Carrier, D.R., 2009. Function of extrinsic<br />

hindlimb muscles in trotting dogs. Journal of Experimental Biology 212, 1036-<br />

1052.<br />

Seibert, R., Marcellin-Little, D., Roe, S.C., DePuy, V., Lascelles, B.D., 2012.<br />

Comparison of body weight distribution, peak vertical force, and vertical impulse<br />

as measures of hip joint pain and efficiacy of total hip replacement. Veterinary<br />

Surgery 41, 443-447.<br />

Steiss, J.E., Yuill, G.T., White, N.A., Bowen, J.M., 1982. Modifications of a force plate<br />

system for equine gait analysis. American Journal of Veterinary Research 43,<br />

538-540.<br />

Thrusfield, M., Ortega, C., de Blas, I., Noordhuizen, J.P., Frankena, K., 2001. Win<br />

Episcope 2.0: improved epidemiological software for veterinary medicine.<br />

Veterinary Record 148, 567-572.<br />

Voss, K., Damur, D.M., Guerrero, T., Haessig, M., Montavon, P.M., 2008. Force plate<br />

gait analysis to assess limb function after tibial tuberosity advancement in dogs<br />

with cranial cruciate ligament disease. Veterinary and Comparative Orthopaedics<br />

and Traumatology 21, 243-249.<br />

Voss, K., Galeandro, L., Wiestner, T., Heassig, M., Montavon, P.M., 2010.<br />

Relationships of body weight, body size, subject velocity, and vertical gro<strong>und</strong><br />

reaction forces in trotting dog. Veterinary Surgery 39, 863-869.<br />

Voss, K., Imhof, J., Kaestner, S., Montavon, P.M., 2007. Force plate gait analysis at<br />

the walk and trot in dogs with low-grade hindlimb lameness. Veterinary and<br />

Comparative Orthopaedics and Traumatology 20, 299-304.<br />

Voss, K., Wiestner, T., Galeandro, L., Hässig, M., Montavon, P.M., 2011. Effect of<br />

dog breed and body conformation on vertical gro<strong>und</strong> reaction forces, impulses,<br />

and stance times. Veterinary and Comparative Orthopaedics and Traumatology<br />

24, 106-112.<br />

35


Studie I<br />

3.9. Tables and Figures<br />

Tab. 1. Load distribution indicated by peak vertical forces (PFz), mean vertical forces<br />

(MFz), and vertical impulse (IFz) in % bodyweight (BW) for the so<strong>und</strong> condition<br />

and when lameness was induced in the right hind limb (ipsilateral hind limb, H i ).<br />

Significant at * P


Studie I<br />

Tab. 2. Symmetry indices for the so<strong>und</strong> condition and when lameness was induced<br />

in the right hind limb (i.e., ipsilateral hind limb). Perfect symmetry is given at SI=0.<br />

Negative values indicate that the respective parameter was greater for the<br />

contralateral than the ipsilateral limb; positive values indicate the opposite. Significant<br />

at * P


Studie I<br />

Tab. 3. Relative stance duration (D) in so<strong>und</strong> dogs and when lameness was induced<br />

in the right hind limb (ipsilateral hind limb, H i ). Significant at * P


Studie I<br />

Fig. 1. Stride cycle with mean ± standard deviation (SD) stance duration for footfall<br />

patterns of all eight Beagles during walking (A) and trotting (B) for the so<strong>und</strong> (control)<br />

condition (black bars) and after lameness was induced (grey bars) in the right<br />

hindlimb (ipsilateral hindlimb, H i ). Stance duration was the interval between touchdown<br />

to lift-off of a paw. *Touch-down of the paw of a limb after induced lameness<br />

was shifted significantly during walking (F c P < 0.05) and at trotting (H c P < 0.05; H i P<br />

< 0.01), in comparison with results for that same limb in the so<strong>und</strong> condition. Stride<br />

cycle was the interval between touch-down to next touch-down of the same limb.<br />

F c = contralateral forelimb. F i = ipsilateral forelimb H c = contralateral hind limb. H i =<br />

ipsilateral hind limb (i.e., affected limb, bold).<br />

39


Studie I<br />

Fig. 2. Vertical gro<strong>und</strong> reaction forces of all eight Beagles during walking (A) and<br />

trotting (B) for the so<strong>und</strong> (control) condition (black) and after lameness was induced<br />

(grey) in the right hind limb (ipsilateral hind limb, H i ). Plotted are the mean values as<br />

well as the standard deviations (SDs) as error bars. Stance duration was the interval<br />

between touch-down to lift-off of the respective limb.<br />

F c = contralateral forelimb. F i = ipsilateral forelimb H c = contralateral hind limb. H i =<br />

ipsilateral hind limb (i.e., affected limb, bold).<br />

40


Studie I<br />

41


Studie I<br />

Fig. 3. Summary of the results of this study and previous studies illustrating the<br />

changes in the GRF parameters due to induced (A) and clinical (B) hind limb<br />

lameness. Triangles pointing upwards indicate a significant increase in the respective<br />

parameter and limb. Triangles pointing downwards indicate a significant decrease of<br />

the parameter. Horizontal bars represent no change. Solid symbols illustrate the<br />

observations for the walk, open symbols for the trot.<br />

F c = contralateral forelimb. F i = ipsilateral forelimb H c = contralateral hindl imb. H i =<br />

ipsilateral hind limb (i.e., affected limb, bold). PFz = peak vertical force. MFz = mean<br />

vertical force. IFz = vertical impulse.<br />

42


Studie II<br />

4. Studie II<br />

Die folgende Studie wurde am 04.02.2013 bei PloS One eingereicht.<br />

Manuskript Nummer: PONE-S-13-06194<br />

Adaptations in muscle activity to induced hindlimb lameness in trotting dogs<br />

S. Fischer a , I. Nolte a , N. Schilling b *<br />

a<br />

University of Veterinary Medicine <strong>Hannover</strong>, Fo<strong>und</strong>ation, Small Animal Clinic,<br />

<strong>Hannover</strong>, Germany<br />

b<br />

Friedrich-Schiller-University, Institute of Systematic Zoology and Evolutionary<br />

Biology, Jena, Germany<br />

*Corresponding author<br />

Short title: Muscle activity adaptations to hindlimb lameness<br />

43


Studie II<br />

4.1. Abstract<br />

Muscle tissue has a great intrinsic adaptability to changing functional demands.<br />

Triggering more gradual responses such as tissue growth, the immediate responses<br />

to altered loading conditions involve changes in the activity patterns. Because a loss<br />

of limb function is associated with marked deviations in the gait pattern,<br />

<strong>und</strong>erstanding the muscular responses in laming animals will provide further insight<br />

into their compensatory mechanisms as well as help to improve treatment options to<br />

prevent musculoskeletal sequelae in chronic patients. Therefore, this study evaluated<br />

the changes in muscle activity in adaptation to a moderate, load-bearing hindlimb<br />

lameness in two leg and one back muscle using surface electromyography (SEMG).<br />

In eight so<strong>und</strong> adult dogs that trotted on an instrumented treadmill, bilateral, bipolar<br />

recordings of the m. triceps brachii, the m. vastus lateralis and the m. longissimus<br />

dorsi were obtained before and after lameness was induced. Consistent with the<br />

unchanged vertical forces as well as temporal parameters, neither the timing nor the<br />

excitement changed significantly in the m. triceps brachii. In the ipsilateral m. vastus<br />

lateralis, peak activity and integrated SEMG area were decreased, while they were<br />

significantly increased in the contralateral limb. In both sides, the duration of the<br />

muscle activity was significantly longer due to a delayed offset. These observations<br />

are in accordance with previously described kinetic and kinematic changes as well as<br />

changes in muscle mass. Alterations in the activation patterns of the m. longissimus<br />

dorsi concerned primarily the unilateral activity and is discussed regarding known<br />

alterations in truncal and limb motions. The results of this study using a transient<br />

hindlimb lameness model indicate that SEMG is a valuable diagnostic tool to detect<br />

muscular adaptations to altered functional demands. Hence, it should be further<br />

established in basic and clinical veterinary medicine in order to improve therapeutic<br />

and rehabilitative management of orthopedic patients.<br />

Keywords: gait analysis, canine, electromyography, Canis<br />

44


Studie II<br />

4.2. Introduction<br />

Muscle is one of the most plastic tissues in the animal body. Its great phenotypic<br />

plasticity allows it to adapt to various tasks and respond to changing functional<br />

demands throughout life (reviewed in [1]). While immediate responses to altered<br />

functional requirements involve for example changes in muscle recruitment and<br />

activation patterns, more gradual adaptations include quantitative and qualitative<br />

changes in gene expression as well as tissue growth and remodeling [2,3]. When<br />

diseased or injured, however, an animal must immediately respond to the new<br />

situation to ensure survival and this is first and foremost accomplished by<br />

adaptations in muscular recruitment.<br />

To cope with the loss of limb function, animals have evolved compensatory<br />

strategies, and the resulting lameness is marked by deviations of the animal’s gait<br />

from the physiological pattern. Locomotor adaptations to lameness include changes<br />

in kinetics and kinematics as well as muscle activity. While the changes in the gro<strong>und</strong><br />

reaction forces (GRF) (e.g., hindlimb lameness in dogs [4-9]) or the motion patterns<br />

(e.g., [10-17]) are comparatively well established, adaptations in muscle activity have<br />

only been studied marginally. Nonetheless, the consistently observed redistribution of<br />

body weight and the dynamic shift of the position of the center of body mass (CoM)<br />

alters the loading of the limbs and the trunk and must be met and are accomplished<br />

by changes in muscle function. Because such changes in muscle function trigger<br />

more gradual tissue responses [3] and muscles are the primary determinant of joint<br />

loading, stimulating skeletal remodeling or joint degeneration [18], <strong>und</strong>erstanding the<br />

adaptations in muscle activity to altered functional demands will provide insight into<br />

their short- and long-term effects on the musculoskeletal system.<br />

One mean to evaluate muscle function is to record the electrical signal associated<br />

with the activation of the muscle fibers (i.e., electromyography, EMG). Besides its<br />

widespread use in basic physiological and biomechanical studies, EMG is a standard<br />

tool in medical research, sport sciences and rehabilitation in humans with nowadays<br />

h<strong>und</strong>reds of publications a year [19]. Compared to that, EMG seems still in the<br />

fledging stages in veterinary medicine [20]. EMG has been used in numerous studies<br />

to document the activity of a series of limb and back muscles in so<strong>und</strong> dogs for<br />

45


Studie II<br />

example during trotting (e.g., [21-30]), but only very few studies used it to evaluate<br />

muscular adaptions to lameness [18,31,32]. To limit the invasiveness during data<br />

collection, supracutaneous recordings using surface electrodes are nowadays<br />

commonly obtained for human patients [33]. In animal patients, surface<br />

electromyography (SEMG) has only recently been used to study muscle function in<br />

so<strong>und</strong> [34-36] and lame horses [31] as well as in so<strong>und</strong> [37,38] and lame dogs [32].<br />

Compared to human subjects, cooperativeness and tolerance to skin manipulation,<br />

but also the substantial differences in skin properties (e.g., tightness) may have<br />

hindered the use of SEMG as a diagnostic tool in animals so far.<br />

To establish the changes in muscle activity in adaptation to a partial loss of limb<br />

function, we recorded the activity patterns in two limb and one back muscle in dogs<br />

before and after a moderate load-bearing hindlimb lameness was induced. Bipolar<br />

SEMG recordings were obtained bilaterally while the dogs trotted on a horizontal<br />

treadmill. To accommodate changes in the work performed and the forces<br />

transmitted, muscle recruitment may be modulated in its timing and/or its intensity<br />

[30]; therefore, we evaluated both parameters in the current study. The two limb<br />

muscles examined –m. triceps brachii, m. vastus lateralis– are part of the extensor<br />

groups of the elbow and knee that serve to resist gravity (i.e., ‘antigravity muscles’;<br />

39]) and are first and foremost active during the stance phase [23]. We hypothesized<br />

that changes in limb loading will be reflected by changes in the muscles’ activation<br />

patterns. Specifically, we expected the greater vertical force reported for the hindlimb<br />

contralateral to the affected limb ([9] and references therein) to result in an increased<br />

activity of the contralateral m. vastus lateralis. Conversely, the reduced loading of the<br />

affected hindlimb should be associated with a decreased activity of the ipsilateral m.<br />

vastus lateralis. It has been discussed controversially whether or not the load-bearing<br />

characteristics of the forelimbs are affected by hindlimb lameness (summarized in<br />

[9]), but our own results from a related study showed no consistent changes in the<br />

vertical force. Therefore, we hypothesized, that the activity of the m. triceps brachii<br />

would not significantly change.<br />

As in other quadrupeds, the epaxial muscles in dogs play a central role in stabilizing<br />

and mobilizing the trunk; that is, they stabilize the trunk against inertial loading,<br />

46


Studie II<br />

provide a fo<strong>und</strong>ation for the production of mechanical work by the limbs, and<br />

integrate the coordinated action of the limbs [24,27,29]. Particularly the lumbar region<br />

functions to provide a firm base for extrinsic hindlimb muscle action by stabilizing the<br />

pelvis and controlling the forces transmitted between the limbs and the trunk [28].<br />

Because in laming animals, both the forces exerted by the limbs as well as pelvic and<br />

truncal motions are altered in order to shift the CoM away from the affected limb, we<br />

expected the activity pattern of the lumbar epaxial muscles (i.e., the m. longissimus<br />

dorsi) to be significantly different after lameness was induced.<br />

4.3. Materials and Methods<br />

4.3.1. Ethics statement<br />

Data collection for this study was carried out in strict accordance with the German<br />

animal welfare guidelines. All experiments were approved by the ethics committee of<br />

the State of Lower Saxony (No 12/0717).<br />

4.3.2. Animals and experimental design<br />

Eight adult and clinically so<strong>und</strong> individuals (7 males, 1 female; mean±SD: 4±1 years;<br />

15.1±1.2 kg) of the Beagle population of the Small Animal Clinic of the University of<br />

Veterinary Medicine <strong>Hannover</strong> Fo<strong>und</strong>ation (Germany) participated in this study. The<br />

simultaneously recorded gro<strong>und</strong> reaction forces as well as the previous clinical<br />

examination confirmed that all dogs were so<strong>und</strong> [9].<br />

After habituation, data collection started as soon as the dogs trotted smoothly and<br />

comfortably on the horizontal four-belt treadmill that was equipped with a force plate<br />

<strong>und</strong>erneath each belt (Model 4060-08, Bertec Corporation). Treadmill speed was set<br />

at 1.4 m/s for both lame and so<strong>und</strong> trials. This speed represented the preferred (i.e.,<br />

steady-state) trotting speed of the dogs and was determined during the habituation<br />

period. Control data were collected after warm-up and before a reversible moderate<br />

supporting lameness was induced in the right hindlimb by evoking pressure on the<br />

paw sole (reduction in peak vertical force: 33±9%). Lameness was induced using a<br />

small sphere of 9.5 or 16 mm in diameter, which was coated with cotton and taped<br />

<strong>und</strong>er the paw of the right hindlimb (for details, see [40]). The body side on which<br />

47


Studie II<br />

lameness was induced is hereafter referred to as ipsilateral in contrast to the<br />

contralateral, so<strong>und</strong> body side. After data collection, dogs ambulated on the treadmill<br />

again without any sign of residual lameness.<br />

4.3.3. Data collection<br />

Bipolar recordings were obtained bilaterally from the m. triceps brachii, the m. vastus<br />

lateralis and the m. longissimus dorsi using SEMG. After gentle preparation of the<br />

skin (i.e., clipping, shaving, cleaning, degreasing), disposable Ag-AgCl electrodes<br />

with a circular uptake area of 1.6 cm in diameter and an interelectrode distance of 2.5<br />

cm were applied (H93SG, Arbo). Electrode placement was the same for each<br />

individual before and after lameness was induced because the data for the control<br />

and the lame conditions were recorded in the same session. The same experimenter<br />

(SF) applied all electrodes to ensure consistency in the recording sites between body<br />

sides and among individuals.<br />

For the m. vastus lateralis, electrode placement followed the recommendations by<br />

Bockstahler and colleagues [38]. That is, the midpoints of the lines connecting the<br />

posterior superior iliac spine and the patella and the patella and the trochanter major<br />

were determined. Then, the electrodes were placed dorsal and ventral of the line<br />

connecting these two midpoints (Fig. 1). Electrodes for the m. triceps brachii were<br />

positioned halfway along the line connecting the Tuberculum majus humeri and the<br />

olecranon. Muscle activity of the m. longissimus dorsi was recorded at the lumbar<br />

level L3/L4. Electrode location was midway between the vertebral articulation of the<br />

last rib and the most cranial aspect of the iliac crest and about a finger’s breadth<br />

lateral to the spinous processes. After placement, the electrodes were connected to<br />

the transmitters (Zero wire EMG, Aurion), which transferred the signal wireless to a<br />

PC. Electromyographic signals were recorded simultaneously with the GRF using<br />

Vicon Nexus (Vicon motion systems Ltd.). Data were sampled at 2,000 Hz, amplified<br />

1,000 times and collected in the range from 10 Hz to 1.000 Hz. The transmitters were<br />

carefully secured with tape and hair clips to minimize motion artifacts. But, despite<br />

thoroughly securing the electrodes and transmitters, not all recordings could be<br />

evaluated in each individual.<br />

48


Studie II<br />

4.3.4. Data analysis<br />

To allow for the direct comparison between muscle activity and limb function, as<br />

indicated by its load-bearing characteristic, the same 10 strides as evaluated in a<br />

previous study were analyzed herein [9]. Touch down and lift off were manually<br />

defined in Vicon Nexus using the vertical component of the GRF (sampling rate<br />

1,000 Hz); force threshold was set at 13 N. SEMG data were high-pass filtered at 20<br />

Hz, low-pass filtered at 300 Hz, and subsequently smoothed using a moving window<br />

of 10 ms. SEMG signals were time-normalized to the same stance and swing phase<br />

durations to facilitate comparisons of timing with reference to footfall events (i.e.,<br />

each phase covered 50% of the stride cycle resulting in altogether 201 bins per<br />

sampled stride; for details see 30]. These filtered and time-normalized data were<br />

then exported to Microsoft Excel for further analysis.<br />

To evaluate differences in timing and intensity of the muscle activity, data analysis<br />

follows previously established protocols (see [30] and references therein). Briefly,<br />

SEMG signals were amplitude-normalized using the muscle’s average activity during<br />

the so<strong>und</strong> condition. For this, the mean activity was determined for the control data<br />

and then, each bin of both the so<strong>und</strong> and the lame trials was divided by this mean.<br />

By normalizing the values for each dog to the mean activity of the control prior to<br />

generating the statistics for all dogs, the pattern from one dog did not overwhelm the<br />

pattern from another (e.g., because of differences in signal strengths due to different<br />

skin properties etc.). From these data, grand averaged curves were calculated for<br />

each muscle and each dog.<br />

For each dog and muscle, the time of the peak activity was ascertained and<br />

compared between conditions. Furthermore, on- and offset times of the muscle<br />

activity were determined using a threshold that was twice the baseline activity of the<br />

control data. For this, first, baseline activity was established by averaging the values<br />

from a fraction (i.e., 20 bins) of the stride cycle when the muscle was inactive. This<br />

period of inactivity was determined by visual inspection and covered the values<br />

between 75% and 84% of the stride cycle in the m. triceps brachii, 39% to 49% in m.<br />

vastus lateralis and 17% to 27% (N=3) or 50% to 59% (N=2) in the m. longissimus<br />

dorsi. The respective muscle was considered active when the SEMG amplitude was<br />

49


Studie II<br />

above this threshold for 7.5±9.5% of the stride cycle (i.e., 15±20 bins); except the<br />

ipsilateral m. vastus lateralis, for which a longer period was chosen because of the<br />

greater fluctuations of the EMG signal due to cross-talk (see discussion). Conversely,<br />

muscle activity ended when the amplitude was below the threshold for 7.0±5.0% of<br />

the stride cycle (i.e., 14±10 bins). The period of time the activity had to be above or<br />

below the threshold varied somewhat among subjects and muscles due to<br />

differences in the baseline activity and was therefore crosschecked visually.<br />

Additionally to comparing the timing of the muscle activity, recruitment intensity was<br />

compared between control and induced-lameness data using peak activity and<br />

integrated SEMG area (i.e., the sum of the bins of the phase- and amplitudenormalized<br />

signal when the muscle was active). To further specify significant<br />

differences in muscle activity between so<strong>und</strong> and lame conditions, we compared the<br />

signal on a bin-by-bin basis. For this, the difference between the muscle’s activity in<br />

the so<strong>und</strong> and the lame condition was calculated and then compared with the<br />

hypothesized difference of zero by computing 97.5th and 2.5th percentiles of the<br />

difference when averaged across dogs. If these percentiles encompassed zero, the<br />

null hypothesis was accepted. If they failed to encompass zero (i.e., both 97.5th and<br />

2.5th percentiles were greater than or less than zero), the null hypothesis was<br />

rejected and the change in muscle excitation across conditions significant.<br />

4.3.5. Statistical analyses<br />

Wilcoxon signed rank tests were used to compare integrated SEMG area, peak<br />

activity as well as the timing of the muscle activity. Because of the lower sample size,<br />

paired t-tests were used to compare the data for the m. longissimus dorsi. In this<br />

muscle, P values of p


Studie II<br />

The m. triceps brachii showed a biphasic activation pattern. A first activity was<br />

observed between late swing and late stance phase. The second burst started<br />

shortly before lift off and lasted throughout the first half of the forelimb’s stance phase<br />

(Fig. 2). Compared with the so<strong>und</strong> condition, neither the integrated SEMG area nor<br />

the timing of the muscle activity were significantly changed in the ipsi- or the<br />

contralateral forelimb when hindlimb lameness was induced (Tab. 1).<br />

4.4.2. M. vastus lateralis (N=7)<br />

The m. vastus lateralis was active during most of the stance phase; its activity started<br />

during the last quarter of the swing phase and lasted till about 40% of the stride cycle<br />

(Fig. 2). Compared with the activity during the so<strong>und</strong> condition, excitation decreased<br />

significantly by 16±15% (mean±SD) in the ipsilateral and increased significantly by<br />

66±43% in the contralateral hindlimb after lameness was induced (integrated SEMG<br />

area, Tab. 1). Accordingly, maximum amplitude changed significantly in both<br />

hindlimbs. While peak activity occurred significantly later in the contralateral limb, its<br />

timing was unchanged in the ipsilateral limb. In both hindlimbs, the duration of the<br />

activity increased significantly due to a delayed offset (ipsilateral by 13±6%,<br />

contralateral by 29±23% of the respective stride cycle). The bin-wise comparison<br />

shows that the increase in activity occurred mainly during the second half of the<br />

stance phase in the contralateral limb, while the change in activity in the ipsilateral<br />

muscle occurred during the first half of stance (Fig. 2). A second and smaller activity<br />

was observed during the first third of the swing phase. This activity was excluded<br />

from the analysis because it most likely represents cross-talk (see discussion).<br />

4.4.3. M. longissimus dorsi (N=5)<br />

The m. longissimus dorsi was active during the second half of the stance phase and<br />

during the second half of the swing phase (Fig. 2). Thus, its pronounced biphasic<br />

activity ended aro<strong>und</strong> lift off and touch down, respectively. Compared to the so<strong>und</strong><br />

condition, the first and greater burst associated with the stance phase started later<br />

and reached its maximum activity later in the contralateral m. longissimus dorsi (Tab.<br />

1). Furthermore, peak activity of the second burst was significantly smaller in the<br />

51


Studie II<br />

contralateral side. All other EMG parameters did not significantly change when<br />

hindlimb lameness was induced.<br />

4.5. Discussion<br />

4.5.1. M. tricpes brachii<br />

The m. triceps brachii showed a biphasic activity with a first burst of activity starting<br />

shortly before touch down and lasting throughout most of the stance phase and a<br />

second activity starting shortly before lift off and ending about halfway through swing<br />

phase. Comparisons with previous results from trotting dogs show that the first<br />

activity observed in this study agrees well with intramuscular recordings [21-23].<br />

When dogs trot, both the long and the lateral head become active prior touch down<br />

and remain active till mid-stance or during the first two thirds of the stance phase,<br />

respectively [21-23]. Therefore, the first activity observed in the current study using<br />

SEMG likely represents a compo<strong>und</strong> signal from the activity of at least the long and<br />

the lateral heads of the m. triceps brachii. Whether also activity of the accessory<br />

head, situated deep and adjacent to the lateral head [41], plays a role is open as no<br />

recording from this head exists. Because it is eccentrically, the muscle’s activity<br />

aro<strong>und</strong> touch down has been suggested to control the passive flexion of the elbow<br />

joint induced by gravitational forces and allow for elastic energy storage; the<br />

subsequent concentric activity extends the elbow joint and thereby provides<br />

propulsion during the stance phase [23].<br />

In contrast to previous intramuscular EMG (IEMG) in dogs [21,23] and other<br />

mammals (e.g., cat [42], horse [43], goat [44]), a second activity associated with the<br />

early swing phase was observed in the current study. A function of the biarticular,<br />

long head of the m. triceps brachii in shoulder flexion has been suggested based on<br />

its topography [41] and shortening pattern [23]. This together with the fact that the<br />

timing of the second burst coincides with the flexion of the shoulder joint after lift off<br />

(e.g., [23,45,46]) suggests that this activity may be associated with shoulder flexion<br />

during the first half of swing. That the long head was inactive during early swing<br />

phase in previous IEMG recordings may be due to differences in electrode<br />

placement. EMG is a compo<strong>und</strong> signal composed of the summed action potentials of<br />

52


Studie II<br />

the muscles fibers located close to the recording site. Therefore, the recorded signal<br />

depends on the number and kind of motor units near the electrode, and differences in<br />

electrode location result in considerable differences in the recorded signal (e.g.,<br />

within the muscle or in vs. on its surface, [47]). Additionally, this second burst could<br />

be the result of cross-talk. SEMG does not record the signal directly from the muscle<br />

as does IEMG; thus, the electrodes potentially detect more than one muscle signal.<br />

Both, the activity pattern [21-23] and the anatomical position [41] of the m. brachialis<br />

relative to the electrodes are consistent with the second activity recorded herein.<br />

Furthermore, skin movements relative to the <strong>und</strong>erlying muscles may lead to slightly<br />

different electrode locations during the course of a stride, thus detecting activity from<br />

neighboring muscles depending on the inertia of the skin. Dogs, in particular, have<br />

loose skin and therefore skin movements likely facilitate cross-talk in this species.<br />

After lift off, the inertia of the skin places the electrodes slightly more cranially (pers.<br />

observ., SF) so that activity, for example, from the m. brachialis is potentially<br />

recorded.<br />

After lameness was induced, neither the intensity nor the timing of the activity was<br />

significantly different. Accordingly, only minor changes in the vertical force and the<br />

temporal gait parameters were observed in the companion study using the same<br />

experimental approach as this study [9]. In agreement with our results in dogs, no<br />

kinematic changes occurred in the forelimbs in trotting horses with a transient<br />

hindlimb lameness [48] and the recruitment of a forearm muscle (i.e., the m. extensor<br />

digitorum longus) was also not significantly different in hindlimb lame horses<br />

compared with non-lame horses [31].<br />

4.5.2. M. vastus lateralis<br />

The main activity of the m. vastus lateralis muscle observed from the last 20% of the<br />

swing to ca. 40% of the stance phase compares very well with previous<br />

intramuscular recordings in trotting dogs [21-23] and other mammals (e.g., cat<br />

[49,50]; horse [51-53]). This corroborates the previously suggested landmarks for the<br />

electrode positioning for this muscle [32,38]. However, compared with intramuscular<br />

recordings, our SEMG recordings showed an additional, small activity between lift off<br />

53


Studie II<br />

and about 30% of the swing phase. Because this activity was not observed using<br />

IEMG, it possibly is, as mentioned above, either the result of differences in the<br />

specific electrode location or of cross-talk (e.g., due to skin movement). After lift off,<br />

the inertia of the skin may place the electrodes slightly more caudally so that activity<br />

from the m. biceps femoris is recorded. Furthermore, the m. vastus lateralis is part of<br />

the quadriceps muscle group of which both the m. vastus intermedius as well as the<br />

m. rectus femoris muscles are in close proximity to the m. vastus lateralis [41].<br />

Activity patterns of all three, the m. biceps femoris caudal, the m. vastus intermedius<br />

and the m. rectus femoris, coincide with the burst observed during early swing in the<br />

current study [22,27,30,54].<br />

After lameness was induced, excitation of the ipsilateral m. vastus lateralis was<br />

significantly reduced. Consistent with that, the affected limb bears a smaller<br />

proportion of the body weight in hindlimb lame dogs [4-9]. Furthermore, the timing of<br />

the muscle’s activity was changed; that is, muscle activity ended slightly but<br />

significantly later during stance. Analysis of the temporal gait parameters showed<br />

that the stance duration was significantly increased in the hindlimb in which lameness<br />

was induced, consistent with an increased period of activity [9]. But, the prolonged<br />

stance phase may not solely explain the later offset as we performed a stride phasenormalization.<br />

However, without more detailed analyses of the kinematic changes<br />

associated with hindlimb lameness, interpretation is hampered.<br />

Contrary to this study, Bockstahler and colleagues [32] report a significantly greater<br />

activity in the clinically worse limb compared with the contralateral limb in dogs with<br />

hip osteoarthritis. They make an increased necessity to stabilize the stifle during<br />

early stance and to ovoid pain responsible for the greater excitation. Additionally, the<br />

dogs enrolled in the study were patients and thus the time for habituation may have<br />

been limited. Unfamiliarity with the experimental situation (e.g., [55]) as well as<br />

‘protective guarding’ for example in anticipation of pain (e.g., [56-58]) lead to<br />

substantial changes in muscular recruitment such as greater muscle activity.<br />

Alternatively, not mutually exclusive to the above, recruitment patterns and the<br />

changes thereof may vary depending on whether a distal, supporting lameness (this<br />

study) or a proximal lameness due to osteoarthritis [32] exists.<br />

54


Studie II<br />

Compared to the so<strong>und</strong> condition, both the intensity and the duration of the activity of<br />

the m. vastus lateralis were significantly increased in the contralateral limb after<br />

lameness was induced. Accordingly, this limb bears a greater proportion of the body<br />

weight in trotting dogs when lame and its stance duration is significantly increased<br />

(e.g., [4-9]). As the bin-wise comparison shows, muscle excitation was primarily<br />

increased during the second half of stance; that is, when the hindlimb exerts<br />

propulsive forces and the muscles activity is concentrically to produce knee<br />

extension [23,45,46]. Therefore, the increased activity during the second half of<br />

stance is most likely associated with the pronounced production of knee extension to<br />

propel the body forward. Accordingly, in dogs with hindlimb lameness, the so<strong>und</strong> limb<br />

produces a greater share of the propulsive forces in order to compensate for the lost<br />

function of the other limb [59,60].<br />

In accordance with the reduced recruitment of the m. vastus lateralis in the affected<br />

limb, several studies have reported a substantial loss in muscle mass in the<br />

quadriceps group in chronic hindlimb lame patients [61-65]. Because the so<strong>und</strong> limb<br />

did serve as a control in these studies, potential hypertrophy due to the<br />

compensatory greater activity in the contralateral hindlimb remains to be evaluated.<br />

4.5.3. M. longissimus dorsi<br />

The mid-lumbar SEMG recordings of this study showed the typical biphasic activity<br />

with a greater burst associated with the ipsilateral stance phase and a smaller one<br />

occurring during the ipsilateral swing phase well-documented for the m. longissimus<br />

dorsi in several mammals (e.g., dog [21,22,24,28,29]; cat [66]; horse [34,35,67-69]).<br />

Because our results agree well with previous recordings from this muscle, the<br />

anatomical landmarks used are well-suited electrode positions. Nevertheless, it<br />

should be kept in mind that the activity patterns of the mid-lumbar m. longissimus<br />

dorsi and m. multifidus are very similar [24,28]. Therefore, potential cross-talk can not<br />

be easily detected and the recorded signal potentially represents the summed activity<br />

of these two epaxial muscles.<br />

Because the activity on one body side coincides with the activity on the other side,<br />

bilateral activity results. Bilateral activity is required to mobilize and stabilize the trunk<br />

55


Studie II<br />

in the sagittal plane [29]. Manipulations of the locomotor forces in trotting dogs<br />

showed that the bilateral activity stabilizes the trunk against the inertia of the CoM<br />

(‘sagittal rebo<strong>und</strong>’, [24]) and the vertical components of the extrinsic hindlimb<br />

muscles (e.g., limb retractors, [28]). Assuming that dogs manage hindlimb lameness<br />

like horses, the reduced vertical acceleration of the CoM associated with the lame<br />

hindlimb’s stance phase and the compensatory increase of CoM motions during the<br />

so<strong>und</strong> hindlimb’s stance [70,71] should result in diagonally opposite but alike<br />

changes of the two bursts. For example, an increased need to stabilize the trunk in<br />

the sagittal plane can be expected to be associated with an increased first burst of<br />

the ipsilateral and an increased second burst of the contralateral muscle (i.e., the two<br />

bursts which coincide on the two sides). Because the corresponding bursts did not<br />

show concordant changes after lameness induction, rather all significant changes<br />

concerned the unilaterally greater activity, changes in the forces acting in the sagittal<br />

plane seem to be too small to result in substantial changes in the muscle activity in<br />

this study.<br />

In so<strong>und</strong> trotting dogs, the unilaterally greater activity acts to stabilize the trunk in the<br />

transverse plane against gravitational forces and in the horizontal plane against the<br />

horizontal components of the extrinsic hindlimb muscles [28]. Pronounced long-axis<br />

rotations of the pelvis and the trunk towards the so<strong>und</strong> side were observed in lame<br />

horses and suggested as one mean to unload the affected limb [70,72]. To produce<br />

these rotations, increased activity of the epaxial as well as the extrinsic limb muscles<br />

(i.e., the m. gluteus medius) contralateral to the affected side can be expected<br />

[28,27]. Although not significant, the results of this study show an increased first<br />

activity of the m. longissimus dorsi contralateral to the lame limb. Increased activity of<br />

m. gluteus medius is furthermore expected because of the changes in limb trajectory;<br />

that is, hindlimb lame animals such as horses skew their limbs medio-laterally in<br />

order to move the so<strong>und</strong> limb more directly <strong>und</strong>er the CoM [48]. In agreement with<br />

that, greater activity was observed in this muscle in lame horses during walking [31].<br />

Because the unilateral epaxial muscle activity is also associated with the stabilization<br />

of the pelvis against the action of the ipsilateral protractor and the contralateral<br />

retractor of the hindlimb [28], changes in timing and/or the amplitude of limb motions<br />

56


Studie II<br />

likely cause changes in the epaxial muscle activity. Unfortunately, no detailed<br />

kinematic analyses are available for dogs with a distal, load-bearing hindlimb<br />

lameness. In horses, however, the so<strong>und</strong> hindlimb’s protraction is delayed [48],<br />

consistent with the delayed onset and peak activity of the m. longissimus dorsi<br />

observed herein.<br />

4.6. Concluding remarks<br />

SEMG is well suited if the activity of a muscle group rather than of a single muscle is<br />

of interest and intramuscular recordings are available for reference (e.g., to assess<br />

cross-talk). Nevertheless, using well-defined skeletal landmarks for reproducible<br />

electrode locations and comparing experimental conditions directly with one another,<br />

an interpretation of the changes in muscle activity is possible despite potential crosstalk<br />

and skin movements. The results of this study show that changes in timing<br />

and/or the amplitude of muscles’ activities in adaptation to the partial loss of a limb’s<br />

function are detectable in dogs using SEMG. These changes were consistent with<br />

previously described alterations in kinematic and kinetic gait parameters as well as in<br />

muscle mass in chronically lame patients. Because changes in the functional<br />

demands and thereby in activity lead to phenotypic changes of the muscle due to its<br />

great intrinsic plasticity, <strong>und</strong>erstanding muscular adaptations to changes in the<br />

locomotor patterns (e.g., due to lameness) will help to improve treatment options and<br />

rehabilitative exercises (e.g., developing targeted muscle training to avoid atrophy).<br />

Furthermore, because joint loading is primarily determined by muscular forces and<br />

joint stabilization via co-contraction may result in changed joint loading, despite<br />

similar kinematics and/or an unloading of the limb indicated by the GRF [73],<br />

<strong>und</strong>erstanding alterations in muscle activity is critical to assess potential changes in<br />

the internal forces. Thus, analyzing muscle activity patterns provides diagnostic<br />

insight into gait changes in addition to the well-established kinetic or kinematic<br />

parameters. At present, kinesiological EMG is on the fringe of veterinary medicine,<br />

but its proven benefit as a tool in basic and applied research, physiotherapy,<br />

rehabilitation, and sports training in humans should encourage a broader<br />

establishment and application in veterinary sciences.<br />

57


Studie II<br />

4.7. Acknowledgements<br />

The authors wish to thank J. Abdelhadi, A. Anders, A. Fuchs, V. Galindo-Zamora,<br />

and D. Helmsmüller for discussions and their assistance in the data collection and<br />

analyses. We also thank S.M. Deban and C. Anders for helping with the design of the<br />

data analysis. L. Harder helped with Figure 1. This study was supported by the<br />

Graduiertenkolleg Biomedizintechnik of the SFB 599 f<strong>und</strong>ed by the German<br />

Research Fo<strong>und</strong>ation (scholarship to SF) and the <strong>Hannover</strong>sche Gesellschaft zur<br />

Förderung der Kleintiermedizin e.V. (both to IN) as well as the Berufsgenossenschaft<br />

Nahrungsmittel <strong>und</strong> Gastgewerbe Erfurt (to NS). This study represents a portion of a<br />

thesis submitted by the first author as partial fulfillment of the requirements for a<br />

Doctor of Veterinary Medicine degree.<br />

4.8. References<br />

1. Schaeffer PJ, Lindtstedt SL (2013) How animals move: comparative lessons on<br />

animal locomotion. Comprehensive Physiology 3: 289-314.<br />

2. Goldspink G (2002) Gene expression in skeletal muscle. Biochemical Society<br />

Transactions 30: 285-290.<br />

3. Goldspink G (2005) Research on mechano growth factor: Its potential for<br />

optimising physical training as well as misuse in doping. British Journal of<br />

Sports Medicine 39: 787-788.<br />

4. Rumph PF, Kincaid SA, Baird DK, Kammermann JR, Visco DM, et al. (1993)<br />

Vertical gro<strong>und</strong> reaction force distribution during experimentally induced acute<br />

synovitis in dogs. American Journal of Veterinary Research 54: 365-369.<br />

5. Dupuis J, Harari J, Papageorges M, Gallina AM, Ratzlaff M (1994) Evaluation of<br />

fibular head transposition for repair of experimental cranial cruciate ligament<br />

injury in dogs. Veterinary Surgery 23: 1-12.<br />

6. Rumph PF, Kincaid SA, Baird DK, Kammermann JR, West MS (1995)<br />

Redistribution of vertical gro<strong>und</strong> reaction force in dogs with experimentally<br />

induced chronic hindlimb lameness. Veterinary Surgery 24: 384-389.<br />

7. Jevens DJ, DeCamp CE, Hauptman J, Braden TD, Richter M, et al. (1996) Use of<br />

force-plate analysis of gait to compare two surgical techniques for treatment of<br />

58


Studie II<br />

cranial cruciate ligament rupture in dogs. American Journal of Veterinary<br />

Research 57: 389-393.<br />

8. Katic N, Bockstahler BA, Müller M, Peham C (2009) Fourier analysis of vertical<br />

gro<strong>und</strong> reaction forces in dogs with unilateral hindlimb lameness caused by<br />

degenerative disease of the hip joint and in dogs without lameness. American<br />

Journal of Veterinary Research 70: 118-126.<br />

9. Fischer S, Anders A, Nolte I, Schilling N (2013) Compensatory load redistribution<br />

in walking and trotting dogs with hind limb lameness. The Veterinary Journal<br />

http://dx.doi.org/10.1016/j.tvjl.2013.04.009.<br />

10. Korvick DL, Pijanowski GJ, Schaeffer DJ (1994) Three-dimensional kinematics of<br />

the intact and cranial cruciate ligament-deficient stifle of dogs. Journal of<br />

Biomechanics 27: 77-87.<br />

11. Vilensky JA, O'Connor BL, Brandt KD, Dunn EA, Rogers PI (1994) Serial<br />

kinematic analysis of the trunk and limb joints after anterior cruciate ligament<br />

transection - temporal, spatial, and angular changes in a canine model of<br />

osteoarthritis. Journal of Electromyography and Kinesiology 4: 181-192.<br />

12. Bennett RL, DeCamp CE, Flo GL, Hauptman JG, Stajich M (1996) Kinematic gait<br />

analysis in dogs with hip dysplasia. American Journal of Veterinary Research<br />

57: 966-971.<br />

13. DeCamp CE, Riggs CM, Olivier NB (1996) Kinematic evaluation of gait in dogs<br />

with cranial cruciate ligament rupture. American Journal of Veterinary<br />

Research 57: 120-126.<br />

14. Poy NSJ, DeCamp CE, Bennett RL, Hauptman JG (2000) Additional kinematic<br />

variables to describe differences in the trot between clinically normal dogs and<br />

dogs with hip dysplasia. American Journal of Veterinary Research 61: 974-<br />

978.<br />

15. Sanchez-Bustinduy M, de Medeiros MA, Radke H, Langley-Hobbs S, McKinley T,<br />

et al. (2010) Comparison of kinematic variables in defining lameness caused<br />

by naturally occurring rupture of the cranial cruciate ligament in dogs.<br />

Veterinary Surgery 39: 523-530.<br />

59


Studie II<br />

16. Bockstahler B, Prickler B, Lewy E, Holler PJ, Vobornik A, et al. (2012) Hind limb<br />

kinematics during therapeutic exercises in dogs with osteoarthritis of the hip<br />

joints. American Journal of Veterinary Research 73: 1371-1376.<br />

17. Böddeker J, Drüen S, Meyer-Lindberg A, Fehr M, Nolte I, et al. (2012) Computerassisted<br />

gait analysis of the dog: Comparison of two surgical techniques for<br />

the ruptured cranial cruciate ligament. Veterinary and Comparative<br />

Orthopaedics and Traumatology 25: 11-21.<br />

18. Herzog W, Longino D, Clark A (2003) The role of muscles in joint adaptation and<br />

degeneration. Langenbeck's Archives of Surgery 288: 305-315.<br />

19. Kamen G, Gabriel DA (2010) Essentials of electromyography. Human Kinetics<br />

Books, Champaign, Illinois: 1-265.<br />

20. Gillette RL, Angle TC (2008) Recent developments in canine locomotor analysis:<br />

A review. The Veterinary Journal 178: 165-176.<br />

21. Nomura S, Sawazaki H, Ibaraki T (1966) Co-operated muscular action in postural<br />

adjustment and motion in dog, from the view point of electromyographic<br />

kinesiology and joint mechanics. IV. About muscular activity in walk and trot.<br />

Japanese Journal of Zootechnical Science 37: 221-229.<br />

22. Tokuriki M (1973) Electromyographic and joint-mechanical studies in<br />

quadrupedal locomotion II. Trot. Japanese Journal of Veterianary Sciences 35:<br />

525-533.<br />

23. Goslow GE, Seeherman HJ, Taylor CR, McCutchin MN, Hegl<strong>und</strong> NC (1981)<br />

Electrical activity and relative length changes of dog limb muscles as a<br />

function of speed and gait. Journal of Experimental Biology 94: 15-42.<br />

24. Ritter DA, Nassar PN, Fife MM, Carrier DR (2001) Epaxial muscle function in<br />

trotting dogs. Journal of Experimental Biology 204: 3053-3064.<br />

25. Carrier DR, Deban SM, Fischbein T (2006) Locomotor function of the pectoral<br />

girdle 'muscular sling' in trotting dogs. Journal of Experimental Biology 209:<br />

2224-2237.<br />

26. Carrier DR, Deban SM, Fischbein T (2008) Locomotor function of forelimb<br />

protractor and retractor muscles of dogs: Evidence of strut-like behavior at the<br />

shoulder. Journal of Experimental Biology 211: 150-162.<br />

60


Studie II<br />

27. Schilling N, Fischbein T, Yang EP, Carrier DR (2009) Function of extrinsic<br />

hindlimb muscles in trotting dogs. Journal of Experimental Biology 212: 1036-<br />

1052.<br />

28. Schilling N, Carrier DR (2009) Function of the epaxial muscles during trotting.<br />

Journal of Experimental Biology 212: 1053-1063.<br />

29. Schilling N, Carrier DR (2010) Function of the epaxial muscles in walking, trotting,<br />

and galloping dogs: Implications for the evolution of epaxial muscle function in<br />

tetrapods. Journal of Experimental Biology 213: 1490-1502.<br />

30. Deban SM, Schilling N, Carrier DR (2012) Activity of extrinsic limb muscles in<br />

dogs at walk, trot, and gallop. Journal of Experimental Biology 215: 287-300.<br />

31. Zaneb H, Kaufmann V, Stanek C, Peham C, Licka T (2009) Quantitative<br />

differences in activities of back and pelvic limb muscles during walking and<br />

trotting between chronically lame and nonlame horses. American Journal of<br />

Veterinary Research 70: 1129-1134.<br />

32. Bockstahler B, Kräutler C, Holler P, Kotschwar A, Vobornik A, et al. (2012) Pelvic<br />

limb kinematics and surface electromyography of the vastus lateralis, biceps<br />

femoris and gluteus medius muscle in dogs with hip osteoarthritis. Veterinary<br />

Surgery 41: 54-62.<br />

33. Sutherland DH (2001) The evolution of clinical gait analysis part 1: kinesiological<br />

EMG. Gait & Posture 14: 61-70.<br />

34. Licka TF, Peham C, Frey A (2004) Electromyographic activity of the longissimus<br />

dorsi muscles in horses during trotting on treadmill. American Journal of<br />

Veterinary Research 65: 155-158.<br />

35. Robert C, Valette JP, Pourcelot P, Audigie F, Denoix JM (2002) Effects of trotting<br />

speed on muscle activity and kinematics in saddlehorses. Equine Veterinary<br />

Journal Supplement 34: 295-301.<br />

36. Licka T, Frey A, Peham C (2009) Electromyographic activity of the longissimus<br />

dorsi muscles in horses when walking on a treadmill. The Veterinary Journal<br />

180: 71-76.<br />

61


Studie II<br />

37. Lauer SK, Hillman RB, Hosgood GL (2009) Effects of treadmill inclination on<br />

electromyographic activity and hind limb kinematics in healthy ho<strong>und</strong>s at a<br />

walk. American Journal of Veterinary Research 70: 658-664.<br />

38. Bockstahler BB, Gesky R, Mueller M, Thalhammer JG, Peham C, et al. (2009)<br />

Correlation of surface electromyography of the vastus lateralis muscle in dogs<br />

at a walk with joint kinematics and gro<strong>und</strong> reaction forces. Veterinary Surgery<br />

38: 754-761.<br />

39. Armstrong RB, Saubert CW, Seeherman HJ, Taylor CR (1982) Distribution of<br />

fiber types in locomotory muscles of dogs. American Journal of Anatomy 163:<br />

87-98.<br />

40. Abdelhadi J, Wefstaedt P, Galindo-Zamora V, Anders A, Nolte I, et al. (2013)<br />

Load redistribution in walking and trotting Beagles with induced forelimb<br />

lameness. American Journal of Veterinary Research 74: 34-39.<br />

41. Evans HE (1993) Miller's anatomy of the dog. Sa<strong>und</strong>ers, Philadelphia: pp. 1-<br />

1113.<br />

42. English AW (1978) An electromyographic analysis of forelimb muscles during<br />

overgro<strong>und</strong> stepping in the cat. Journal of Experimental Biology 76: 105-122.<br />

43. Harrison SM, Whitton RC, King M, Haussler KK, Kawacak CE, et al. (2012)<br />

Forelimb muscle activity during equine locomotion. Journal of Experimental<br />

Biology 215: 2980-2991.<br />

44. Carroll AM, Biewener AA (2009) Mono- versus biarticular muscle function in<br />

relation to speed and gait changes: in vivo analysis of the goat triceps brachii.<br />

Journal of Experimental Biology 212: 3349-3360.<br />

45. DeCamp CE, Soutas-Little RW, Hauptman JG, Olivier NB, Braden T, et al. (1993)<br />

Kinematic gait analysis of the trot in healthy Greyho<strong>und</strong>s. American Journal of<br />

Veterinary Research 54: 627-634.<br />

46. Allen K, DeCamp CE, Braden TD (1994) Kinematic gait analysis of the trot in<br />

healthy mixed breed dogs. Veterinary and Comparative Orthopaedics and<br />

Traumatology 7: 148-153.<br />

47. Scholle HC, Schumann NP, Biedermann FHW, Stegeman DF, Grassme R, et al.<br />

(2001) Spatiotemporal surface EMG characteristics from rat triceps brachii<br />

62


Studie II<br />

muscle during treadmill locomotion indicate selective recruitment of<br />

functionally distinct muscle regions. Experimental Brain Research 138: 26-36.<br />

48. Buchner HHF, Savelberg HH, Schamhardt HC, Barneveld A (1996) Limb<br />

movement adaptations in horses with experimentally induced fore- or hindlimb<br />

lameness. Equine Veterinary Journal 28: 63-70.<br />

49. Engberg I, L<strong>und</strong>berg A (1969) An electromyographic analysis of muscular activity<br />

in the hindlimb of the cat during unrestrained locomotion. Acta Physiologica<br />

Scandinavica 75: 614-630.<br />

50. Rasmussen SA, Chan AK, Goslow GEJ (1978) The cat step cycle:<br />

electromyographic patterns for hindlimb muscles during posture and<br />

unrestrained locomotion. Journal of Morphology 155: 253-270.<br />

51. Wentink GH (1978) Biokinetical analysis of movement of the pelvic limb of the<br />

horse and the role of the muscles in the walk and the trot. Anatomy and<br />

Embryology 152: 261–272.<br />

52. Robert C, Valette JP, Degueurce C, Denoix JM (1999) Correlation between<br />

surface electromyography and kinematics of the hindlimb of horses at trot on a<br />

treadmill. Cells Tissues Organs 165: 113–122.<br />

53. Wickler SJ, Hoyt DF, Biewener AA, Cogger EA, De La Paz KL (2005) In vivo<br />

muscle function vs. speed. II. Muscle function trotting up an incline. Journal of<br />

Experimental Biology 208: 1191-1200.<br />

54. Wentink GH (1976) The action of the hind limb musculature of the dog in walking.<br />

Acta Anatomica 96: 70-80.<br />

55. Chapman AR, Vicenzino B, Blanch P, Hodges PW (2008) Patterns of leg muscle<br />

recruitment vary between novice and highly trained cyclists. Journal of<br />

Electromyography and Kinesiology 18: 359-371.<br />

56. van Dieen JH, Selen LPJ, Cholewicki J (2003) Trunk muscle activation in lowback<br />

pain patients, an analysis of the literature. Journal of Electromyography<br />

and Kinesiology 13: 333-351.<br />

57. Lamoth CJC, Daffertshofer A, Meijer OG, Moseley GL, Wuisman PIJM, et al.<br />

(2004) Effects of experimentally induced pain and fear of pain on trunk<br />

63


Studie II<br />

coordination and back muscle activity during walking. Clinical Biomechanics<br />

19: 551-563.<br />

58. Moseley GL, Nicholas MK, Hodges PW (2004) Does anticipation of back pain<br />

predispose to back trouble? Brain 127: 2339– 2347.<br />

59. Budsberg S, Verstraete MC, Soutas-Little RW, Flo GL, Probst A (1988) Force<br />

plate analyses before and after stabilization of canine stifles for cruciate<br />

injuries. American Journal of Veterinary Research 49: 1522-1524.<br />

60. Ragetly CA, Griffon DJ, Mostafa AA, Thomas JE, Hsiao-Wecksler ET (2010)<br />

Inverse dynamics analysis of the pelvic limbs in Labrador retrievers with and<br />

without cranial cruciate ligament disease. Veterinary Surgery 39: 513-522.<br />

61. Johnson JM, Johnson AL (1993) Cranial cruciate ligament rupture: pathogenesis,<br />

diagnosis, and postoperative rehabilitation. Veterinary Clinics of North<br />

America: Small animal practice 23: 717-733.<br />

62. Miller A (1996) Decision making in the management of cranial cruciate ligament<br />

rupture. In Practice 18: 98-102.<br />

63. Innes JF, Barr ARS (1998) Clinical natural history of the postsurgical cruciate<br />

deficient canine stifle joint: year 1. Journal of Small Animal Practice 39: 325-<br />

332.<br />

64. Corr S (2009) Decision making in the management cruciate disease in dogs. In<br />

Practice 31: 164-171.<br />

65. Mostafa AA, Griffon DJ, Thomas MW, Constable PD (2010) Morphometric<br />

characteristics of the pelvic limb musculature of Labrador retrievers with and<br />

without cranial cruciate ligament deficiency. Veterinary Surgery 39: 380-389.<br />

66. Carlson H, Halbertsma J, Zomlefer M (1979) Control of the trunk during walking<br />

in the cat. Acta Physiologica Scandinavica 105: 251-253.<br />

67. Robert C, Audigié F, Valette JP, Pourcelot P, Denoix JM (2001) Effects of<br />

treadmill speed on the mechanics of the back in the trotting saddle horse.<br />

Equine Veterinary Journal 33: 154-159.<br />

68. Robert C, Valette JP, Denoix JM (2001) The effects of treadmill inclination and<br />

speed on the activity of three trunk muscles in the trotting horse. Equine<br />

Veterinary Journal 33: 466-472.<br />

64


Studie II<br />

69. Wakeling JM, Ritruechai P, Dalton S, Nankervis K (2007) Segmental variation in<br />

the activity and function of the equine longissimus dorsi muscle during walk<br />

and trot. Equine and Comparative Exercise Physiology 4: 95-103.<br />

70. Buchner HHF, Savelberg HH, Schamhardt HC, Barneveld A (1996) Head and<br />

trunk movement adaptations in horses with experimentally induced fore- or<br />

hindlimb lameness. Equine Veterinary Journal 28: 71-76.<br />

71. Buchner HHF, Obermüller S, Scheidl M (2001) Body centre of mass movement in<br />

the lame horse. Equine Veterinary Journal Supplement 33: 122-127.<br />

72. Gomez Alvarez CB, Bobbert MF, Lamers L, Johnston C, Back W, et al. (2008)<br />

The effect of induced hindlimb lameness on thoracolumbar kinematics during<br />

treadmill locomotion. Equine Veterinary Journal 40: 147-152.<br />

73. Hasler EM, Herzog W, Leonard TR, Stano A, Nguyen H (1998) In vivo knee joint<br />

loading and kinematics before and after ACL transection in an animal model.<br />

Journal of Biomechanics 31: 253-262.<br />

65


Studie II<br />

4.9. Tables and Figures<br />

Tab. 1. Timing of the on- and offset (on, off) and the peak (tmax) of the muscle<br />

activity (mean±SD in % of the stride cycle) as well as peak activity (max) and<br />

integrated SEMG area (mean±SD) for all muscles on the body side on which<br />

hindlimb lameness was induced (ipsilateral) and the muscles on the opposite side<br />

(contralateral). Note that in case of the limb muscles, only the main activity<br />

associated with the stance phase was evaluated. For the back muscle, the two bursts<br />

were analyzed separately plus the summed activity (area 1+2). Sample size was N=7<br />

for the leg and N=5 for the epaxial muscles. Significant differences between so<strong>und</strong><br />

and lame conditions at * p


Studie II<br />

contralateral<br />

ipsilateral<br />

so<strong>und</strong> lame so<strong>und</strong> lame<br />

M. triceps brachii<br />

on 94.6±1.9 95.0±1.6 n.s. 94.0±1.8 93.5±2.6 n.s.<br />

off 68.0±4.7 68.6±3.8 n.s. 71.5±3.1 71.7±3.0 n.s.<br />

tmax 11.9±8.7 10.3±8.4 n.s. 7.2±2.6 15.8±10.4 n.s.<br />

max 2.4±0.8 2.5±1.0 n.s. 2.4±0.7 2.3±0.8 n.s.<br />

area 183.2±4.8 209.4±31.3 n.s. 183.0±4.6 187.5±32.7 n.s.<br />

M. vastus lateralis<br />

on 85.0±2.5 88.1±1.3 n.s. 85.6±2.5 83.9±2.8 n.s.<br />

of 31.8±5.6 40.4±6.3 * 34.0±2.6 38.3±2.3 *<br />

tmax 18.1±3.0 21.7±3.9 * 17.8±4.9 20.5±8.5 n.s.<br />

max 2.2±0.3 3.0±0.8 * 2.4±0.7 1.3±0.4 *<br />

area 102.1±21.4 164.0±25.2 * 108.5±18.7 92.3±26.7 *<br />

M. longissimus dorsi<br />

on 26.9±1.9 29.5±3.5 * 27.9±2.0 25.8±1.9 n.s.<br />

off 45.3±1.7 46.5±2.1 n.s. 45.1±2.7 44.3±1.9 n.s.<br />

tmax 32.9±2.6 37.7±2.0 * 33.9±2.5 32.4±4.0 n.s.<br />

max 2.7±0.4 3.3±0.9 n.s. 2.9±0.4 2.7±0.5 n.s.<br />

area 70.1±6.6 74.7±12.3 n.s. 69.6±15.5 75.8±13.1 n.s.<br />

1st<br />

on 81.6±2.9 83.6±3.7 n.s. 80.9±2.7 81.6±3.9 n.s.<br />

off 93.1±2.5 94.0±2.3 n.s. 92.9±1.6 92.7±1.7 n.s.<br />

tmax 88.6±2.4 90.2±1.0 n.s. 85.6±2.4 86.4±2.7 n.s.<br />

max 2.0±0.2 1.7±0.3 * 1.9±0.4 1.7±0.3 n.s.<br />

area 36.8±7.9 29.3±15.7 n.s. 36.5±11.6 32.5±7.6 n.s.<br />

2nd<br />

area 1+2 106.9±12.3 104.1±26.9 n.s. 106.0±20.5 108.3±19.2 n.s.<br />

67


Studie II<br />

Fig. 1. One of the subjects partially instrumented to illustrate the electrode<br />

positioning (for details on the skeletal landmarks, see Material & Methods).<br />

68


Studie II<br />

Fig. 2. Activity patterns of the m. triceps brachii, m. vastus lateralis, and the m.<br />

longissimus dorsi shown as time-normalized SEMGs (median plus upper and lower<br />

quartiles for each of the 201 bins) across the dogs and 10 strides per dog for the<br />

so<strong>und</strong> (black) and the lame (grey) conditions. Graphs on the left represent the<br />

recordings from the body side contralateral to the lame side; graphs on the right<br />

show the activity patterns from the muscles ipsilateral to the lame side. Numbers in<br />

parenthesis after the muscle names indicate sample size. Each x-axis shows the<br />

stance and swing phase normalized to 50% of the stride cycle in all recordings. The<br />

x-axis for the m. triceps brachii refers to the stride cycle of the forelimbs; the x-axes<br />

of the m. vastus lateralis and the m. longissimus dorsi refer to the footfall events of<br />

the hindlimbs. Each plot has a single y-axis and is scaled to the maximum amplitude<br />

observed for that particular recording site; hence SEMG amplitudes can be<br />

compared between so<strong>und</strong> and lame conditions within a given plot. Grey and black<br />

blocks above the SEMG traces indicate bin-by-bin differences in amplitude between<br />

both conditions, with the color indicating the condition with significantly greater<br />

amplitude; no block indicates no differences. The arrows indicate significant<br />

differences in the muscle activity between so<strong>und</strong> and lame conditions: Horizontal<br />

arrows point to changes in timing of the on- or offset (bottom of the graph) and the<br />

maximum activity (top of the graph). Vertical arrows indicate significant changes in<br />

SEMG area. Stars indicate significant differences in peak activity.<br />

69


Studie II<br />

70


Diskussion<br />

5. Diskussion<br />

Bei eingeschränkter Funktion einer Gliedmaße versuchen Tiere, durch Umverteilung<br />

der Last <strong>und</strong> veränderte Rekrutierung von Muskeln den partiellen Verlust dieser<br />

Gliedmaße zu kompensieren. Diese Studie untersuchte ausgewählte metrische,<br />

kinetische <strong>und</strong> elektromyographische Parameter, um die<br />

Kompensationsmechanismen von H<strong>und</strong>en mit einer Hinterhandlahmheit besser<br />

verstehen zu können. Hierfür wurden Beagle im Schritt <strong>und</strong> im Trab auf einem<br />

instrumentierten Laufband untersucht <strong>und</strong> ausgewählte metrische, kinetische <strong>und</strong><br />

elektromyographische Gangparameter vor <strong>und</strong> nach Induktion einer distalen<br />

Stützbeinlahmheit verglichen.<br />

Da bei der Fortbewegung der gesamte Körper als Einheit funktioniert <strong>und</strong> lokale<br />

Beeinträchtigungen Auswirkungen auf den kompletten Organismus haben können,<br />

ist es sinnvoll, nicht nur eine einzelne Gliedmaße, sondern den Körper insgesamt zu<br />

betrachten. Analysen der Auswirkungen von Lahmheiten auf das Bewegungsmuster<br />

erfolgten bisher jedoch hauptsächlich unter Betrachtung der betroffenen sowie<br />

eventuell noch der kontralateralen Gliedmaße. Beispielsweise wurde bei dem<br />

Vergleich von zwei Operationsmethoden bei H<strong>und</strong>en mit Kreuzbandriss nur die<br />

betroffene (z. B. CONZEMIUS et al. 2005) oder beide Hintergliedmaßen (z. B.<br />

BÖDDEKER et al. 2012) untersucht, um den Heilungsverlauf zu evaluieren. Um<br />

jedoch Aussagen über die Auswirkungen einer Hinterhandlahmheit auf die Funktion<br />

der übrigen Extremitäten <strong>und</strong> insbesondere des Rumpfes machen zu können, ist<br />

eine Betrachtung des Gesamtbildes notwendig. Roy (ROY 1971) vergleicht dieses<br />

Zusammenspiel der Körperteile mit einem Symphonieorchester: „All parts must<br />

blend into a harmonious pattern — from the gentle sway of the head and tail for<br />

balance to the coordinated efforts of each limb and body muscle to accomplish its<br />

special function. Conversely, also like an orchestration, if all movements are not<br />

attuned to a whole a major fault should be evident.” Somit ist eine gemeinsame<br />

Betrachtung aller an der Fortbewegung beteiligten Körperteile von großer<br />

Bedeutung. In dieser Arbeit wurden daher alle vier Gliedmaßen <strong>und</strong> der Rücken<br />

gemeinsam betrachtet.<br />

71


Diskussion<br />

Bei Bewegungsanalysen von ges<strong>und</strong>en <strong>und</strong> auch erkrankten H<strong>und</strong>en kann man<br />

verschiedene Parameter zur Quantifizierung des Gangbildes bzw. seiner<br />

Veränderungen im Vergleich zur physiologischen Norm heranziehen. Zumeist<br />

werden Daten der Metrik, der Kinetik, der Kinematik <strong>und</strong> des EMG beurteilt.<br />

Bisherige Studien haben meist nur einen dieser Parameter betrachtet <strong>und</strong> für die<br />

Interpretation des Ges<strong>und</strong>heitsstatus genutzt. Beispielweise bei H<strong>und</strong>en mit<br />

kranialem Kreuzbandriss wurden die Veränderungen in der vertikalen<br />

Bodenreaktionskraft (z. B. O`CONNOR et al. 1989) oder der Kinematik der<br />

Hinterextremitäten (z. B. DECAMP et al. 1996) untersucht. Da aber bei einer<br />

Bewegungstrajektorie ganz unterschiedliche externe <strong>und</strong> interne Kräfte wirken<br />

können oder auch die gleiche Bewegung durch unterschiedliche Aktivierungsmuster<br />

der Muskulatur erzeugt werden kann, sollten möglichst viele Parameter gemeinsam<br />

betrachtet werden, um die physiologische Beanspruchung <strong>und</strong> Benutzung der<br />

betroffenen Extremität zu prüfen. Dies ist aber nur durch die Integration der Bef<strong>und</strong>e<br />

verschiedener Analysetechniken möglich, die im Erkenntnisgewinn über die<br />

Betrachtung einzelner Parameter hinausgehen. Dem sind oft pragmatische Grenzen<br />

gesetzt. Um alle genannten Aspekte —Metrik, Kinetik, Kinematik, EMG— simultan<br />

aufzeichnen zu können, müssen viele technische Voraussetzungen gegeben sein,<br />

was nicht immer geleistet werden kann. Bei der vorliegenden Arbeit ist es gelungen,<br />

drei dieser Komponenten —die Metrik, die Kinetik <strong>und</strong> das EMG— für die<br />

Untersuchung der Kompensationsmechanismen beim H<strong>und</strong> mit Hinterhandlahmheit<br />

parallel aufzuzeichnen, um so den komplexen Vorgang der Fortbewegung des<br />

H<strong>und</strong>es beurteilen zu können.<br />

Anhand der erfolgten Untersuchungen können wir bestätigen, dass es bei einer<br />

Lahmheit an einer Hintergliedmaße zu einer Entlastung des betroffenen Beines <strong>und</strong><br />

zu einer kompensatorischen Umverteilung der Last auf die kontralaterale Seite<br />

kommt. Die maximale <strong>und</strong> mittlere vertikale Kraft, sowie der vertikale Impuls zeigten<br />

eine signifikante Verminderung in der betroffenen <strong>und</strong> eine signifikante Erhöhung in<br />

der kontralateralen Hintergliedmaße. Diese Veränderungen der vertikalen Kräfte<br />

stimmen mit vorangegangenen Studien überein (PFz: BUDSBERG et al. 1988;<br />

RUMPH et al. 1993; DUPUIS et al. 1994; RUMPH et al. 1995; JEVENS et al. 1996;<br />

72


Diskussion<br />

HOFMANN 2002; BÖDDEKER et al. 2012; MFz: BÖDDEKER et al. 2012; IFz:<br />

BUDSBERG et al. 1988; RUMPH et al. 1995; BUDSBERG 2001; HOFMANN 2002;<br />

BALLAGAS et al. 2004; BÖDDEKER et al. 2012). Bezüglich der zeitlich-räumlichen<br />

Veränderungen im Schrittzyklus konnten wir feststellen, dass es im Trab in dem<br />

betroffenen Hinterbein zu einer Verlängerung der Stemmphasendauer <strong>und</strong> damit<br />

verb<strong>und</strong>en zu einem späteren Abfußungszeitpunkt gekommen ist. Genauso<br />

veränderten sich die genannten Parameter in der kontralateralen Hintergliedmaße.<br />

Bei H<strong>und</strong>en mit kranialem Kreuzbandriss zeigte sich hingegen in der betroffenen<br />

Gliedmaße eine verkürzte Dauer der Standphase (VILENSKY et al. 1994; RAGETLY<br />

et al. 2010; DE MEDEIROS et al. 2011; BÖDDEKER et al. 2012).<br />

Weiterhin konnte anhand der durchgeführten Untersuchungen gezeigt werden, dass<br />

es nach Induktion einer Hinterhandlahmheit auch zu einer Umverteilung der<br />

vertikalen Bodenreaktionskräfte auf die Vordergliedmaßen kam (ipsilateral: Erhöhung<br />

PFz; kontralateral: Erhöhung MFz <strong>und</strong> IFz). Ähnliche Beobachtungen wurden nur in<br />

der Studie von Dupuis et al. (DUPUIS et al. 1994) gemacht, hier zeigte sich<br />

allerdings eine Erhöhung von PFz nicht nur in der ipsilateralen, sondern auch in der<br />

kontralateralen Vordergliedmaße. MFz <strong>und</strong> IFz wurden in der zuletzt genannten<br />

Studie nicht untersucht. Die meisten Forschungsarbeiten, die H<strong>und</strong>e mit induzierter<br />

Hinterhandlahmheit betrachtet haben, konnten, sofern untersucht, keine<br />

Veränderung der vertikalen Bodenreaktionskräfte in den Vordergliedmaßen<br />

detektieren (z. B. RUMPH et al. 1995; JEVENS et al. 1996). Eine Vergleichbarkeit<br />

bewegungsanalytischer Studien ist durch verschiedene Aspekte limitiert.<br />

Beispielweise sind verschiedene technische Ausstattungen —Laufband vs.<br />

Kraftmessplatte— verwendet worden, oder es wurde eine unterschiedliche Stärke<br />

des Entlastungsgrades in der betroffenen Gliedmaße induziert. Diese<br />

unterschiedlichen Voraussetzungen können u.a. ein Gr<strong>und</strong> für die ungleichen<br />

Ergebnisse in Bezug auf die Umverteilung der Kräfte auf die Vordergliedmaßen sein.<br />

Um diese Ergebnisse auch auf den orthopädisch erkrankten H<strong>und</strong> übertragen zu<br />

können, müssen Vergleiche mit Studien gemacht werden, welche klinisch lahme<br />

H<strong>und</strong>e untersucht haben (Abb. 3 in Studie I). Beispielsweise die Arbeit von Hofmann<br />

(HOFMANN 2002) zeigte in Bezug auf PFz <strong>und</strong> IFz Übereinstimmungen mit unseren<br />

73


Diskussion<br />

Ergebnissen. In gemeinsamer Betrachtung der bisherigen Bef<strong>und</strong>e kann gesagt<br />

werden, dass anhand der kinetischen Ergebnisse die distal induzierte<br />

Hinterhandlahmheit im angewandten Lahmheitsmodell mit der klinischen Lahmheit,<br />

welche ursächlich im Knie lokalisiert ist, am ehesten vergleichbar war, wobei man<br />

auch hier die vorher aufgeführten Limitierungen bedenken muss.<br />

Aufgr<strong>und</strong> der oben genannten Ergebnisse in Bezug auf die veränderte<br />

Standphasendauer eignet sich das in dieser Arbeit angewendete Lahmheitsmodell<br />

jedoch nicht zum Vergleich mit klinischer Lahmheit, welche durch einen kranialen<br />

Kreuzbandriss bedingt ist. Nach Induktion der Lahmheit kam es im M. vastus lateralis<br />

der kontralateralen Gliedmaße zu einer Erhöhung der Amplitude <strong>und</strong> zu einer<br />

verlängerten Aktivität. Im betroffenen Bein zeigte der M. vastus lateralis eine<br />

Verminderung der Amplitude <strong>und</strong> ein längere Aktivität im Vergleich zum nicht-lahmen<br />

Zustand. Im Gegensatz dazu zeigte die vorangegangene EMG-Studie von<br />

Bockstahler et al. (BOCKSTAHLER et al. 2012a), dass in der betroffenen Gliedmaße<br />

bei H<strong>und</strong>en mit Hüftgelenksarthrose eine vermehrte Aktivität im M. vastus lateralis<br />

vorherrschte. Die Ergebnisse der zuletzt genannten Studie können z.B. auf eine nicht<br />

ausreichende Habituation der Patienten an die Situation auf dem Laufband<br />

zurückzuführen sein. Hier kann es durch die Unsicherheit der H<strong>und</strong>e in der<br />

Versuchssituation zu einem erhöhten Muskeltonus gekommen sein (z. B. CHAPMAN<br />

et al. 2007).<br />

Anhand der gemeinsamen Betrachtung aller erhobenen Parameter —Metrik, Kinetik<br />

<strong>und</strong> EMG— lassen sich folgende Schlüsse ziehen. Durch vorherige Untersuchungen<br />

ist bekannt, dass der M. triceps brachii als Antigravitationsmuskel (ARMSTRONG et<br />

al. 1982) <strong>und</strong> Extensor in den Vordergliedmaßen agiert <strong>und</strong> in der Standphase aktiv<br />

ist (GOSLOW et al. 1981). Da die Veränderungen der vertikalen<br />

Bodenreaktionskräfte <strong>und</strong> auch der zeitlichen Komponenten beider<br />

Vorderextremitäten geringgradig waren, hat es hier keine signifikante Auswirkung auf<br />

das Rekrutierungsmuster des M. triceps brachii gegeben.<br />

Der M. vastus lateralis als Teil des M. quadriceps femoris ist in der Standphase aktiv<br />

(GOSLOW et al. 1981) <strong>und</strong> wirkt den vertikal wirkenden Kräften als<br />

Antigravitationsmuskel (ARMSTRONG et al. 1982) <strong>und</strong> Extensor der Gliedmaße<br />

74


Diskussion<br />

entgegen. Wird nun eine Hintergliedmaße vermehrt bzw. vermindert oder auch<br />

länger belastet, kann dies zu Veränderungen im Rekrutierungsmuster führen. Nach<br />

Induktion der Lahmheit kam es in der betroffenen Gliedmaße zu einer verminderten<br />

Aktivität des M. vastus lateralis in Übereinstimmung mit der verminderten Belastung<br />

dieser Extremität. Im zeitlichen Verlauf des Rekrutierungsmusters zeigte sich<br />

zusätzlich eine verlängerte Aktivität, was durch die verlängerte Standphase dieses<br />

Beines begründet ist. Auch in der kontralateralen Hintergliedmaße können<br />

Verbindungen zwischen den Veränderungen der vertikalen Kräfte, der metrischen<br />

Komponenten <strong>und</strong> dem Rekrutierungsmuster des M. vastus lateralis hergestellt<br />

werden. Die vermehrte Belastung in diesem Bein geht mit einer erhöhten Aktivierung<br />

des M. vastus lateralis einher. Im lahmen Zustand ist die Standphase dieser<br />

Gliedmaße verlängert, <strong>und</strong> auch das Rekrutierungsmuster des M. vastus lateralis<br />

zeigt eine verlängerte Aktivität.<br />

Als zentrales Element des Bewegungsapparates kann der Rücken durch eine<br />

Lahmheit ebenfalls in seiner Beanspruchung verändert sein. Der M. longissimus<br />

dorsi zeigt im physiologischen Zustand ein bilaterales Aktivierungsmuster, da sich die<br />

beiden Aktivitätsphasen der rechten <strong>und</strong> linken Körperseite zeitlich überschneiden.<br />

Diese bilaterale Aktivität während der Lokomotion dient der Stabilisierung des<br />

Rumpfes in der sagittalen Ebene (SCHILLING u. CARRIER 2010). Untersuchungen<br />

beim trabenden H<strong>und</strong> mit gezielt veränderten Krafteinwirkungen während der<br />

Lokomotion haben gezeigt, dass die bilaterale Aktivität den Rumpf gegen die<br />

Trägheitskräfte des CoM (`sagittal rebo<strong>und</strong>`; RITTER et al. 2001) <strong>und</strong> gegen die<br />

vertikalen Kräfte der extrinsischen Hinterbeinmuskulatur (v.a. Retraktoren der<br />

Hintergliedmaße; SCHILLING u. CARRIER 2009) stabilisiert. Bei lahmen Pferden<br />

wurde beobachtet, dass es zu einer verstärkten Rotation des Beckens zur ges<strong>und</strong>en<br />

Seite kommt, um das betroffene Bein zu entlasten (BUCHNER et al. 1996; GOMEZ<br />

ALVAREZ et al. 2008). Um diese Rotation zu bewirken, müsste es zu einem<br />

Aktivitätsanstieg in der epaxialen Muskulatur, sowie in der extrinsischen<br />

Hinterbeinmuskulatur (z. B. M. glutaeus medius) der ges<strong>und</strong>en Seite kommen<br />

(SCHILLING u. CARRIER 2009; SCHILLING et al. 2009). Obwohl nicht signifikant,<br />

zeigte sich nach Induktion der Lahmheit eine erhöhte erste Aktivität im M.<br />

75


Diskussion<br />

longissimus dorsi kontralateral zum lahmen Bein. Zusätzlich konnte in diesem<br />

Muskel ein späterer Beginn der Aktivität verzeichnet werden. Hier fehlen beim H<strong>und</strong><br />

kinematische Untersuchungen, die eine verspätete Protraktion der ges<strong>und</strong>en<br />

Gliedmaße, wie bei Pferden beobachtet (BUCHNER et al. 1996), als Ursache<br />

ausmachen könnten.<br />

Diese Ergebnisse liefern im klinischen Alltag mit orthopädischen Patienten wichtige<br />

Aspekte. Entlastet ein H<strong>und</strong> seine Hintergliedmaße um ca. 30%, ist immer zu<br />

bedenken, dass in die klinische Untersuchung nicht nur die betroffene, sondern auch<br />

die kontralaterale Gliedmaße mit einbezogen werden muss. Durch die vermehrte<br />

Belastung bzw. Fehlbelastung des ges<strong>und</strong>en Hinterbeines kann es bei chronisch<br />

lahmenden H<strong>und</strong>en vermutlich zu Folgeerkrankungen wie z.B. Arthrosen,<br />

Meniskusschäden oder frühzeitigen Verschleißerscheinungen in dem involvierten<br />

Gelenk kommen. Obwohl eine kürzlich publizierte Studie (GALINDO- ZAMORA<br />

2012) zeigte, dass vier Monate nach Amputation einer Hintergliedmaße, keine dieser<br />

genannten Veränderungen mittels Magnetresonanztomographie im kontralateralen<br />

Kniegelenk detektiert werden konnten, sind Folgeerkrankungen über die Jahre<br />

hinweg nicht auszuschließen. Diesem Prozess muss mittels gezielter Prävention<br />

entgegengewirkt werden. Zusätzlich kann es bei der veränderten Beanspruchung der<br />

in den Kompensationsprozess involvierten Muskulatur z.B. durch asymmetrische<br />

Rückenbelastung zu schmerzhaften Verspannungen kommen, welche ebenfalls beim<br />

chronisch lahmenden H<strong>und</strong> berücksichtigt werden müssen. Die Vordergliedmaßen<br />

benötigen in diesem Fall aufgr<strong>und</strong> der nur geringgradigen Veränderung in der<br />

Belastung voraussichtlich keine vermehrte Beachtung. Inwiefern sie bei stärkeren<br />

Lahmheitsgraden in die regelmäßigen Kontrollen durch den Tierarzt einzubeziehen<br />

sind, muss durch Untersuchungen von stärker lahmenden H<strong>und</strong>en als in der<br />

vorliegenden Arbeit untersucht geklärt werden.<br />

Eine länger andauernde vermehrte oder verminderte Rekrutierung in Muskeln führt<br />

bei Patienten zu veränderten Muskelvolumina. Die chronisch vermehrte oder<br />

reduzierte Belastung einer Gliedmaße kann zu Hypertrophie bzw. Atrophie in<br />

bestimmten Muskeln führen. Für den M. vastus lateralis ist bekannt, dass es bei<br />

H<strong>und</strong>en mit kranialem Kreuzbandriss zu einer Atrophie in der betroffenen Gliedmaße<br />

76


Diskussion<br />

kommt (JOHNSON u. JOHNSON 1993; MILLER 1996; INNES u. BARR 1998; CORR<br />

2009; MOSTAFA et al. 2010). Hier wären weiterführende systematische<br />

Untersuchungen zusätzlicher Muskeln von großem Interesse, um für diese Patienten<br />

gezieltes Muskeltraining entwickeln <strong>und</strong> anbieten zu können. Kommt es durch die<br />

vermehrte Rekrutierung z. B. im M. vastus lateralis zu einer Hypertrophie, ist die<br />

veränderte Krafteinwirkung auf den Bewegungsapparat zu berücksichtigen, da die<br />

umgebenden Muskeln die internen Kräfte <strong>und</strong> die Momente in den Gelenken<br />

maßgeblich bestimmen (HASLER et al. 1998). So ist zu bedenken, dass durch die<br />

veränderte Muskelrekrutierung auch die betroffenen Gelenke veränderten Kräften<br />

ausgesetzt sind. Die Hypertrophie des M. vastus lateralis kann z. B. dazu führen,<br />

dass der vertikale Druck auf dem Meniskus im Kniegelenk erhöht ist, was zu<br />

Folgeschädigungen in dem Gelenk führen kann.<br />

Obwohl als Standardmethode in der Humanmedizin etabliert, wird kinesiologisches<br />

EMG in der Veterinärmedizin bisher so gut wie nicht verwendet. Die vorliegende<br />

Arbeit zeigt, dass die Aufzeichnung elektromyographischer Daten beim H<strong>und</strong> dem<br />

Untersucher post op wichtige Informationen liefern kann, um den Heilungsverlauf zu<br />

beurteilen. Jeder Muskel hat ein physiologisches Aktivierungsmuster, das, wie die<br />

vorliegende Studie gezeigt hat, durch Lahmheiten verändert sein kann. Obwohl der<br />

H<strong>und</strong> nach einer Operation bei der visuellen Beurteilung des Ganges wieder ges<strong>und</strong><br />

scheint, kann die Muskelrekrutierung dennoch verändert sein. Um beurteilen zu<br />

können, ob das Rekrutierungsmuster wieder in den physiologischen Zustand<br />

zurückgekehrt ist, bietet das OEMG eine Möglichkeit Verlaufskontrollen post op<br />

durchzuführen.<br />

Die synchrone Aufzeichnung verschiedener Gangparameter beim H<strong>und</strong> ist durch<br />

unterschiedliche Aspekte limitiert, sollte jedoch weitergeführt werden, um einen<br />

kompletten Funktionsüberblick des Körpers in der pathologischen Lokomotion zu<br />

erlangen <strong>und</strong> um so die Möglichkeit zu schaffen, neue rehabilitative <strong>und</strong><br />

therapeutische Konzepte zu entwickeln, die über die betroffene Gliedmaße hinaus<br />

den gesamten Körper mit einbeziehen.<br />

77


Zusammenfassung<br />

6. Zusammenfassung<br />

Stefanie Fischer<br />

<strong>Kinetische</strong> <strong>und</strong> elektromyographische Bewegungsanalyse beim H<strong>und</strong> mit<br />

reversibel induzierter Hinterhandlahmheit<br />

Eine Lahmheit ist durch Abweichungen vom physiologischen Gangbild<br />

gekennzeichnet. Wie der H<strong>und</strong> einen partiellen Verlust der Funktion einer<br />

Hintergliedmaße kompensiert, ist bisher aufgr<strong>und</strong> der Betrachtung einzelner Aspekte<br />

des Gangbildes <strong>und</strong> auch der Unterschiedlichkeit der eingesetzten<br />

Untersuchungstechniken nicht ausreichend verstanden. Ziel dieser Arbeit war, die<br />

Veränderungen ausgesuchter metrischer, kinetischer <strong>und</strong> elektromyographischer<br />

Parameter in Anpassung an eine Hinterhandlahmheit beim H<strong>und</strong> zu untersuchen.<br />

Diese Ergebnisse sollen zukünftig ein besseres Verständnis über die<br />

Kompensationsmechanismen beim H<strong>und</strong> liefern <strong>und</strong> so aktuelle Therapie- <strong>und</strong><br />

Rehabilitationsmaßnahmen verbessern.<br />

In dieser Arbeit wurden ausgewählte biomechanische <strong>und</strong> muskelphysiologische<br />

Gangparameter mit Hilfe der computergestützten Ganganalyse auf einem Laufband<br />

untersucht, um Aussagen über die veränderte Belastung aller Gliedmaßen sowie<br />

über die Anpassung zeitlicher Gangparameter <strong>und</strong> der Aktivierungsmuster von M.<br />

triceps brachii, M. vastus lateralis <strong>und</strong> M. longissimus dorsi beim H<strong>und</strong> mit distaler<br />

Stützbeinlahmheit der Hinterhand zu erhalten. Um einen direkten Vergleich dieser<br />

Parameter vor <strong>und</strong> nach Induktion der reversiblen Hinterbeinlahmheit zu<br />

ermöglichen, wurden in Bezug auf Alter, Gewicht <strong>und</strong> Größe sehr ähnliche Beagle im<br />

Schritt <strong>und</strong> Trab untersucht. Der Fokus dieser Arbeit lag dabei auf dem Vergleich 1)<br />

der Fußfallmuster für eine Aussage der Veränderungen in den Bodenkontaktzeiten<br />

<strong>und</strong> der Fußfolge, 2) der vertikalen Bodenreaktionskräfte, um die Umverteilung des<br />

Körpergewichts analysieren zu können, sowie 3) der Aktivierungsmuster von zwei<br />

Gliedmaßen- <strong>und</strong> einem Rückenmuskel, um Veränderungen im zeitlichen Verlauf<br />

<strong>und</strong>/oder der Höhe der Aktivierung zu prüfen.<br />

78


Zusammenfassung<br />

Nach Induktion der Lahmheit in der rechten Hinterextremität waren im Schritt <strong>und</strong> im<br />

Trab die vertikalen Bodenreaktionskräfte (PFz, MFz, IFz) in dieser Gliedmaße<br />

vermindert <strong>und</strong> im kontralateralen Hinterbein erhöht. Kranial zeigte die ipsilaterale<br />

Gliedmaße eine Erhöhung von PFz <strong>und</strong> die kontralaterale Gliedmaße ein Ansteigen<br />

von MFz <strong>und</strong> eine Erhöhung von IFz im Schritt. Im Fußfallmuster zeigte sich im<br />

Schritt in der kontralateralen Vorder- <strong>und</strong> Hintergliedmaße eine verlängerte<br />

Standphase, vorne verb<strong>und</strong>en mit einem späteren Abfußungszeitpunkt. Im Trab kam<br />

es ebenfalls in beiden kontralateralen Gliedmaßen zu einer verlängerten Standphase<br />

<strong>und</strong> zusätzlich auch in der ipsilateralen Hintergliedmaße. In beiden Hintergliedmaßen<br />

war dies mit einem späteren Abfußungszeitpunkt im Schrittzyklus verb<strong>und</strong>en. Die<br />

elektromyographischen Ergebnisse des M. vastus lateralis als Antigravitationsmuskel<br />

zeigten, dass eine vermehrte Belastung von der kontralateralen<br />

Hintergliedmaße auch zu einer erhöhten Aktivierung in diesem Muskel geführt hat.<br />

Genauso kommt es in der betroffenen Gliedmaße durch die verminderte Belastung<br />

zu einer verringerten Aktivierung im M. vastus lateralis. Die Muskeln zeigten<br />

beidseits eine verlängerte Aktivität, welche vermutlich durch die verlängerte<br />

Standphase in den Hintergliedmaßen bedingt war. Die vermehrte<br />

Muskelrekrutierung kann zu Hyper- <strong>und</strong> die verminderte Aktivierung zu Atrophie in<br />

den betroffenen Muskeln führen. Der M. triceps brachii zeigte keine Veränderungen<br />

im Rekrutierungsmuster, was anhand der kinetischen Ergebnisse auch erwartet<br />

wurde. Der M. longissimus auf der linken Körperseite zeigte einen späteren Beginn<br />

<strong>und</strong> ein späteres Auftreten der maximalen Amplitude der ersten Aktivität sowie eine<br />

verminderte maximale Amplitude in der zweiten Aktivität. Diese Veränderungen<br />

gehen vermutlich mit veränderten Rumpf- <strong>und</strong> Beinbewegungen einher. Der rechte<br />

M. longissimus zeigte ein unverändertes Rekrutierungsmuster.<br />

Zusammenfassend lässt sich feststellen, dass die verminderte Belastung einer<br />

Hintergliedmaße zu einer kompensatorischen Umverteilung der Kräfte auf die<br />

übrigen Gliedmaßen führt, um die Entlastung der eingeschränkten Gliedmaße zu<br />

erlauben. Dies kann jedoch beim chronisch lahmenden H<strong>und</strong> zu Folgeschäden in<br />

den Gelenken der vermehrt belasteten Extremitäten führen, was bei der<br />

orthopädischen Untersuchung immer berücksichtigt werden muss. Die damit<br />

79


Zusammenfassung<br />

einhergehende veränderte Aktivierung der involvierten Muskulatur muss bei<br />

Therapie- <strong>und</strong> Rehabilitationsmaßnahmen berücksichtigt werden, um z. B. mittels<br />

gezielten Muskeltrainings große Asymmetrien in der Belastung zu vermeiden.<br />

80


Summary<br />

7. Summary<br />

Stefanie Fischer<br />

Electromyographical and computerized gait analyses in dogs with reversible<br />

induced hind limb lameness<br />

To cope with the loss of a limb`s function, dogs possess compensatory strategies.<br />

The resulting lameness is marked by deviations of the animal`s gait from the<br />

physiological pattern. Which changes occur in gro<strong>und</strong> reaction forces (GRF) as well<br />

as the muscle activity has not been studied in detail yet. Therefore, this project was<br />

designed to determine the changes in selected kinetic, kinematic and<br />

electromyographic parameters associated with a moderate hindlimb lameness. The<br />

presented results may foster new ideas for the treatment and rehabilitation of<br />

hindlimb lame patients in future.<br />

In order to evaluate the changes in load distribution and muscle activity patterns in<br />

adaption to lameness, we trained dogs to walk and trot on a treadmill and recorded<br />

the vertical gro<strong>und</strong> reaction forces and the activity of two leg and one back muscle<br />

bilaterally before and after a transient load-bearing hindlimb lameness was induced.<br />

To allow for the comparison of these data without introducing variability due to<br />

differences in breed, age or weight, the examined dogs were all Beagles of<br />

comparable size and age. After lameness was induced, the vertical force was<br />

decreased in the ipsilateral and increased in the contralateral hindlimb at both gaits.<br />

While peak force increased, no changes were observed for mean force and impulse<br />

in the ipsilateral forelimb when the dogs walked or trotted. In the contralateral<br />

forelimb, peak force was not changed, but mean force increased during walking and<br />

trotting and vertical impulse increased during walking. Relative stance duration<br />

increased in the affected hindlimb when the dogs trotted. In the contralateral foreand<br />

hindlimbs, relative stance duration increased during walking and trotting, but<br />

decreased in the ipsilateral forelimb during walking. Consistent with the unchanged<br />

vertical forces as well as temporal parameters, neither the timing nor the excitement<br />

81


Summary<br />

changed significantly in the m. triceps brachii. In the ipsilateral m. vastus lateralis,<br />

peak activity and integrated SEMG area were decreased, while they were increased<br />

in the contralateral limb. In both sides, the duration of the muscle activity was<br />

significantly longer due to delayed offset. These observations were in accordance<br />

with previously described kinetic and kinematic changes. Changes in the activation<br />

pattern of the m. longissimus dorsi concerned primarily the unilateral activity and was<br />

discussed regarding known alterations in truncal and limb motions.<br />

The current study provides new insights into the compensatory mechanisms of<br />

hindlimb lame dogs and its findings are informative when designing new treatment<br />

options and rehabilitative exercises such as targeted muscle training to prevent<br />

chronic asymmetries in the stresses of the musculo-skeletal system.<br />

82


Literaturverzeichnis<br />

8. Literaturverzeichnis<br />

ABDELHADI, J., P. WEFSTAEDT, V. GALINDO-ZAMORA, A. ANDERS, I. NOLTE u.<br />

N. SCHILLING (2013):<br />

Load redistribution in walking and trotting Beagles with induced forelimb lameness.<br />

Am J Vet Res 74, 34-39.<br />

ALLEN, K., C. E. DECAMP, T. D. BRADEN u. M. BAHNS (1994):<br />

Kinematic Gait Analysis of the Trot in Healthy Mixed Breed Dogs.<br />

Vet Comp Orthopaed 7, 148-153.<br />

ARMSTRONG, R. B., C. W. SAUBERT, H. J. SEEHERMAN u. C. R. TAYLOR<br />

(1982):<br />

Distribution of Fiber Types in Locomotory Muscles of Dogs.<br />

Am J Anat 163, 87-98.<br />

BALLAGAS, A. J., R. D. MONTGOMERY, R. A. HENDERSON u. R. GILLETTE<br />

(2004):<br />

Pre- and postoperative force plate analysis of dogs with experimentally transected<br />

cranial cruciate ligaments treated using tibial plateau leveling osteotomy.<br />

Vet Surg 33, 187-190.<br />

BENNETT, R. L., C. E. DECAMP, G. L. FLO, J. G. HAUPTMAN u. M. STAJICH<br />

(1996):<br />

Kinematic gait analysis in dogs with hip dysplasia.<br />

Am J Vet Res 57, 966-971.<br />

BERTRAM, J. E. A., D. V. LEE, R. J. TODHUNTER, W. S. FOELS, A. J. WILLIAMS<br />

u. G. LUST (1997):<br />

Multiple force platform analysis of the canine trot: a new approach to assessing basic<br />

characteristics of locomotion.<br />

83


Literaturverzeichnis<br />

Vet Comp Orthopaed 10, 160-169.<br />

BERTRAM, J. E. A., D. V. LEE, H. N. CASE u. R. J. TODHUNTER (2000):<br />

Comparison of the trotting gaits of Labrador Retrievers and Greyho<strong>und</strong>s.<br />

Am J Vet Res 61, 832-838.<br />

BOCKSTAHLER, B. A., M. SKALICKY, C. PEHAM, M. MULLER u. D. LORINSON<br />

(2007):<br />

Reliability of gro<strong>und</strong> reaction forces measured on a treadmill system in healthy dogs.<br />

Vet J 173, 373-378.<br />

BOCKSTAHLER, B. B., R. GESKY, M. MUELLER, J. G. THALHAMMER, C. PEHAM<br />

u. I. PODBREGAR (2009):<br />

Correlation of Surface Electromyography of the Vastus Lateralis Muscle in Dogs at a<br />

Walk with Joint Kinematics and Gro<strong>und</strong> Reaction Forces.<br />

Vet Surg 38, 754-761.<br />

BOCKSTAHLER, B., C. KRAUTLER, P. HOLLER, A. KOTSCHWAR, A. VOBORNIK<br />

u. C. PEHAM (2012a):<br />

Pelvic Limb Kinematics and Surface Electromyography of the Vastus Lateralis,<br />

Biceps Femoris, and Gluteus Medius Muscle in Dogs with Hip Osteoarthritis.<br />

Vet Surg 41, 54-62.<br />

BOCKSTAHLER, B. A., B. PRICKLER, E. LEWY, P. J. HOLLER, A. VOBORNIK u.<br />

C. PEHAM (2012b):<br />

Hind limb kinematics during therapeutic exercises in dogs with osteoarthritis of the<br />

hip joints.<br />

Am J Vet Res 73, 1371-1376.<br />

BÖDDEKER, J., S. DRUEN, A. MEYER-LINDENBERG, M. FEHR, I. NOLTE u. P.<br />

WEFSTAEDT (2012):<br />

84


Literaturverzeichnis<br />

Computer-assisted gait analysis of the dog: Comparison of two surgical techniques<br />

for the ruptured cranial cruciate ligament.<br />

Vet Comp Orthopaed 25, 11-21.<br />

BUCHNER, H. H. F., H. H. C. M. SAVELBERG, H. C. SCHAMHARDT u. A.<br />

BARNEVELD (1996):<br />

Head and trunk movement adaptations in horses with experimentally induced fore- or<br />

hindlimb lameness.<br />

Equine Vet J 28, 71-76.<br />

BUCHNER, H. H. F., H. H. C. M. SAVELBERG, H. C. SCHAMHARDT u. A.<br />

BARNEVELD (1996):<br />

Limb movement adaptations in horses with experimentally induced fore- or hindlimb<br />

lameness.<br />

Equine Vet J 28, 63-70.<br />

BUCHNER, H. H. F. (2001):<br />

Body centre of mass movement in the so<strong>und</strong> horse (vol 160, pg 225, 2000).<br />

Vet J 162, 259-259.<br />

BUDSBERG, S. C. (1987):<br />

Force Plate Analysis of the walking gait in healthy dogs<br />

Vet Surg 16, 85-85.<br />

BUDSBERG, S. C., M. C. VERSTRAETE, R. W. SOUTASLITTLE, G. L. FLO u. C.<br />

W. PROBST (1988):<br />

Force Plate Analyses before and after Stabilization of Canine Stifles for Cruciate<br />

Injury.<br />

Am J Vet Res 49, 1522-1524.<br />

85


Literaturverzeichnis<br />

BUDSBERG, S. C., D. J. JEVENS, J. BROWN, T. L. FOUTZ, C. E. DECAMP u. L.<br />

REECE (1993):<br />

Evaluation of Limb Symmetry Indexes, Using Gro<strong>und</strong> Reaction Forces in Healthy<br />

Dogs.<br />

Am J Vet Res 54, 1569-1574.<br />

BUDSBERG, S. C. (2001):<br />

Long-term temporal evaluation of gro<strong>und</strong> reaction forces during development of<br />

experimentally induced osteoarthritis in dogs.<br />

Am J Vet Res 62, 1207-1211.<br />

CARLSON, H., J. HALBERTSMA u. M. ZOMLEFER (1979):<br />

Control of the Trunk during Walking in the Cat.<br />

Acta Physiol Scand 105, 251-253.<br />

CARRIER, D. R., S. M. DEBAN u. T. FISCHBEIN (2006):<br />

Locomotor function of the pectoral girdle 'muscular sling' in trotting dogs.<br />

J Exp Biol 209, 2224-2237.<br />

CARRIER, D. R., S. M. DEBAN u. T. FISCHBEIN (2008):<br />

Locomotor function of forelimb protractor and retractor muscles of dogs: evidence of<br />

strut-like behavior at the shoulder.<br />

J Exp Biol 211, 150-162.<br />

CARROLL, A. M. u. A. A. BIEWENER (2009):<br />

Mono- versus biarticular muscle function in relation to speed and gait changes: in<br />

vivo analysis of the goat triceps brachii.<br />

J Exp Biol 212, 3349-3360.<br />

CAVAGNA, G. A., N. C. HEGLUND u. C. R. TAYLOR (1977):<br />

86


Literaturverzeichnis<br />

Mechanical Work in Terrestrial Locomotion - 2 Basic Mechanisms for Minimizing<br />

Energy-Expenditure.<br />

Am J Physiol 233, R243-R261.<br />

CHAPMAN, A. R., B. VICENZINO, P. BLANCH u. P. W. HODGES (2007):<br />

Leg muscle recruitment during cycling is less developed in triathletes than cyclists<br />

despite matched cycling training loads.<br />

Exp Brain Res 181, 503-518.<br />

CHAPMAN, A. R., B. VICENZINO, P. BLANCH u. P. W. HODGES (2008):<br />

Patterns of leg muscle recruitment vary between novice and highly trained cyclists.<br />

J Electromyogr Kines 18, 359-371.<br />

CONZEMIUS, M. G., R. B. EVANS, M. F. BESANCON, W. J. GORDON, C. L.<br />

HORSTMAN, W. D. HOEFLE, M. A. NIEVES u. S. D. WAGNER (2005):<br />

Effect of surgical technique on limb function after surgery for rupture of the cranial<br />

cruciate ligament in dogs.<br />

Javma-J Am Vet Med A 226, 232-236.<br />

CORR, S. (2009):<br />

Decision making in the management cruciate disease in dogs.<br />

In Practice 31, 164-171.<br />

CROSS, A. R., S. C. BUDSBERG u. T. J. KEEFE (1997):<br />

Kinetic gait analysis assessment of meloxicam efficacy in a sodium urate-induced<br />

synovitis model in dogs.<br />

Am J Vet Res 58, 626-631.<br />

DE MEDEIROS, M., M. S. BUSTINDUY, H. RADKE, S. LANGLEY-HOBBS u. N.<br />

JEFFERY (2011):<br />

87


Literaturverzeichnis<br />

Early kinematic outcome after treatment of cranial cruciate ligament rupture by tibial<br />

plateau levelling osteotomy in the dog.<br />

Vet Comp Orthopaed 24, 178-184.<br />

DEBAN, S. M., N. SCHILLING u. D. R. CARRIER (2012):<br />

Activity of extrinsic limb muscles in dogs at walk, trot and gallop.<br />

J Exp Biol 215, 287-300.<br />

DECAMP, C. E., R. W. SOUTASLITTLE, J. HAUPTMAN, B. OLIVIER, T. BRADEN u.<br />

A. WALTON (1993):<br />

Kinematic Gait Analysis of the Trot in Healthy Greyho<strong>und</strong>s.<br />

Am J Vet Res 54, 627-634.<br />

DECAMP, C. E., C. M. RIGGS, N. B. OLIVIER, J. G. HAUPTMAN, H. A.<br />

HOTTINGER u. R. W. SOUTASLITTLE (1996):<br />

Kinematic evaluation of gait in dogs with cranial cruciate ligament rupture.<br />

Am J Vet Res 57, 120-126.<br />

DECAMP, C. E. (1997):<br />

Kinetic and kinematic gait analysis and the assessment of lameness in the dog.<br />

Vet Clin N Am-Small 27, 825-840.<br />

DICKINSON, M. H., C. T. FARLEY, R. J. FULL, M. A. R. KOEHL, R. KRAM u. S.<br />

LEHMAN (2000):<br />

How animals move: An integrative view.<br />

Science 288, 100-106.<br />

DUPUIS, J., J. HARARI, M. PAPAGEORGES, A. M. GALLINA u. M. RATZLAFF<br />

(1994):<br />

Evaluation of Fibular Head Transposition for Repair of Experimental Cranial Cruciate<br />

Ligament Injury in Dogs.<br />

88


Literaturverzeichnis<br />

Vet Surg 23, 1-12.<br />

ENGBERG, I. u. A. LUNDBERG (1969):<br />

An Electromyographic Analysis of Muscular Activity in Hindlimb of Cat during<br />

Unrestrained Locomotion.<br />

Acta Physiol Scand 75, 614-630.<br />

ENGLISH, A. W. (1978):<br />

Electromyographic Analysis of Forelimb Muscles during Overgro<strong>und</strong> Stepping in Cat.<br />

J Exp Biol 76, 105-122.<br />

EVANS, H. E. (1993):<br />

Miller`s Anatomy of the dog.<br />

3. Auflage. Verlag Elsevier, Sa<strong>und</strong>ers, Philadelphia.<br />

EVANS, R., W. GORDON u. M. CONZEMIUS (2003):<br />

Effect of velocity on gro<strong>und</strong> reaction forces in dogs with lameness attributable to<br />

tearing of the cranial cruciate ligament.<br />

Am J Vet Res 64, 1479-1481.<br />

EVANS, R., C. HORSTMAN u. M. CONZEMIUS (2005):<br />

Accuracy and optimization of force platform gait analysis in labradors with cranial<br />

cruciate disease evaluated at a walking gait.<br />

Vet Surg 34, 445-449.<br />

FANCHON, L. u. D. GRANDJEAN (2007):<br />

Accuracy of asymmetry indices of gro<strong>und</strong> reaction forces for diagnosis of hind limb<br />

lameness in dogs.<br />

Am J Vet Res 68, 1089-1094.<br />

FISCHER, S., A. ANDERS, I. NOLTE u. N. SCHILLING (2013):<br />

89


Literaturverzeichnis<br />

Compensatory load redistribution in walking and trotting dogs with hind limb<br />

lameness.<br />

Vet J http://dx.doi.org/10.1016/j.tvjl.2013.04.009.<br />

GALINDO-ZAMORA, V. (2012):<br />

Selected clinical studies on canine joint function and morphology using computerized<br />

gait analysis and diagnostic imaging.<br />

<strong>Hannover</strong>, tierärztl. Hochsch., Ph.D. Diss.<br />

GILLETTE, R. L. u. T. C. ANGLE (2008):<br />

Recent developments in canine locomotor analysis: A review.<br />

Vet J 178, 165-176.<br />

GOLDSPINK, G. (2002):<br />

Gene expression in skeletal muscle.<br />

Biochem Soc T 30, 285-290.<br />

GOLDSPINK, G. (2005):<br />

Research on mechano growth factor: its potential for optimising physical training as<br />

well as misuse in doping.<br />

Brit J Sport Med 39, 787-788.<br />

GOMEZ ALVAREZ, C. B., M. F. BOBBERT, L. LAMERS, C. JOHNSTON, W. BACK<br />

u. P. R. VAN WEEREN (2008):<br />

The effect of induced hindlimb lameness on thoracolumbar kinematics during<br />

treadmill locomotion.<br />

Equine Vet J 40, 147-152<br />

GORDON, W. J., M. G. CONZEMIUS, E. RIEDESEL, M. F. BESANCON, R. EVANS,<br />

V. WILKE u. M. J. RITTER (2003):<br />

90


Literaturverzeichnis<br />

The relationship between limb function and radiographic osteoarthrosis in dogs with<br />

stifle osteoarthrosis.<br />

Vet Surg 32, 451-454.<br />

GOSLOW, G. E., H. J. SEEHERMAN, C. R. TAYLOR, M. N. MCCUTCHIN u. N. C.<br />

HEGLUND (1981):<br />

Electrical-Activity and Relative Length Changes of Dog Limb Muscles as a Function<br />

of Speed and Gait.<br />

J Exp Biol 94, 15-42.<br />

GRAY, J. (1968):<br />

Animal locomotion.<br />

Norton, New York, 1-479.<br />

HARRISON, S. M., R. C. WHITTON, M. KING, K. K. HAUSSLER, C. E. KAWCAK, S.<br />

M. STOVER u. M. G. PANDY (2012):<br />

Forelimb muscle activity during equine locomotion.<br />

J Exp Biol 215, 2980-2991.<br />

HASLER, E. M., W. HERZOG, T. R. LEONARD, A. STANO u. H. NGUYEN (1998):<br />

In vivo knee joint loading and kinematics before and after ACL transection in an<br />

animal model.<br />

J Biomech 31, 253-262.<br />

HERZOG, W., B. M. NIGG, L. J. READ u. E. OLSSON (1989):<br />

Asymmetries in Gro<strong>und</strong> Reaction Force Patterns in Normal Human Gait.<br />

Med Sci Sport Exer 21, 110-114.<br />

HERZOG, W., D. LONGINO u. A. CLARK (2003):<br />

The role of muscles in joint adaptation and degeneration.<br />

Langenbeck Arch Surg 388, 305-315.<br />

91


Literaturverzeichnis<br />

HILDEBRAND, M. (1966):<br />

Analysis of the symmetrical gaits of tetrapods.<br />

Folia Biotheor. 6, 9-22.<br />

HOELZLER, M. G., D. L. MILLIS, D. A. FRANCIS u. J. P. WEIGEL (2004):<br />

Results of arthroscopic versus open arthrotomy for surgical management of cranial<br />

cruciate ligament deficiency in dogs.<br />

Vet Surg 33, 146-153.<br />

HOFMANN, D. (2002):<br />

Ganganalytisches Profil verschiedener Gelenkerkrankungen beim H<strong>und</strong>.<br />

München, Univ., Veterinärmed. Fak., Diss.<br />

INNES, J. F. u. A. R. S. BARR (1998):<br />

Clinical natural history of the postsurgical cruciate deficient canine stifle joint: year 1.<br />

J Small Anim Pract 39, 325-332.<br />

JEVENS, D. J., J. G. HAUPTMAN, C. E. DECAMP, S. C. BUDSBERG u. R. W.<br />

SOUTASLITTLE (1993):<br />

Contributions to Variance in Force-Plate Analysis of Gait in Dogs.<br />

Am J Vet Res 54, 612-615.<br />

JEVENS, D. J., C. E. DECAMP, J. HAUPTMAN, T. D. BRADEN, M. RICHTER u. R.<br />

ROBINSON (1996):<br />

Use of force-plate analysis of gait to compare two surgical techniques for treatment<br />

of cranial cruciate ligament rupture in dogs.<br />

Am J Vet Res 57, 389-393.<br />

JOHNSON, J. M. u. A. L. JOHNSON (1993):<br />

92


Literaturverzeichnis<br />

Cranial Cruciate Ligament Rupture - Pathogenesis, Diagnosis, and Postoperative<br />

Rehabilitation.<br />

Vet Clin N Am-Small 23, 717-733.<br />

JOHNSON, J. A., C. AUSTIN u. G. J. BREUR (1994):<br />

Incidence of Canine Appendicular Musculoskeletal Disorders in 16 Veterinary<br />

Teaching Hospitals from 1980 through 1989.<br />

Vet Comp Orthopaed 7, 56-69.<br />

KAMEN, G. u. D. A. GABRIEL (2010):<br />

Essentials of electromyography.<br />

Human Kinetics Books, Champain, Illinois.<br />

KATIC, N., B. A. BOCKSTAHLER, M. MUELLER u. C. PEHAM (2009):<br />

Fourier analysis of vertical gro<strong>und</strong> reaction forces in dogs with unilateral hind limb<br />

lameness caused by degenerative disease of the hip joint and in dogs without<br />

lameness.<br />

Am J Vet Res 70, 118-126.<br />

KORVICK, D. L., G. J. PIJANOWSKI u. D. J. SCHAEFFER (1994):<br />

3-Dimensional Kinematics of the Intact and Cranial Cruciate Ligament-Deficient Stifle<br />

of Dogs (Vol 27, Pg 77, 1994).<br />

J Biomech 27, 1295-1295.<br />

LAMOTH, C. J. C., A. DAFFERTSHOFER, O. G. MEIJER, G. L. MOSELEY, P. I. J.<br />

M. WUISMAN u. P. J. BEEK (2004):<br />

Effects of experimentally induced pain and fear of pain on trunk coordination and<br />

back muscle activity during walking.<br />

Clin Biomech 19, 551-563.<br />

LAUER, S. K., R. B. HILLMAN, L. LI u. G. L. HOSGOOD (2009):<br />

93


Literaturverzeichnis<br />

Effects of treadmill inclination on electromyographic activity and hind limb kinematics<br />

in healthy ho<strong>und</strong>s at a walk.<br />

Am J Vet Res 70, 658-664.<br />

LEACH, D., G. SUMNERSMITH u. A. I. DAGG (1977):<br />

Diagnosis of Lameness in Dogs - Preliminary-Study.<br />

Can Vet J 18, 58-63.<br />

LEE, D. V., J. E. A. BERTRAM u. R. J. TODHUNTER (1999):<br />

Acceleration and balance in trotting dogs.<br />

J Exp Biol 202, 3565-3573.<br />

LICKA, T. F., C. PEHAM u. A. FREY (2004):<br />

Electromyographic activity of the longissimus dorsi muscles in horses during trotting<br />

on a treadmill.<br />

Am J Vet Res 65, 155-158.<br />

LICKA, T., A. FREY u. C. PEHAM (2009):<br />

Electromyographic activity of the longissimus dorsi muscles in horses when walking<br />

on a treadmill.<br />

Vet J 180, 71-76.<br />

MADORE, E., L. HUNEAULT, M. MOREAU u. J. DUPUIS (2007):<br />

Comparison of trot kinetics between dogs with stifle or hip arthrosis.<br />

Vet Comp Orthopaed 20, 102-107.<br />

MCLAUGHLIN, R. M. u. J. K. ROUSH (1994):<br />

Effects of Subject Stance Time and Velocity on Gro<strong>und</strong> Reaction Forces in Clinically<br />

Normal Greyho<strong>und</strong>s at the Trot.<br />

Am J Vet Res 55, 1666-1671.<br />

94


Literaturverzeichnis<br />

MCLAUGHLIN, R. M. (2001):<br />

Kinetic and kinematic gait analysis in dogs.<br />

Vet Clin N Am-Small 31, 193-201.<br />

MILLER, A. (1996):<br />

Decision making in the management of cranial cruciate ligament rupture.<br />

In Practice 18, 98-102.<br />

MÖLSA, S. H., A. K. HIELM-BJORKMAN u. O. M. LAITINEN-VAPAAVUORI (2010):<br />

Force Platform Analysis in Clinically Healthy Rottweilers: Comparison with Labrador<br />

Retrievers.<br />

Vet Surg 39, 701-707.<br />

MOSELEY, G. L., M. K. NICHOLAS u. P. W. HODGES (2004):<br />

Does anticipation of back pain predispose to back trouble?<br />

Brain 127, 2339-2347.<br />

MOSTAFA, A. A., D. J. GRIFFON, M. W. THOMAS u. P. D. CONSTABLE (2010):<br />

Morphometric Characteristics of the Pelvic Limb Musculature of Labrador Retrievers<br />

with and without Cranial Cruciate Ligament Deficiency.<br />

Vet Surg 39, 380-389.<br />

NOMURA, S., H. SAWAZAKI u. T. IBARAKI (1966):<br />

Co-operated muscular action in postural adjustment and motion in dog, from view<br />

point of electromyographic kinesiology and joint mechanics. IV. About muscular<br />

activity in walk and trot.<br />

Japan. J. Zootechn. Sci. 37, 221-229.<br />

O`CONNOR, B. L., D. M. VISCO, D. A. HECK, S. L. MYERS u. K. D. BRANDT<br />

(1989):<br />

Gait Alterations in Dogs after Transection of the Anterior Cruciate Ligament.<br />

95


Literaturverzeichnis<br />

Arthritis Rheum 32, 1142-1147.<br />

POY, N. S. J., C. E. DECAMP, R. L. BENNETT u. J. G. HAUPTMAN (2000):<br />

Additional kinematic variables to describe differences in the trot between clinically<br />

normal dogs and dogs with hip dysplasia.<br />

Am J Vet Res 61, 974-978.<br />

PUNKE, J. P., A. L. SPEAS, L. R. REYNOLDS, R. F. CLAXTON u. S. C.<br />

BUDSBERG (2007):<br />

Kinetic gait and subjective analysis of the effects of a tachykinin receptor antagonist<br />

in dogs with sodium orate-induced synovitis.<br />

Am J Vet Res 68, 704-708.<br />

QUINN, M. M., N. S. KEULER, Y. LU, M. L. E. FARIA, P. MUIR u. M. D. MARKEL<br />

(2007):<br />

Evaluation of agreement between numerical rating scales, visual analogue scoring<br />

scales, and force plate gait analysis in dogs.<br />

Vet Surg 36, 360-367.<br />

RAGETLY, C. A., D. J. GRIFFON, A. A. MOSTAFA, J. E. THOMAS u. E. T. HSIAO-<br />

WECKSLER (2010):<br />

Inverse Dynamics Analysis of the Pelvic Limbs in Labrador Retrievers With and<br />

Without Cranial Cruciate Ligament Disease.<br />

Vet Surg 39, 513-522.<br />

RASMUSSEN, S., A. K. CHAN u. G. E. GOSLOW (1978):<br />

Cat Step Cycle - Electromyographic Patterns for Hindlimb Muscles during Posture<br />

and Unrestrained Locomotion.<br />

J Morphol 155, 253-269.<br />

RENBERG, W. C., S. A. JOHNSTON, K. Y. YE u. S. C. BUDSBERG (1999):<br />

96


Literaturverzeichnis<br />

Comparison of stance time and velocity as control variables in force plate analysis of<br />

dogs.<br />

Am J Vet Res 60, 814-819.<br />

RIGGS, C. M., C. E. DECAMP, R. W. SOUTASLITTLE, T. D. BRADEN u. M. A.<br />

RICHTER (1993):<br />

Effects of Subject Velocity on Force Plate-Measured Gro<strong>und</strong> Reaction Forces in<br />

Healthy Greyho<strong>und</strong>s at the Trot.<br />

Am J Vet Res 54, 1523-1526.<br />

RITTER, D. A., P. N. NASSAR, M. FIFE u. D. R. CARRIER (2001):<br />

Epaxial muscle function in trotting dogs.<br />

J Exp Biol 204, 3053-3064.<br />

ROBERT, C., J. P. VALETTE, C. DEGUEURCE u. J. M. DENOIX (1999):<br />

Correlation between surface electromyography and kinematics of the hindlimb of<br />

horses at trot on a treadmill.<br />

Cells Tissues Organs 165, 113-122.<br />

ROBERT, C., F. AUDIGÈ, J. P. VALETTA, P. POURCELOT u. J. M. DENOIX<br />

(2001a):<br />

Effects of treadmill speed on the mechanics of the back in the trotting saddle horses.<br />

Equine Vet J 33, 154-159.<br />

ROBERT, C., J. P. VALETTE u. J. M. DENOIX (2001):<br />

The effects of treadmill inclination and speed on the activity of three trunk muscles in<br />

the trotting horse.<br />

Equine Vet J 33, 466-472.<br />

ROBERT, C., J. P. VALETTA, P. POURCELOT, F. AUDIGÈ u. J. M. DENOIX (2002):<br />

Effects of trotting speed on muscle activity and kinematics in saddlehorses.<br />

97


Literaturverzeichnis<br />

Equine Vet J Suppl. 34, 295-301<br />

ROY, W. E. (1971):<br />

Examination of the canine locomotor system.<br />

Vet Clin N Am-Small 1, 53-70.<br />

RUMPH, P. F., S. A. KINCAID, D. K. BAIRD, J. R. KAMMERMANN, D. M. VISCO u.<br />

L. F. GOETZE (1993):<br />

Vertical Gro<strong>und</strong> Reaction Force Distribution during Experimentally Induced Acute<br />

Synovitis in Dogs.<br />

Am J Vet Res 54, 365-369.<br />

RUMPH, P. F., J. E. LANDER, S. A. KINCAID, D. K. BAIRD, J. R. KAMMERMANN u.<br />

D. M. VISCO (1994):<br />

Gro<strong>und</strong> Reaction Force Profiles from Force Platform Gait Analyses of Clinically<br />

Normal Mesomorphic Dogs at the Trot.<br />

Am J Vet Res 55, 756-761.<br />

RUMPH, P. F., S. A. KINCAID, D. M. VISCO, D. K. BAIRD, J. R. KAMMERMANN u.<br />

M. S. WEST (1995):<br />

Redistribution of Vertical Gro<strong>und</strong> Reaction Force in Dogs with Experimentally-<br />

Induced Chronic Hindlimb Lameness.<br />

Vet Surg 24, 384-389.<br />

SANCHEZ-BUSTINDUY, M., M. A. DE MEDEIROS, H. RADKE, S. LANGLEY-<br />

HOBBS, T. MCKINLEY u. N. JEFFERY (2010):<br />

Comparison of Kinematic Variables in Defining Lameness Caused by Naturally<br />

Occurring Rupture of the Cranial Cruciate Ligament in Dogs.<br />

Vet Surg 39, 523-530.<br />

SCHAEFFER, P. J. u. S. L. LINDTSTEDT (2013):<br />

98


Literaturverzeichnis<br />

How animals move: comparative lessons on animal locomotion.<br />

Compr. Physiol. 3, 298-314.<br />

SCHILLING, N. u. D. R. CARRIER (2009):<br />

Function of the epaxial muscles during trotting.<br />

J Exp Biol 212, 1053-1063.<br />

SCHILLING, N., T. FISCHBEIN, E. P. YANG u. D. R. CARRIER (2009):<br />

Function of the extrinsic hindlimb muscles in trotting dogs.<br />

J Exp Biol 212, 1036-1052.<br />

SCHILLING, N. u. D. R. CARRIER (2010):<br />

Function of the epaxial muscles in walking, trotting and galloping dogs: implications<br />

for the evolution of epaxial muscle function in tetrapods.<br />

J Exp Biol 213, 1490-1502.<br />

SCHOLLE, H. C., N. P. SCHUMANN, F. BIEDERMANN, D. F. STEGEMAN, R.<br />

GRASSME, K. ROELEVELD, N. SCHILLING u. M. S. FISCHER (2001):<br />

Spatiotemporal surface EMG characteristics from rat triceps brachii muscle during<br />

treadmill locomotion indicate selective recruitment of functionally distinct muscle<br />

regions.<br />

Exp Brain Res 138, 26-36.<br />

SEIBERT, R., D. J. MARCELLIN-LITTLE, S. C. ROE, V. DEPUY u. B. D. X.<br />

LASCELLES (2012):<br />

Comparison of Body Weight Distribution, Peak Vertical Force, and Vertical Impulse<br />

as Measures of Hip Joint Pain and Efficacy of Total Hip Replacement.<br />

Vet Surg 41, 443-447.<br />

STEISS, J. E., G. T. YUILL, N. A. WHITE u. J. M. BOWEN (1982):<br />

Modifications of a Force Plate System for Equine Gait Analysis.<br />

99


Literaturverzeichnis<br />

Am J Vet Res 43, 538-540.<br />

SUTHERLAND, D. H. (2001):<br />

The evolution of clinical gait analysis part I: kinesiological EMG.<br />

Gait Posture 14, 61-70.<br />

THRUSFIELD, M., C. ORTEGA, I. DE BLAS, J. P. NOORDHUIZEN u. K.<br />

FRANKENA (2001):<br />

WIN EPISCOPE 2.0: improved epidemiological software for veterinary medicine.<br />

Vet Rec 148, 567-572.<br />

TOKURIKI, M. (1973):<br />

Electromyographic and Joint-Mechanical Studies in Quadrupedal Locomotion .2.<br />

Trot.<br />

Jpn J Vet Sci 35, 525-533.<br />

VAN DIEEN, J. H., L. P. J. SELEN u. J. CHOLEWICKI (2003):<br />

Trunk muscle activation in low-back pain patients, an analysis of the literature.<br />

J Electromyogr Kines 13, 333-351.<br />

VILENSKY, J. A., B. L. OCONNOR, K. D. BRANDT, E. A. DUNN u. P. I. ROGERS<br />

(1994):<br />

Serial Kinematic Analysis of the Trunk and Limb Joints after Anterior Cruciate<br />

Ligament Transection - Temporal, Spatial, and Angular Changes in a Canine Model<br />

of Osteoarthritis.<br />

J Electromyogr Kines 4, 181-192.<br />

VOSS, K., J. IMHOF, S. KAESTNER u. P. M. MONTAVON (2007):<br />

Force plate gait analysis at the walk and trot in dogs with low-grade hindlimb<br />

lameness.<br />

Vet Comp Orthopaed 20, 299-304.<br />

100


Literaturverzeichnis<br />

VOSS, K., D. M. DAMUR, T. GUERRERO, M. HAESSIG u. P. M. MONTAVON<br />

(2008):<br />

Force plate gait analysis to assess limb function after tibial tuberosity advancement in<br />

dogs with cranial cruciate ligament disease.<br />

Vet Comp Orthopaed 21, 243-249.<br />

VOSS, K., L. GALEANDRO, T. WIESTNER, M. HAESSIG u. P. M. MONTAVON<br />

(2010):<br />

Relationships of Body Weight, Body Size, Subject Velocity, and Vertical Gro<strong>und</strong><br />

Reaction Forces in Trotting Dogs.<br />

Vet Surg 39, 863-869.<br />

VOSS, K., T. WIESTNER, L. GALEANDRO, M. HASSIG u. P. M. MONTAVON<br />

(2011):<br />

Effect of dog breed and body conformation on vertical gro<strong>und</strong> reaction forces,<br />

impulses, and stance times.<br />

Vet Comp Orthopaed 24, 106-112.<br />

WAKELING (2007):<br />

Segmental variation in the activity and function of the equine longissimus dorsi<br />

muscle during walk and trot.<br />

Equine Comp. Exerc. Phys. 4, 95-103<br />

WENTINK, G. H. (1976):<br />

Action of Hind Limb Musculature of Dog in Walking.<br />

Acta Anat 96, 70-80.<br />

WENTINK, G. H. (1978):<br />

Bio-Kinetical Analysis of Movements of Pelvic Limb of Horse and Role of Muscles in<br />

Walk and Trot.<br />

101


Literaturverzeichnis<br />

Anat Embryol 152, 261-272.<br />

WICKLER, S. J., D. F. HOYT, A. A. BIEWENER, E. A. COGGER u. K. L. DE LA PAZ<br />

(2005):<br />

In vivo muscle function vs speed II. Muscle function trotting up an incline.<br />

J Exp Biol 208, 1191-1200.<br />

ZANEB, H., V. KAUFMANN, C. STANEK, C. PEHAM u. T. F. LICKA (2009):<br />

Quantitative differences in activities of back and pelvic limb muscles during walking<br />

and trotting between chronically lame and nonlame horses.<br />

Am J Vet Res 70, 1129-1134.<br />

102


Danksagung<br />

9. Danksagung<br />

Bei Herrn Prof. Dr. Nolte möchte ich mich herzlich für die Betreuung <strong>und</strong> die<br />

Bereitstellung dieses spannenden Themas <strong>und</strong> die Möglichkeit, diese Arbeit im<br />

exzellent ausgestatteten Ganganalyselabor der Klinik für Kleintiere <strong>Stiftung</strong><br />

<strong>Tierärztliche</strong> <strong>Hochschule</strong> <strong>Hannover</strong> durchführen zu können, bedanken.<br />

Frau PD Dr. Schilling danke ich recht herzlich für ihre hervorragende Betreuung, ihre<br />

enorme Hilfsbereitschaft <strong>und</strong> ihre außerordentliche Unterstützung bei der Erstellung<br />

meiner Arbeit. Durch ihre herausragende Fachkompetenz sowie ihre unbändige<br />

Leidenschaft für die Bewegungsanalyse hat sie mich bei dieser Arbeit auf besondere<br />

Weise inspiriert.<br />

Ein herzliches Dankeschön an die Beaglepfleger/innen für die tolle Zusammenarbeit<br />

<strong>und</strong> natürlich an die geduldigen <strong>und</strong> liebenswerten Probanden (Alex, Alfred, Elvis,<br />

Erwin, Lou, Malte, Nico, Peggy <strong>und</strong> Simon), ohne die die Datenaufzeichnung <strong>und</strong> der<br />

daraus resultierende Erkenntnisgewinn nicht möglich gewesen wäre.<br />

Ganz besonders möchte ich mich bei meinen Leuten aus der Ganganalyse für Ihre<br />

Unterstützung jeglicher Art bedanken, insbesondere bei meiner herzlichen<br />

Mitstreiterin Daniela Helmsmüller für die vielen fachlichen Diskussionen, ihre Hilfe<br />

beim „Exceln“ <strong>und</strong> ihre durchweg aufmunternde Art, meinem kolumbianischen<br />

Fre<strong>und</strong> Vladimir Galindo-Zamora für den täglichen Wissensaustausch, das<br />

Heranführen an die Datenauswertung <strong>und</strong> für die vielen sehr spaßigen Momente,<br />

meiner liebenswerten Büronachbarin Aniela Fuchs mit Alex, für die fachlich<br />

geprägten Konversationen, für das viele Lachen <strong>und</strong> die unvergesslich netten<br />

St<strong>und</strong>en auch außerhalb des Büros, bei der durchweg engagierten Alexandra Anders<br />

für ihre Geduld, ihren unentwegten Optimismus <strong>und</strong> ihre Sorgfalt bei der<br />

Datenaufzeichnung, bei Jalal Abdelhadi für die vielen themenbasierten Diskussionen<br />

sowie bei Sonja Möller <strong>und</strong> Birte Goldner mit Nike, ihr alle seid großartig <strong>und</strong> ich<br />

werde euch sehr vermissen! Nicht zu vergessen die lieben Mädels aus dem<br />

103


Danksagung<br />

Doktorandenzimmer, besonders Lisa Harder <strong>und</strong> Anne Sieslack mit Nelly, für die<br />

netten Gespräche, die süßen Leckereien <strong>und</strong> einfach fürs da sein!<br />

Meinem Marco möchte ich einen herzlichen Dank für seine große Geduld mit mir,<br />

seine motivierenden Worte, sein besonderes Verständnis <strong>und</strong> die zahlreichen sehr<br />

lieben Aufmunterungen aussprechen. Danke, dass du immer für mich da gewesen<br />

bist <strong>und</strong> mir so diese Zeit um ein Vielfaches verschönert <strong>und</strong> erleichtert hast.<br />

Mein größter Dank gilt meiner Familie, besonders meinen Eltern die mich jederzeit<br />

bedingungslos unterstützt haben <strong>und</strong> ohne die mein Traumstudium mit dieser<br />

anschließenden lehrreichen Doktorarbeit nicht möglich gewesen wäre <strong>und</strong> meinen<br />

Geschwistern, meinem Bienchen, Nanni, sowie Szamba <strong>und</strong> Miro für den<br />

allerschönsten Ausgleich im Leben, Ihr seid die Besten, danke dass es euch gibt!<br />

104


105

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!