30.01.2014 Views

Stiftung Tierärztliche Hochschule Hannover Die ontogenetische ...

Stiftung Tierärztliche Hochschule Hannover Die ontogenetische ...

Stiftung Tierärztliche Hochschule Hannover Die ontogenetische ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Stiftung</strong> <strong>Tierärztliche</strong> <strong>Hochschule</strong> <strong>Hannover</strong><br />

<strong>Die</strong> <strong>ontogenetische</strong> Entwicklung des Bewegungsapparates beim Beagle – eine<br />

morphometrische und kinetische Analyse<br />

INAUGURAL – DISSERTATION<br />

zur Erlangung des Grades einer Doktorin der Veterinärmedizin<br />

- Doctor medicinae veterinariae -<br />

(Dr. med. vet.)<br />

vorgelegt von<br />

Daniela Helmsmüller<br />

Bremen<br />

<strong>Hannover</strong> 2013


Wissenschaftliche Betreuung:<br />

1. Prof. Dr. Ingo Nolte<br />

Klinik für Kleintiere<br />

2. PD Dr. Nadja Schilling<br />

Institut für Spezielle Zoologie und<br />

Evolutionsbiologie, Jena<br />

1. Gutachter: Prof. Dr. Ingo Nolte<br />

2. Gutachter: Prof. Dr. Hagen Gasse<br />

Tag der mündlichen Prüfung: 22.5.2013<br />

<strong>Die</strong>se Arbeit wurde im Rahmen des Kompetenzzentrum für Interdisziplinäre<br />

Prävention (KIP) der Friedrich-Schiller-Universität Jena und der Berufsgenossenschaft<br />

Nahrungsmittel und Gastgewerbe (BGN), Erfurt sowie durch die <strong>Hannover</strong>sche<br />

Gesellschaft zur Förderung der Kleintiermedizin (HGFK) gefördert.


Meiner Familie und Sammy


Teile dieser Arbeit sind bei folgenden Fachzeitschriften eingereicht:<br />

• BMC Veterinary Research<br />

Ontogenetic allometry of the Beagle<br />

Daniela Helmsmüller, Patrick Wefstaedt, Ingo Nolte, Nadja Schilling<br />

• Journal of Experimental Zoology Part A<br />

Shift of the whole-body center of mass in growing dogs<br />

Daniela Helmsmüller, Alexandra Anders, Ingo Nolte, Nadja Schilling


Ergebnisse dieser Dissertation wurden als Poster auf folgenden Fachtagungen bzw.<br />

als populärwissenschaftliche Artikel präsentiert:<br />

• 18. Erfurter Tage 2011<br />

Untersuchung der Bewegungsentwicklung beim Beagle<br />

• Kongress der Society for Integrative and Comparative Biology 2012<br />

Kinematic, kinetic and electromyographic analysis of the locomotor ontogeny<br />

of the Beagle<br />

• Kongress Canine and Equine Locomotion 2012<br />

Locomotor ontogeny of the Beagle<br />

• Unser Rassehund 10/2012<br />

Vom tapsigen Welpen zum erwachsenen Hund- Untersuchung zur Entwicklung<br />

von Körperbau und Fortbewegung am Beispiel des Beagles<br />

• 19. Erfurter Tage 2012<br />

<strong>Die</strong> <strong>ontogenetische</strong> Entwicklung der Fortbewegung des Beagles<br />

• 21. Jahrestagung der Fachgruppe „Innere Medizin und klinische Labordiagnostik“<br />

der DVG 2013<br />

Das Wachstum mit Blick auf die Bewegung von Beaglen


Inhaltsverzeichnis<br />

Inhaltsverzeichnis<br />

1. Einleitung und Literaturüberblick .................................................................... 9<br />

2. Material und Methoden ................................................................................... 12<br />

2.1. Hunde ........................................................................................................ 12<br />

2.2. Morphometrie............................................................................................. 13<br />

2.3. Ganganalyse.............................................................................................. 15<br />

3. Studie I: Ontogenetic allometry of the Beagle .............................................. 18<br />

3.1. Abstract...................................................................................................... 18<br />

3.2. Background................................................................................................ 19<br />

3.3. Materials and Methods............................................................................... 22<br />

3.4. Results....................................................................................................... 24<br />

3.5. Discussion.................................................................................................. 27<br />

3.6. Conclusions ............................................................................................... 32<br />

3.7. List of abbreviations ................................................................................... 32<br />

3.8. Competing interests ................................................................................... 33<br />

3.9. Author contributions ................................................................................... 33<br />

3.10. Acknowledgements.................................................................................... 33<br />

3.11. References................................................................................................. 34<br />

3.12. Figures....................................................................................................... 39<br />

3.13. Tables ........................................................................................................ 44<br />

4. Studie II: Shift of the whole-body center of mass in growing dogs............ 50<br />

4.1. Abstract...................................................................................................... 50<br />

4.2. Abbreviations ............................................................................................. 51<br />

4.3. Introduction ................................................................................................ 52<br />

4.4. Animals and Methods ................................................................................ 54<br />

4.5. Results....................................................................................................... 56<br />

4.6. Discussion.................................................................................................. 58<br />

4.7. Acknowledgments...................................................................................... 61<br />

4.8. Conflict of interest statement...................................................................... 61<br />

4.9. Literature cited ........................................................................................... 62<br />

4.10. Figures....................................................................................................... 67<br />

4.11. Tables ........................................................................................................ 69<br />

5. Diskussion ....................................................................................................... 72<br />

6. Zusammenfassung.......................................................................................... 78<br />

7. Summary.......................................................................................................... 80<br />

8. Literaturverzeichnis ........................................................................................ 82<br />

9. Danksagung..................................................................................................... 97


Abkürzungsverzeichnis<br />

Abkürzungsverzeichnis<br />

Br<br />

Cr<br />

CoM<br />

D<br />

Fe<br />

Fz<br />

PW<br />

Sk<br />

Brachium<br />

Crus<br />

Körpermasseschwerpunkt<br />

Duty Factor<br />

Femur<br />

vertikale Kraft<br />

postnatale Woche<br />

Skapula


Einleitung und Literaturüberblick<br />

1. Einleitung und Literaturüberblick<br />

Hunde gehören wie ihre Vorfahren, die Wölfe, zu den sogenannten cursorialen<br />

Säugetieren, die an das Zurücklegen großer Strecken bei relativ hoher Fortbewegungsgeschwindigkeit<br />

angepasst sind (LULL 1904; GREGORY 1912). Dafür ist ein<br />

gesundes, normal entwickeltes muskulo-skelettales System eine essenzielle<br />

Voraussetzung.<br />

Aufgrund von alimentären Mängeln oder auch durch pathologische Prozesse,<br />

Infektionen, Traumata oder genetische Einflüsse kann es in der besonders sensiblen<br />

Phase des Wachstums zu Störungen in der Entwicklung des Bewegungsapparates<br />

kommen. Auch der Besitzerwechsel, zumeist zwischen der 9ten und 12ten<br />

Lebenswoche, kann durch sozialen Stress und Veränderungen der Lebensweise<br />

Wachstumsstörungen provozieren. Für eine Beurteilung des physiologischen<br />

Wachstums- und Entwicklungszustandes des Bewegungsapparates von jungen<br />

Hunden, aber auch für Verlaufskontrollen therapeutischer und rehabilitativer<br />

Maßnahmen ist es daher unerlässlich, die genauen zeitlichen Charakteristika der<br />

Ontogenese des Bewegungsapparates von Hunden zu kennen und Referenzdaten<br />

der physiologischen Entwicklung verfügbar zu haben.<br />

Wie andere junge Säugetiere sind auch junge Hunde nicht einfach kleine Kopien<br />

der Adulti, sondern sie unterscheiden sich deutlich in zahlreichen physiologischen<br />

und morphometrischen Parametern. Zum Beispiel erreichen junge kalifornische<br />

Eselhasen höhere relative Beschleunigungen als die Adulti durch günstigere<br />

Hebelarmverhältnisse und eine größere Krafterzeugung der Muskulatur bezogen auf<br />

die Körpermasse (CARRIER 1983). Fohlen sparen metabolische Energie auf den<br />

langen Wanderungen ihrer Herden, indem sie bezogen auf ihre Beinlänge relativ<br />

größere Schritte machen (GROSSI u. CANALS 2010). Solche biomechanischen<br />

Vorteile erlauben es jungen Säugetieren, in der gleichen Umwelt und unter den<br />

gleichen Bedingungen, z.B. in Bezug auf die Nahrungssuche oder natürliche Feinde,<br />

wie die Adulti zu überleben. Bei Wölfen oder Wildhunden sind keine Studien über<br />

solche physiologischen Veränderungen in der Ontogenese bekannt.<br />

Bezüglich morphometrischer Unterschiede zwischen juvenilen und adulten<br />

Vertretern der Säugetiere ist allgemein bekannt, dass Jungtiere einen großen Kopf<br />

9


Einleitung und Literaturüberblick<br />

und große Autopodien im Vergleich zu den adulten Proportionen haben. Im Verlauf<br />

der Entwicklung wachsen beide Körperteile weniger, verglichen mit anderen<br />

Körperabschnitten oder auch der Körpergröße. Solche morphometrischen<br />

Veränderungen wirken sich auf die Verteilung des Körpergewichtes innerhalb und<br />

zwischen den Extremitäten und damit auf die relative Lage des Körpermasseschwerpunktes<br />

aus (KIMURA 1987, 2000; YOUNG 2012). Interspezifische Vergleiche<br />

adulter Säugetiere belegen beispielsweise, dass der Gepard aufgrund seiner<br />

muskulösen Hinterbeine 52% seines Körpergewichtes auf den Vorderextremitäten<br />

trägt, während das Kamel mit seinem muskulöseren Vorderkörper 66% der<br />

Körpermasse durch die Vorderbeine unterstützt (ROLLINSON u. MARTIN 1981).<br />

Intraspezifische Unterschiede wurden bei Pferden zwischen Warmblütern, die mehr<br />

Gewicht auf den Vorderbeinen tragen, und dem American Quarter Horse beobachtet<br />

(BACK et al. 2007). Auch bei Hunden lassen sich rassetypische Unterschiede<br />

erkennen. Der Barsoi, ein Windhund mit kräftigen Hinterbeinen, trägt 57%, der<br />

Rottweiler, als Molosser, trägt 64% des Körpergewichts auf den Vorderbeinen<br />

(BERTRAM et al. 2000; WILLIAMS et al. 2008; VOSS et al. 2011).<br />

Ontogenetisch wurde der Einfluss der Verschiebungen der Körperproportionen auf<br />

die Lage des Körpermasseschwerpunktes bisher nur für Primaten untersucht. Hier<br />

wurde übereinstimmend eine Verschiebung nach caudal beobachtet, da die meisten<br />

Primaten als Adulti den größeren Teil ihres Körpergewichtes auf den muskulöseren<br />

Hinterbeinen tragen (GRAND 1977; TURNQUIST u. WELLS 1994;<br />

KIMURA 1987, 2000; SHAPIRO u. RAICHLEN 2006; YOUNG 2012). Ob sich der<br />

Körpermasseschwerpunkt bei Säugetieren, die als Adulti über 50% ihres Körpergewichts<br />

auf den Vorderbeinen tragen (wie z.B. Hunde), während der Ontogenese auch<br />

von cranial nach caudal verschiebt oder eine Akzentuierung des ohnehin cranial<br />

liegenden Schwerpunktes erfolgt, wurde bisher nicht detailliert untersucht.<br />

Wenige Studien haben sich in der Vergangenheit mit den physiologischen<br />

Veränderungen und dem relativen Wachstum der Körperabschnitte, der sogenannten<br />

<strong>ontogenetische</strong>n Allometrie, während des postnatalen Wachstums des Hundes<br />

beschäftigt. WEISE (1964) und SCHULZE et al. (2003, 2007) beobachteten, dass<br />

Größenunterschiede zwischen den verschiedenen Rassen nicht aufgrund<br />

10


Einleitung und Literaturüberblick<br />

unterschiedlicher Wachstumsdauer, sondern durch unterschiedlich intensives<br />

Wachstum auftreten. WEISE (1964) untersuchte dafür vergleichend das Knochenwachstum<br />

jeweils eines Wurfes von acht verschiedenen Rassen zwischen dem<br />

30ten und 120ten Lebenstag. Somit endet ihre Studie ungefähr zu dem Zeitpunkt, an<br />

dem Junghunde an ihre neuen Besitzer übergeben werden. SCHULZE et al. (2003,<br />

2007) untersuchten das Knochenwachstum der Vorder- und Hintergliedmaßen bei<br />

vier Rassen. Sie beobachteten den Abschluss des Wachstums z.B. beim Beagle um<br />

den 305ten Tag. Das Skelettwachstum und die Entwicklung der Körpermasse<br />

wurden ebenfalls von SALOMON et al. (1999) beim Beagle untersucht.<br />

Keine der oben genannten Studien schloss die Skapula als lokomotorisch<br />

wichtigen Abschnitt der Vorderextremität ein. <strong>Die</strong>ser proximale Abschnitt der<br />

Vordergliedmaße trägt durch seinen hoch gelegenen Drehpunkt maßgeblich zum<br />

Vortrieb des Körpers während der Fortbewegung bei; allein zwischen 65% und 80%<br />

der Schrittlänge sind auf die Bewegungen der Skapula zurückzuführen (FISCHER u.<br />

LILJE 2011). Durch den allein sehnigen und muskulösen Verbund der Vordergliedmaße<br />

mit dem Rumpf dient sie auch dem Auffangen der Last im Stand, in der<br />

Bewegung und beim Sprung. Während der Evolution der Säugetiere wurde die<br />

Skapula aus dem ursprünglich starren Schultergürtel gelöst und in die bewegliche<br />

Kette der Vordergliedmaßensegmente integriert (FISCHER 1998). Damit verbunden<br />

löst sich die ursprüngliche serielle Homologie der Extremitätenabschnitte der<br />

tetrapoden Vorder- und Hintergliedmaßen mit den homologen Elementen des<br />

Stylopodiums (Humerus, Femur), des Zeugopodiums (Radius, Tibia; Ulna, Fibula)<br />

und des Autopodiums (Carpus, Tarsus; Metacarpus, Metatarsus; Phalanges) auf. Sie<br />

wird bei den Theria durch eine neue funktionelle Homologie der Extremitätenabschnitte,<br />

begründet auf deren Bewegungstrajektorien und Drehpunktshöhen,<br />

ersetzt. Funktionell entsprechen sich bei diesen Säugetieren wie auch beim Hund:<br />

Skapula und Femur, Brachium und Crus und Antebrachium und Tarsus.<br />

Weiterhin wurden wachsende Hunde bisher lokomotorisch nur in einer Studie<br />

untersucht, die allerdings nicht vollständig, sondern nur als Zusammenfassung,<br />

publiziert wurde (BIKNEVICIUS et al. 1997).<br />

11


Material und Methoden<br />

Ziel dieser Arbeit war die detaillierte Beschreibung der allometrischen Veränderungen<br />

aller Extremitäten- und Körperabschnitte während der Entwicklung von<br />

Beaglen und die Untersuchung der Auswirkungen dieser Veränderungen auf die<br />

kraniokaudale Lage des Körpermasseschwerpunktes. Im Fokus der Arbeit stand die<br />

Erhebung von Referenzdaten für die physiologische Entwicklung des Bewegungsapparates.<br />

<strong>Die</strong>se Studie wurde am Beispiel des Beagles durchgeführt, weil er als<br />

mittelgroße Rasse der Laufhunde einen Vergleich mit bereits publizierten Daten zu<br />

Hunden mit anderen Körperformen und -größen erlaubt. Darüber hinaus ist der<br />

Beagle ein typischer Laborhund. Hunde variieren wie keine andere Säugetierart in<br />

Körpergröße und Gestalt (FISCHER u. LILJE 2011), daher ist die Kenntnis von<br />

möglichen Unterschieden im Wachstum von Bedeutung. <strong>Die</strong> vorgelegte Arbeit soll<br />

hierzu durch die detaillierte Untersuchung einer Rasse einen Beitrag leisten.<br />

<strong>Die</strong> Ergebnisse dieser Arbeit werden in zwei getrennten Studien präsentiert, um<br />

eine ausführliche Einordnung der einzelnen Befunde in die vorhandene Datenlage<br />

und die entsprechende Diskussion dieser zu ermöglichen. Dabei werden in der<br />

ersten Studie die in dieser Arbeit erhobenen morphometrischen Daten vorgestellt. Es<br />

erfolgt ein Vergleich mit Daten aus vorherigen Studien über andere Beaglelinien und<br />

Hunderassen und eine Einordnung innerhalb der Säugetiergruppe. <strong>Die</strong> zweite Studie<br />

umfasst die kinetischen Daten und untersucht die Lage des Körpermasseschwerpunktes<br />

während der Ontogenese. <strong>Die</strong> Ergebnisse werden mit Blick auf anatomische<br />

Veränderungen diskutiert und mit Ergebnissen von anderen Säugetieren verglichen.<br />

2. Material und Methoden<br />

2.1. Hunde<br />

<strong>Die</strong>se Studie wurde anhand von sechs Beaglerüden durchgeführt. <strong>Die</strong>se stammten<br />

aus einem Wurf (Größe: 7 männliche, 4 weibliche) aus der Reproduktionsmedizinischen<br />

Einheit der <strong>Stiftung</strong> <strong>Tierärztliche</strong> <strong>Hochschule</strong> <strong>Hannover</strong> und kamen im Alter<br />

von neun Wochen in die Klinik für Kleintiere derselben <strong>Hochschule</strong>. Hier wurden die<br />

Junghunde unter den gleichen Bedingungen in einer Gruppe gehalten.<br />

<strong>Die</strong> Messungen begannen mit Ankunft der Junghunde in der Klinik für Kleintiere<br />

mit neun Wochen und endeten mit einem Alter der Hunde von 51 Wochen. Bis zum<br />

12


Material und Methoden<br />

Alter von 20 Wochen wurden die Daten wöchentlich, bis 32 Wochen alle zwei<br />

Wochen und anschließend monatlich bis zum Ende der Studie erhoben.<br />

Mit einem Alter von neun und zwölf Wochen wurden alle Hunde gegen Staupe,<br />

Parvovirose, Hepatitis contagiosa canis, Leptospirose und Tollwut geimpft. Trotzdem<br />

erkrankten die Hunde zwischen der 15ten und 19ten Lebenswoche an Parvovirose,<br />

so dass in diesen Wochen keine Messungen stattfinden konnten. Während des<br />

Jahres, in dem mit den Hunden gearbeitet wurden, befand sich ihr Body Condition<br />

Score innerhalb der normalen Bandbreite zwischen vier und sechs, eingestuft nach<br />

dem Body Condition Score System des Nestlé Purina Pet Care Centre (St. Louis,<br />

MO, USA) mit Werten von eins bis neun (1-3 zu dünn, 4-5 ideal, 6-9 zu dick).<br />

In der 14ten und der 50ten Lebenswoche wurden die Junghunde orthopädisch<br />

untersucht, wobei kein besonderer Befund festgestellt wurde.<br />

2.2. Morphometrie<br />

Kopf- und Rumpflänge, Widerrist- und Beckenhöhe sowie Brustkorbumfang,<br />

Beckenlänge und die Länge der einzelnen Gliedmaßenabschnitte wurden anhand<br />

von palpierbaren Knochenpunkten mit einem konventionellen Maßband (Genauigkeit:<br />

5 mm) an der linken Körperseite gemessen (Abb. 1, Studie 1). <strong>Die</strong> verwendeten<br />

anatomischen Landmarken sind in Tabelle 1 aufgeführt. In Abweichung zu<br />

klassischen anatomischen Messstrecken wurden in dieser Arbeit bewußt funktionell,<br />

für die Lokomotion relevante Strecken vermessen. So entspricht beispielsweise<br />

Strecke 10 der funktionellen Rumpflänge, d.h. der Strecken zwischen den<br />

Drehpunkten der Vorder- und der Hinterextremität. <strong>Die</strong> Strecken entlang der Vorderbzw.<br />

Hinterextremität sind an die Längen zwischen Drehpunkten der Gelenke<br />

angelehnt (Schilling & Petrovitch 2006). Darüber hinaus mußten nicht zuletzt auch<br />

Landmarken ausgewählt werden, die an allen Hunden unabhängig vom Alter<br />

eindeutig ansprechbar sind und zu reproduzierbaren Längenmessungen führen. Das<br />

Körpergewicht wurde mit einer Waage bis zur ersten Dezimalstelle gemessen. Zum<br />

Vergleich wurden auch die Elterntiere vermessen, zu diesem Zeitpunkt waren die<br />

Junghunde 32 Wochen alt.<br />

13


Material und Methoden<br />

Wachstumskurven für die Gewichtsentwicklung und die Entwicklung der mittleren<br />

Werte der Gliedmaßensegmente wurden mit Hilfe der Gompertzfunktion nach<br />

HELMINK et al. (2000) berechnet:<br />

(1) m t =m max exp(-e [-(t-c)/b] )<br />

wobei m t Masse zum Zeitpunkt t, m max geschätztes Endgewicht, b proportional zur<br />

Wachstumsdauer und c das Alter im Wendepunkt (hier 36,8% des Endgewichtes) ist.<br />

Alle morphometrischen Daten wurden doppeltlogarithmisch gegen die Körpermasse<br />

aufgetragen. Anschließend wurde die Regressionsgerade mit Hilfe des Modells II der<br />

RMA (reduced major axis regression) berechnet. Dazu diente die logarithmierte<br />

Allometriegleichung<br />

(2) logy= b logx + loga.<br />

y stellte dabei die Körperteilgröße dar, x die Bezugsgröße wie z.B. die Körpergröße<br />

oder die Körpermasse, a ist die Integrationskonstante für weitere Einflüsse und b<br />

der allometrische Koeffizient, der die Steigung der Geraden und somit den Anteil von<br />

y an x bestimmt. Werden Größen derselben Dimension verglichen (z.B. zwei<br />

Strecken zueinander), verhalten diese sich isometrisch bei b=1,00, positiv<br />

allometrisch bei b>1,00 und negativ allometrisch bei b


Material und Methoden<br />

Körpermaß<br />

Messstrecke<br />

Becken Strecke 5 Tuber coxae – Tuber ischiadicum<br />

Strecke 6 Trochanter major - Condylus lateralis femoris<br />

Hintergliedmaße<br />

Strecke 7 Condylus lateralis femoris - Malleolus lateralis<br />

Malleolus lateralis - Distal dritte Zehe (mit<br />

Strecke 8<br />

aufgenommener Pfote)<br />

Strecke 9 Auf Höhe des Processus xyphoideus<br />

Körperproportionen<br />

Trochanter major<br />

Cranialer Rand der Skapula waagerecht bis zum<br />

Strecke 10<br />

Strecke 11 Nasenspiegel – Protuberantia occipitalis externa<br />

2.3. Ganganalyse<br />

Im Rahmen der instrumentierten Ganganalyse werden die Parameter Bodenreaktionskraft,<br />

Gelenk- und Segmentwinkel und zeitliche Gangcharakteristika analysiert.<br />

<strong>Die</strong> ganganalytischen Untersuchungen in dieser Studie wurden in dem Labor der<br />

Klinik für Kleintiere auf einem Laufband mit je einer Kraftmessplatte unter den vier<br />

separaten Riemen (Modell 4060-08, Bertec Corporation, Columbus, OH, USA) im<br />

Schritt und im Trab durchgeführt. Pro Geschwindigkeit erfolgten wenigstens 3<br />

Aufnahmen mit einer jeweiligen Dauer von ca. 30 Sekunden (ca. 65 Schritte). <strong>Die</strong><br />

Aufzeichnung der Daten erfolgte mit Vicon Nexus (Vicon Motion System Ltd., Oxford,<br />

UK). Während der Messungen auf dem Laufband wurden für kinematische<br />

Untersuchungen insgesamt 25 retroreflexive Marker an palpierbare Knochenpunkte<br />

geklebt. Weiterhin wurde unter Verwendung von Oberflächenelektromyographie die<br />

Aktivität des M. longissimus thoracis et lumborum bilateral während des Laufens auf<br />

dem Laufband gemessen. Der Fokus der Auswertungen dieser Arbeit liegt dabei auf<br />

den kinetischen Daten.<br />

<strong>Die</strong> Messung der Bodenreaktionskräfte in den drei Richtungen des Koordinatensystems<br />

(x, y, z) erfolgte während des Laufens auf dem Laufband. Am Verhältnis<br />

zwischen den vertikalen Bodenreaktionskräften (Fz) der Vorder- und der Hintergliedmaßen<br />

kann die kraniokaudale Lage des Körpermasseschwerpunktes (CoM)<br />

abgeschätzt werden. Des Weiteren hat LEE et al. (2004) durch eine experimentelle<br />

Verschiebung des CoM durch Erhöhung des Gewichts entweder auf den Vorderoder<br />

den Hintergliedmaßen beim Hund gezeigt, dass sich diese Veränderungen auch<br />

auf das Verhältnis der Stemmphasendauer der Gliedmaßen auswirken. Daher lag in<br />

15


Material und Methoden<br />

dieser Studie der Fokus auf der Auswertung der vertikalen Kräfte (maximale Kraft,<br />

mittlere Kraft, Impuls) und des Verhältnisses der Stemmphasendauer der Vorderund<br />

Hintergliedmaßen. Weiterführend wurde ein Symmetrieindex zur Überprüfung<br />

der Lahmheitsfreiheit und die Zeit bis zum Auftreten der maximalen vertikalen Kraft<br />

bestimmt.<br />

Aufgrund ihrer geringen Körpergröße liefen die Hunde nur auf einer Seite des<br />

Laufbandes. Dadurch wurden nur die Kräfte der Vorder- und Hintergliedmaßen<br />

getrennt aufgenommen und nicht einer jeden einzelnen Gliedmaße. Trotzdem<br />

konnten im Trab durch die gemeinsame Flugphase der Vorder- bzw. Hinterextremitäten<br />

und dem damit verbundenen Duty Factor von D


Material und Methoden<br />

Körpergewicht des Hundes normiert. Aus diesen Daten wurden die maximale und die<br />

mittlere vertikalen Bodenreaktionskraft sowie der vertikale Impuls ermittelt. Alle<br />

Ergebnisse wurden statistisch mit dem Programm GraphPad Prism (Version 4,<br />

GraphPad Software, Inc. California Corporation, CA, USA) bewertet.<br />

17


Studie I: Ontogenetic allometry of the Beagle<br />

Studie I: Ontogenetic allometry of the Beagle<br />

Daniela Helmsmüller 1<br />

daniela.helmsmueller@tiho-hannover.de<br />

Patrick Wefstaedt 1<br />

patrick.wefstaedt@tiho-hannover.de<br />

Ingo Nolte 1<br />

ingo.nolte@tiho-hannover.de<br />

Nadja Schilling 1,2*<br />

nadja.schilling@tiho-hannover.de<br />

1 Small Animal Clinic, University of Veterinary Medicine <strong>Hannover</strong>, Foundation,<br />

Bünteweg 9, 30559 <strong>Hannover</strong>, Germany<br />

2 Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-<br />

University, Erbertstr. 1, 07743 Jena, Germany<br />

*Corresponding author<br />

2.4. Abstract<br />

Background: Mammalian juveniles undergo dramatic changes in body conformation<br />

during development. As one of the most common companion animals, the time<br />

line and trajectory of a dog’s development and its body’s re-proportioning is of<br />

particular scientific interest. Several ontogenetic studies have investigated the<br />

skeletal development in dogs, but none has paid heed to the scapula as a critical part<br />

of the mammalian forelimb. Its functional integration into the forelimb changed the<br />

correspondence between fore- and hindlimb segments and previous ontogenetic<br />

studies observed more similar growth patterns for functionally than serially<br />

homologous elements. In this study, the ontogenetic development of six Beagle<br />

18


Studie I: Ontogenetic allometry of the Beagle<br />

siblings was monitored between 9 and 51 weeks of age to investigate their skeletal<br />

allometry and compare this with data from other lines, breeds and species.<br />

Results: Body mass increased exponentially with time; log linear increase was<br />

observed up to the age of 15 weeks. Compared with body mass, withers and pelvic<br />

height as well as the lengths of the trunk, scapula, brachium and antebrachium,<br />

femur and crus exhibited positive allometry. Trunk circumference and pes showed<br />

negative allometry in all, pelvis and manus in most dogs. Thus, the typical<br />

mammalian intralimb re-proportioning with the proximal limb elements exhibiting<br />

positive allometry and the very distal ones showing negative allometry was observed.<br />

Relative lengths of the antebrachium, femur and crus increased, while those of the<br />

distal elements decreased.<br />

Conclusions: Beagles are fully-grown regarding body height but not body mass at<br />

about one year of age. Particular attention should be paid to feeding and physical<br />

exertion during the first 15 weeks when they grow more intensively. Compared with<br />

its siblings, a puppy’s size at 9 weeks is a good indicator for its final size. Among<br />

siblings, growth duration may vary substantially and appears not to be related to the<br />

adult size. Within breeds, a longer time to physically mature is hypothesized for<br />

larger-bodied breeding lines. Similar to other mammals, the Beagle displayed nearly<br />

optimal intralimb proportions throughout development. Neither the forelimbs nor the<br />

hindlimbs conformed with the previously observed pattern of a proximo-distal growth<br />

gradient. Potential factors responsible for variations in the ontogenetic allometry of<br />

mammals need further evaluation.<br />

Keywords: Scaling, limb proportions, body proportions, bone growth, serial<br />

homology, body mass<br />

2.5. Background<br />

The physical development from a puppy to an adult dog is characterized by<br />

dramatic changes in body size and shape. Mammalian juveniles in general are not<br />

simply small copies of adults; they differ substantially in their body proportions and<br />

often appear clumsy in their movements (e.g., [1-3]). The juvenile body grows<br />

19


Studie I: Ontogenetic allometry of the Beagle<br />

continuously while the musculoskeletal and nervous systems progressively mature.<br />

At the same time, juveniles have to perform in the same environment as adults,<br />

which results in unique challenges due to the differences in body size and<br />

conformation [4].<br />

As the dog is one of the most common companion animals, the timeline and<br />

trajectories of its postnatal re-proportioning as well as the age at which it reaches<br />

adult proportions are of particular interest. Puppies are usually acquired by their new<br />

owners at the age of 9 to 11 weeks. For both the breeder and the potential buyer, the<br />

prospective physical development may be relevant when selecting a puppy.<br />

However, at the referral, the dogs are obviously not fully grown. Furthermore, during<br />

postnatal development, growth problems due to diet, injury or illness may occur and it<br />

is important to have reference values for the postnatal growth of the various body<br />

parts. A number of allometric studies are available for adult dogs; for example,<br />

comparing different breeds or examining historical or genetic transformations (e.g.,<br />

[5-12]). Of the ontogenetic studies, some focused on pathological processes (e.g.,<br />

[13,14]), while others documented either the physiological and pathological<br />

development of a single limb segment (e.g., [15-17]) or of several body parts [18-23].<br />

Using x-ray in a longitudinal approach, Yonamine et al. [19] and Conzemius et al.<br />

[20] examined the growth of the forelimb or a part of it, respectively. Weise [18]<br />

followed the changes in body proportions among siblings in eight breeds and<br />

concluded that size differences among siblings are not due to differences in the<br />

duration of growth but growth rate. Schulze and colleagues [22,23] studied four<br />

breeds and a greater number of individuals per breed compared to Weise [18];<br />

similarly, they observed that larger breeds differ from smaller breeds in their growth<br />

rates rather than growth duration. Salomon et al. [21] monitored 14 measurements of<br />

37 Beagles during the first 13 months. They observed a higher growth rate in the<br />

hindlimbs than the forelimbs and no sex difference in growth termination. In contrast<br />

to the studies mentioned above [22,23] and in accordance with Hawthorne et al. [24],<br />

who investigated body mass development in different breeds, Salomon et al. [21]<br />

concluded that larger breeds grow for a longer time.<br />

20


Studie I: Ontogenetic allometry of the Beagle<br />

To investigate the ontogenetic scaling in dogs, this study monitored the allometry<br />

in Beagle siblings. The Beagle is a British breed and belongs to the hound group<br />

within the sporting breeds and has been bred for pack hunting hares and rabbits.<br />

Nowadays, the Beagle is also a very popular family dog and a common laboratory<br />

animal. Within the breed, lines with different body sizes and proportions have been<br />

bred. Previous ontogenetic studies on Beagles worked with relatively small- to<br />

medium-sized lines (e.g., [19] adult body mass ca. 10 kg; [21] ca. 11 kg; [24] ca. 17<br />

kg). In the current study, juveniles of a relatively large-bodied line were used (adult<br />

mass ca. 21 kg), allowing for a comparison of growth patterns among different-sized<br />

lines of the same breed.<br />

During the evolution of mammals, fore- and hindlimbs underwent a profound<br />

reorganization that accompanied the transformation from a sprawled to a parasagittal<br />

limb posture. This resulted in a dissociation between serially and functionally<br />

homologous elements in the limbs (reviewed in [25]). The scapula was mobilized and<br />

is functionally analogous to the femur in mammals [26,27]. As a result, both fore- and<br />

hindlimbs can be described as three-segmented limbs arranged in a zig-zagconfiguration<br />

with the most proximal elements (i.e., scapula, femur), the middle<br />

segment (i.e., brachium, crus) and the distal segments (antebrachium, pes) being<br />

functionally analogous due to their similar direction and amplitude of motion. Only a<br />

few allometric studies on adult (e.g., [25,28]) and juvenile mammals (e.g., [29-32])<br />

paid heed to this evolutionarily ‘new’ functional homology of the limb segments by<br />

taking the scapula into account. Comparing the results of these studies showed that<br />

in small mammals with a crouched limb posture the functionally homologous<br />

segments resemble each other more in their growth pattern than the serially<br />

homologous elements [32]. Three principles were proposed based on these data:<br />

First, the functionally homologous limb segments show more similar allometric<br />

coefficients than the serially homologous elements. Second, the limbs show a<br />

proximo-distal gradient in their growth with the proximal segment growing the most<br />

and the distal segment growing the least. Third, the middle segment (i.e., brachium<br />

and crus) remains nearly constant in its proportion of the limb’s anatomical length.<br />

21


Studie I: Ontogenetic allometry of the Beagle<br />

Unfortunately, no ontogenetic study in dogs included the scapula in their measurements,<br />

hindering testing the proposed ontogenetic principles in dogs.<br />

The aims of this study were 1) to test the observation that small and large dogs<br />

differ in rate but not duration of growth at the level of siblings, lines and breeds and 2)<br />

to examine the ontogenetic scaling of the Beagle in the light of the ontogenetic<br />

principles observed in other mammals.<br />

2.6. Materials and Methods<br />

Dogs<br />

Six male Beagle siblings from the same litter (litter size: 7 males, 4 females) were<br />

used in this longitudinal study. The dogs were from a breeding colony of the<br />

University of Veterinary Medicine <strong>Hannover</strong> (Germany) and came to the Small<br />

Animal Clinic at the age of 9 weeks. One male and all females remained in the<br />

breeding colony and were not enrolled in this study to ensure similar husbandry<br />

conditions for the dogs investigated. All experiments were carried out in strict<br />

accordance with German Animal Welfare Regulations and were approved by the<br />

Ethics Committee of Lower Saxony, Germany.<br />

Measuring started at 9 weeks and continued until the dogs were 51 weeks old.<br />

Data were collected weekly up to the age of 20 weeks, fortnightly up to 32 weeks and<br />

monthly till the end of the study. After that, only body mass was determined again at<br />

the age of 60 weeks. The dogs were kept and raised together in a group and under<br />

the same conditions, regarding, for example diet and exercise. Only one dog (#4)<br />

had to be regrouped at the age of 33 weeks, but its dietary plan and physical activity<br />

was comparable to that of its siblings. All dogs were vaccinated against distemper,<br />

hepatitis, canine parvovirus, leptospirosis and rabies at 9 and 12 weeks. However,<br />

between the age of 15 and 19 weeks, the dogs suffered from canine parvovirus and<br />

no measurements could be taken during this period. All puppies primarily experienced<br />

gastrointestinal upset and were treated immediately and aggressively in our<br />

clinics (i.e., fluid replacement, dietary restrictions, antiemetic and antibiotic therapy).<br />

As cell turnover in the gastrointestinal tract is rapid (1-3 days), intestinal malabsorption<br />

is short-lived and recovery from this enteric form is rapid [33].<br />

22


Studie I: Ontogenetic allometry of the Beagle<br />

At the age of about 40 weeks, all dogs were neutered. Between 32 and 51 weeks,<br />

occasionally smaller infections or injuries prevented the data collection from one or<br />

the other dog. During the study period, all dogs underwent two standard orthopedic<br />

investigations, one at 14 and one at 50 weeks of age, which confirmed that the dogs<br />

were healthy. The dogs were fed three times a day till the age of 44 weeks,<br />

afterwards twice a day. Portion size was about 1.9% of the dog’s body mass. At<br />

about 50 weeks, adult feed replaced the puppy feed. Over the course of the year<br />

when the dogs were investigated, their body index was in the normal range between<br />

4 and 6 based on the body condition score (Nestlé Purina Pet Care Centre, St. Louis,<br />

MO, USA), in which values range from 1 to 9 (1-3 too thin; 4-5 ideal, 6-9 too heavy).<br />

For comparison, the parents were also measured when their offspring were about 32<br />

weeks old. At this time, the sire was 7 years old and had a score of 7 and the dam<br />

was 6 years and had a score of 6.<br />

Data collection and analyses<br />

Body mass was determined to the first decimal using a traditional scale. A growth<br />

curve was constructed by plotting body mass against age using the Gompertz<br />

equation in the form: mt= mmaxexp(-exp[-(t-c)/b]), where mt is mass at time t, mmax<br />

is mature body mass, b is proportional to duration of growth, c is the age at point of<br />

inflection (i.e., 36.8% of mature body mass) and t is age in weeks (for details, see<br />

[34]). Growth duration to reach 98% of the mature body mass was estimated as<br />

4b+c. Similarly, 50% of growth duration was determined as 0.37b+c and 95% as<br />

3b+c. All parameters were calculated for each dog and for the mean values for all<br />

dogs using a nonlinear regression program (NLREG; www.nlreg.com).<br />

The lengths of the head, trunk and limb segments, trunk circumference as well as<br />

withers and pelvic heights were measured on the left body side using palpable<br />

skeletal landmarks and a traditional measuring tape (accuracy 5 mm, Figure 1). To<br />

reduce measurement errors, the measurements were always carried out by the same<br />

experienced experimenter (NS) and repeated three times per measurement. From<br />

these, means and the anatomical limb length (i.e., sum of the lengths of all<br />

segments) were calculated for further analysis. Correlation between the proportion of<br />

23


Studie I: Ontogenetic allometry of the Beagle<br />

a respective segment of the anatomical limb length and age was calculated and<br />

tested for significance. To compare our results with previous findings [21], the<br />

Gompertz equation was also used to calculate the age when 95% of the final length<br />

of the brachium, antebrachium, femur and crus were reached.<br />

Data analysis followed previous ontogenetic analyses [32,35]. For the allometric<br />

comparisons, the data were plotted on log-log scales (base 10) and regression lines<br />

were calculated by model II of the reduced major axis regression (RMA). Model II is<br />

to be preferred if variables, in this case body size parameters, could not be<br />

determined without error [36]. Besides, least-squares regression can lead to biased<br />

results if log-log bivariate regressions are used [37]. RMA regressions were<br />

calculated using Microsoft Excel (2000). The validity of the data obtained using Excel<br />

was previously tested and verified [32], and reevaluated for the current study using<br />

the software RMA (v. 1.17; www.bio.sdsu.edu/pub/andy/RMA.html). The exponent<br />

describing the slope of the regression curve is the allometric coefficient b. It indicates<br />

whether growth is isometric, negative or positive allometric. If a one-dimensional<br />

parameter (e.g., head length) is plotted vs. a three-dimensional one (e.g., body<br />

mass), isometry is given by b=0.333, negative allometry by b0.333. Comparing the same dimensions (e.g., two lengths), isometry<br />

is given by b=1.000, negative allometry by b1.000. To test<br />

whether the allometric coefficients were significantly different from isometry, the 95%<br />

confidence intervals surrounding the slopes were calculated. If the interval<br />

overlapped with the slope, it was considered isometric. For comparisons among<br />

dogs, but also with previously published data from other mammals, so-called ‘growth<br />

sequences’ were determined by sorting the slopes from the greatest to the lowest<br />

values. The slopes of two adjacent measurements were not considered different if<br />

their confidence intervals overlapped.<br />

2.7. Results<br />

Body mass<br />

The dogs gained weight throughout the study period (Figure 2). The fit of the<br />

Gompertz equation to the body mass data was good (mean R2= 0.987). The<br />

24


Studie I: Ontogenetic allometry of the Beagle<br />

estimated mean parameters were: Mature body mass mmax=17.5±0.3kg (individual<br />

dogs ranging between 16 kg and 20 kg), age at point of inflection c=11.1±0.3 weeks<br />

(ranging between 10.1 and 11.2 weeks) and proportional to growth duration<br />

b=9.18±0.7 (ranging between 8 and 10.6). On average, all dogs had reached 50% of<br />

their mature body mass with 14.5 weeks. Until the age of 15 weeks, log body mass<br />

increased linearly (R2=0.990). Mean age at 95% of the mature body mass was 39<br />

weeks and at 98% 48 weeks. By the end of the study, no dog had reached the sire’s<br />

body mass (Figure 2), but as mentioned above, he was slightly overweight.<br />

Furthermore, dogs continue to gain muscle mass during their first years of life (see<br />

discussion).<br />

At week 9, dog #3 was the lightest individual (4.8 kg) and remained so until 51<br />

weeks of age (16.1 kg). Similarly, the heaviest puppies at 9 weeks continued to be<br />

the heaviest dogs until week 51 (#1: 6.2 kg and 20.2 kg; #5: 6.0 kg and 20.9 kg).<br />

Interestingly, the relative body mass difference between the lightest and heaviest<br />

sibling (ca. 22% of body mass) persisted throughout the study. Between 15 and 19<br />

weeks, some dogs showed only very little gain in body mass; however, they returned<br />

to their ontogenetic trajectory within a few weeks. Dog #4 did not gain any weight<br />

during this period, being the dog most affected by the parvovirus infection. He was<br />

back on his trajectory and among the sibling’s masses within 5 weeks after recovery.<br />

Body proportions<br />

Compared to body mass, withers height, pelvic height, and trunk length exhibited<br />

positive allometry (Figure 3, Table 1).<br />

By the end of the study, all dogs had reached at least the mean withers and pelvic<br />

heights of the parents (46.5 cm and 43.5 cm, respectively). The only exception was<br />

dog #3, which remained smaller (44.3 cm and 40.7 cm) and also consistently showed<br />

the lowest values during the study. The sire’s withers and pelvic heights (48.3 cm<br />

and 45 cm) were surpassed by the two heaviest juveniles (#1: 51.3 cm and 47.7 cm;<br />

#5: 51.7 cm and 46.7 cm). Comparing the final heights with the values at 9 weeks<br />

shows that dog #5 grew the least of all dogs (36.8% and 33.2% increase in withers<br />

and pelvic height, respectively), whereas #1 grew the most as gauged by withers<br />

25


Studie I: Ontogenetic allometry of the Beagle<br />

height (41.9%) but was in the middle range regarding its pelvic height increase<br />

(39.5%). Although dog #3 increased in his absolute withers height the least (17 cm),<br />

he was in the middle range regarding his relative increase (39.1%). Dog #4, despite<br />

suffering the most from the infection, gained the most in pelvic height of all dogs<br />

during the course of the study (41.6%). On average, 95% of the final height was<br />

reached at 212 days for withers height and 186 days for pelvic height.<br />

The trunk length of the sire (47 cm) was reached or exceeded by all dogs except<br />

#3 (43.7 cm), who also did not reach the dam’s value (45.6 cm). Dog #5 had the<br />

longest trunk at 51 weeks (49.0 cm); he was also longer than #1 (47.8 cm), although<br />

#1 grew absolutely (21.2 cm) and relatively (44%) the most. The lightest puppy (#3)<br />

had the shortest trunk at 51 weeks (43.7 cm) and also grew the least during the study<br />

period (37.4%). Trunk circumference showed negative allometry relative to body<br />

mass for all dogs (Table 1). Mean trunk circumference of the parents was reached by<br />

none of the juveniles during the first 51 weeks (66.8 cm); dog #5 was the one who<br />

most closely approached that of the parents (65.3 cm).<br />

Three dogs exhibited negative allometry regarding their head lengths relative to<br />

body mass, dog #3 and #6 showed isometry (b=0.331 and b=0.335), and dog #1<br />

showed positive allometry (b=0.340; Figure 3). Dog #3 (22.3 cm) and #4 (22.2 cm)<br />

were the only ones at 51 weeks, which lagged behind when compared with the<br />

parents’ head lengths (mean 23.3 cm). Despite having a relatively short head, #3<br />

showed the second greatest increase in head length during the study period. In<br />

accordance with his overall large body size, #1 was the one with the longest head<br />

(25.5 cm). Relative to trunk length, head length exhibited negative allometry for all<br />

dogs.<br />

Limb proportions<br />

Coefficients of segment lengths to body mass exhibited positive allometry for all<br />

dogs regarding scapula, brachium, antebrachium, femur and crus (Figure 4, Table 2).<br />

Pelvis, manus and pes showed negative allometry relative to body mass in all<br />

dogs, except the manus in dog #6 and pes in dog #4 (Table 2). Averaged across all<br />

individuals, the antebrachium had the highest allometric coefficient among the<br />

26


Studie I: Ontogenetic allometry of the Beagle<br />

forelimb segments, followed by the brachium and the scapula (Figure 3). Thus, the<br />

growth sequence for the forelimb was ab>br=sc>ma (for individual sequences, see<br />

Table 2). In the hindlimb, femur and crus showed no significant difference, resulting<br />

in the growth sequence fe=cr>ps for all dogs.<br />

Proportions of the scapula and brachium of the anatomical forelimb length<br />

remained unchanged during development (sc: 29.0% vs. 28.1% and br: 24% vs.<br />

24.8% at 9 and 51 weeks, respectively; Figure 5). In contrast, the antebrachium’s<br />

proportion was significantly correlated with age and increased from 25.8% at 9 to<br />

27.5% at 51 weeks. In the hindlimb, the relative length of both femur and crus<br />

increased (fe: 33.8% vs. 35.9% and cr: 30.9% vs. 33.7% at 9 and 51 weeks,<br />

respectively). The distal elements, manus and pes, were inversely correlated with<br />

age (ma: 21.2% vs. 19.6% and pes: 35.2% vs. 30.4% at 9 and 51 weeks, respectively).<br />

2.8. Discussion<br />

As only male siblings were investigated in this study, no implications for sex<br />

related differences can be drawn. However, previous studies found significant<br />

ontogenetic differences between sexes only for large breeds like the Great Dane or<br />

Bernese Mountain Dog but not for smaller breeds like the Beagle [19,21-23,38].<br />

Body mass<br />

Comparing siblings of the same litters, Weise [18] observed wide ranges in the<br />

end dates of the growth of several skeletal parameters, indicating that the growth<br />

duration of siblings is not related with their final size. Albeit only a fraction of the<br />

siblings of one litter was studied herein, our findings support this observation. For<br />

example, the lightest dog did not reach its adult mass before the heavier ones and<br />

vice versa. Interestingly, the order among the siblings regarding body mass remained<br />

nearly unchanged during ontogeny. The lightest puppy at 9 weeks remained the<br />

lightest till the end of the study, and conversely, the heaviest puppies continued to be<br />

heavy throughout the study. This was true despite some puppies being affected by<br />

illness, because they quickly returned to their growth trajectory. Thus, our<br />

27


Studie I: Ontogenetic allometry of the Beagle<br />

observation confirms Weise’s remark that a puppy’s size at 9 weeks is a good<br />

indication for its later size compared with its siblings.<br />

Although the period of the maximal growth rate was not covered in the current<br />

study, because maximal weight gain occurs during the first 9 to 10 weeks in Beagles<br />

[21], log body mass still increased linearly up to the 15th week in the Beagles studied<br />

herein. Likewise, Hawthorne and colleagues reported an exponential growth rate up<br />

to 14 to 16 weeks of age for the Beagle [24]. While our results are in agreement with<br />

the previous observation that 50% of the mature body mass is reached by the age of<br />

14.8 weeks in a larger-bodied breeding line (17 kg, [24]), Salomon and colleagues,<br />

who studied a smaller-bodied line (11.8 kg), reported that their Beagles reached 50%<br />

of the mature body mass with only 7.1 weeks of age [21]. Compared with both<br />

previous studies, the time to reach mature body mass was estimated to be longer in<br />

the current study (95% of the mature mass at 35.1 weeks [21] vs. 38.6 weeks in this<br />

study; 99% after 41.9 weeks [24] vs. 98% after 47.8 weeks). However, a meaningful<br />

comparison among the studies is hindered because the mature body mass<br />

calculated for the dogs in this study probably underestimated their prospective adult<br />

body mass (i.e., calculated mass 17.5 kg vs. parents’ mean 21 kg). Dogs usually<br />

mature physically and gain muscle mass during their first years and thus after<br />

reaching their final body height.<br />

Although sample size in the current study was low and only a limited number of<br />

studies on different breeding lines is available, the comparison of the time lines of the<br />

body mass development of the different sized lines of the Beagle implies 1) that body<br />

mass development varies within a breed and appears to depend on the final body<br />

mass, particularly during the second half of development, and 2) that larger-bodied<br />

lines tend to grow for a longer period. Substantial ontogenetic variation within breeds<br />

was also observed by Weise [18]. On the other hand, some variability in the growth<br />

patterns among breeds of the same body size category was reported by Hawthorne<br />

et al. [24].<br />

In their comprehensive study, Hawthorne et al. [24] reported that 99% of the adult<br />

body mass was reached at about 10 months in toy, small and medium breeds (e.g.,<br />

Papillon: 41 weeks, Cairn Terrier: 43 weeks, Beagle: 42 weeks) and between 11 to<br />

28


Studie I: Ontogenetic allometry of the Beagle<br />

15 months in large and giant breeds (e.g., Labrador Retriever & Great Dane: 52<br />

weeks). In comparison, the Beagles in our study fall between the categories of<br />

medium and large breeds, given their 48 weeks to reach 98% of the mature body<br />

mass.<br />

Body proportions<br />

Heads are relatively large in mammalian juveniles. Therefore, negative allometry<br />

was hypothesized in the current study and it is surprising that the head grew<br />

isometrically in two dogs and showed even positive allometry in one dog. Of the two<br />

heaviest dogs one showed negative allometry and the other showed positive<br />

allometry of the head’s length relative to body mass. The lightest dog’s head grew<br />

isometrically relative to its body mass, resulting in its head being relatively short at 9<br />

weeks but within the normal range at 51 weeks. This is in contrast to Weise [18], who<br />

observed the shortest growth duration in the smallest siblings, resulting in smaller<br />

dogs having shorter heads. In addition to having relatively larger heads, puppies<br />

often appear plumper. As they approach adult size, the dogs become relatively<br />

longer and slimmer. For all dogs in this study, this is reflected by the negative<br />

allometry of the trunk circumference and the positive allometry of the trunk length<br />

compared with body mass and especially by the negative allometry of the head<br />

length vs. trunk length.<br />

Due to the general maturation of the body in cranio-caudal direction (e.g., [39-42]),<br />

greater maturity of the forelimbs compared with the hindlimbs can be expected and<br />

was observed previously [21]. However, the allometric coefficients of the pelvic and<br />

withers height were similar in this study, which is probably related with its relatively<br />

late start at an age of 9 weeks, because higher growth rates were observed for the<br />

hindlimb during early development (e.g., between the 15th and the 29th day, [23]).<br />

Limb proportions<br />

According to Salomon et al. [21], brachium and antebrachium of the Beagle reach<br />

95% of their final length at 230 days and 217 days, respectively. In contrast, the<br />

brachium grew a bit longer in this study (mean: 254 days) and growth duration was<br />

29


Studie I: Ontogenetic allometry of the Beagle<br />

shorter for the antebrachium (173 days). Femur and crus took less time to grow 95%<br />

of their final length in this study (mean: 180 and 206 days, respectively) compared<br />

with the earlier study (233 and 234 days [21]; end of growth according to [23]: 305<br />

and 298 days). This clearly contradicts the observation from the body mass<br />

development, i.e., that larger-bodied lines grow for a longer period. Therefore, the<br />

Beagle line studied herein reached the final segment lengths relatively fast but<br />

gained weight (e.g., by increasing organ and muscles masses) for a longer period<br />

compared to other breeding lines.<br />

Compared with other breeds, the Beagles in the current study also showed 95% of<br />

their final segment lengths earlier than Great Danes (ab: 238.9 days; fe: 262.5 days;<br />

cr: 272.9 days; [43]). The comparison of the growth among different breeds indicated<br />

that larger breeds grow at a higher rate but not necessarily for a longer period<br />

[22,23]. However, Weise [18] pointed out that the times till the dogs are fully grown<br />

may substantially differ among and within breeds as well as among and within litters.<br />

For example, she recorded times to full length from 140 to 243 days for the<br />

antebrachium and from 117 to 243 days for the crus in the poodle [18]. Similarly,<br />

variations of up to 52 days were observed among the siblings of the current study in<br />

reaching 95% of the final segment length. In summary, our results support Weise’s<br />

observations that larger siblings show higher growth rates and that the differences in<br />

the growth curves can be substantial among siblings.<br />

Comparison with other mammals<br />

Based on the ontogenetic allometry of various species, it was observed that<br />

functionally homologous limb segments show more similar growth patterns than<br />

serially homologous segments in mammals [32]. The first finding in the former study<br />

was that the allometric coefficients were more similar between functionally<br />

homologous segments than serially homologous ones. In contrast to previous<br />

observations, the allometric coefficients of the functionally homologous segments<br />

were not comparable in dogs. Rather the growth of the antebrachium resembled that<br />

of the femur and the crus. Femur and crus showed higher allometric coefficients than<br />

scapula and brachium, respectively. This clearly contradicts the expectation of more<br />

30


Studie I: Ontogenetic allometry of the Beagle<br />

similar allometric coefficients between functionally homologous limb segments.<br />

Nevertheless, the typical mammalian intralimb re-proportioning with the proximal<br />

elements showing positive allometry and the very distal ones exhibiting negative<br />

allometry was also observed in the Beagles studied herein (Table 3).<br />

The second observation was that the proximal segments grow more than distal<br />

ones, i.e., limbs show a proximo-distal growth gradient. While this is true for the foreand<br />

hindlimbs of several mammalian species, in the Beagle it can neither be<br />

confirmed for the hindlimb nor for the forelimb (Table 4). Similar to the domestic cat<br />

[2], domestic pig [29], domestic rabbit [35], black-tailed jack rabbit [30], capuchin<br />

monkeys [44,45] as well as other dog breeds [22,38], the antebrachium grew more<br />

than the brachium in the Beagles studied herein. While the antebrachium also grew<br />

more than the scapula in this study, in both previous studies that included the<br />

scapula [29,30], the scapula grew more than any other segment (Table 4).<br />

The third observation concerned the proportions of the segments relative to limb<br />

length [32]. Simulations of three-segmented limb models showed that 1) proportions<br />

close to 1:1:1 are optimal for stability [46,47] and 2) mechanical self-stabilization of<br />

the model is achieved when the length of the middle segment remains constant,<br />

while the lengths of the proximal and distal segments were less critical to the model’s<br />

stability [46]. Accordingly, a greater variability in the proportions of the first and the<br />

third segment was observed across 189 mammalian taxa, while the middle element<br />

was less involved in alterations of the intralimb proportions [25]. In the current study,<br />

the Beagles showed forelimb proportions of 1.2:1.0:1.1 at 9 weeks and 1.1:1.0:1.1 as<br />

adults. Consistent with the model’s prediction, the brachium remained constant in its<br />

proportion of the limb’s anatomical length. In the hindlimb, the segment proportions<br />

were 1.1:1.0:1.1 at 9 weeks and 1.1:1.0:0.9 as adults. In contrast with the model, the<br />

crus increased in its relative length. However, overall, the intralimb proportions were<br />

near the optimum [48] in the juvenile and adult Beagles in this study and comparable<br />

to the segment ratios observed in other breeds of similar body size [49].<br />

In summary, while some principles proposed in a previous study [32] held true for<br />

the Beagles studied herein, others did not. One reason may be that we compared<br />

growth patterns across all mammals for which data were available independent of<br />

31


Studie I: Ontogenetic allometry of the Beagle<br />

their phylogeny, body size, limb posture, habitat or locomotor specialization. Given<br />

that these factors influence the intralimb proportions in mammals [25], they also<br />

probably influence growth patterns. Unfortunately, insufficient data are available at<br />

the moment to be able to assess the impact of these factors on the ontogenetic<br />

allometry of mammals. Furthermore, more studies assembling complete data sets for<br />

all limb segments are necessary to increase our understanding of the growth patterns<br />

in mammals in general and the dog in particular.<br />

2.9. Conclusions<br />

At the age of one year, a Beagle has reached fully grown body height but not body<br />

mass. Up to about 15 weeks of age, Beagles grow particularly intensively, which<br />

should be considered regarding feeding and physical exertion. Compared with its<br />

siblings, a puppy’s size at 9 weeks is a good indication for its adult body size. Among<br />

siblings, growth duration may vary tremendously and seems not to be related to final<br />

body size. Within breeds, we hypothesize a longer duration to physically fully mature<br />

for larger-bodied strains. Throughout ontogeny, the Beagle displayed nearly optimum<br />

intralimb proportions. Neither the forelimbs nor the hindlimbs conformed with the<br />

proximo-distal growth sequence observed previously. Potential factors influencing the<br />

ontogenetic allometry of mammals such as phylogeny, locomotor behavior or body<br />

shape need to be evaluated in future studies.<br />

2.10. List of abbreviations<br />

ab Antebrachium<br />

br Brachium<br />

CI Confidence interval<br />

Cond. Condylus<br />

cr Crus<br />

dors. Dorsalis<br />

Epicond. Epicondylus<br />

fe Femur<br />

hd Head<br />

32


Studie I: Ontogenetic allometry of the Beagle<br />

iso<br />

lat.<br />

LL<br />

ma<br />

maj.<br />

pe<br />

ph<br />

ps<br />

sc<br />

SD<br />

trc<br />

trl<br />

Troch.<br />

Tub.<br />

UL<br />

wi<br />

Isometry<br />

Lateralis<br />

Lower limit of the CI<br />

Manus<br />

Majus<br />

Pelvic length<br />

Pelvic height<br />

Pes<br />

Scapula<br />

Standard deviation<br />

Trunk circumference<br />

Trunk length<br />

Trochanter<br />

Tuberculum<br />

Upper limit of the CI<br />

Withers height<br />

2.11. Competing interests<br />

The authors declare that they have no competing interests.<br />

2.12. Author contributions<br />

DH, PW, IN and NS designed the study and approved the manuscript. DH and NS<br />

collected and analyzed the data and prepared the manuscript.<br />

2.13. Acknowledgements<br />

We wish to thank J. Abdelhadi, S.M. Deban, S. Fischer, V. Galindo-Zamora and K.<br />

Wachs for discussions and help with the analyses, A. Anders, K. Lucas and U. von<br />

Blum for their technical assistance and the animal keepers of the Small Animal Clinic<br />

for their support. This study was supported by the Center of interdisciplinary<br />

prevention of diseases related to professional activities (KIP) founded and funded by<br />

the Friedrich-Schiller-University Jena and the Berufsgenossenschaft Nahrungsmittel<br />

33


Studie I: Ontogenetic allometry of the Beagle<br />

und Gastgewerbe Erfurt and the <strong>Hannover</strong>sche Gesellschaft zur Förderung der<br />

Kleintiermedizin (HGFK).<br />

2.14. References<br />

1. McMahon TA: Size and shape in biology. Science 1973, 179:1201-1204.<br />

2. Peters SE: Postnatal development of gait behavior and functional<br />

allometry in domestic cat (Felis catus). J Zool (Lond) 1983, 199:461-486.<br />

3. Carrier DR: Ontogenetic limits on locomotor performance. Physiol Zool<br />

1996, 69:467-488.<br />

4. Shapiro LJ, Young JW: Kinematics of quadrupedal locomotion in sugar<br />

gliders (Petaurus breviceps): effects of age and substrate size. J Exp Biol 2012,<br />

215:480-496.<br />

5. Lumer H: Evolutionary allometry in the skeleton of the domesticated dog.<br />

Am Nat 1940, 74:439-467.<br />

6. Casinos A, Bou J, Castiella MJ, Viladiu C: On the allometry of long bones in<br />

dogs (Canis familiaris). J Morph 1986, 190:73-79.<br />

7. Chase K, Carrier DR, Adler FR, Jarvik T, Ostrander EA, Lorentzen TD, Lark<br />

KG: Genetic basis for systems of skeletal quantitative traits: Principal<br />

component analysis of the canid skeleton. PNAS 2002, 99:9930-9935.<br />

8. McLain RF, Yerby SA, Moseley TA: Comparative morphometry of L4<br />

vertebrae: comparison of large animal models for the human lumbar spine.<br />

Spine 2002, 27:200-206.<br />

9. Carrier DR, Chase K, Lark KG: Genetics of canid skeletal variation: Size<br />

and shape of the pelvis. Genome Res 2005, 15:1825-1830.<br />

10. Ocal MK, Ortance OC, Parin U: A quantitative study on the sacrum of the<br />

dog. Ann Anat 2006, 188:477-482.<br />

11. Drake AG, Klingenberg CP: The pace of morphological change: historical<br />

transformation of skull shape in St Bernard dogs. Proc Royal Soc Biol Sci Ser B<br />

2008, 275:71-76.<br />

34


Studie I: Ontogenetic allometry of the Beagle<br />

12. Quignon P, Schoenebeck JJ, Chase K, Parker HG, Mosher DS, Johnson GS,<br />

Lark KG, Ostrander EA: Fine mapping a locus controlling leg morphology in the<br />

domestic dog. Cold Spring Harb Symp Quant Biol 2009, 74:327-333.<br />

13. Delaquerriere-Richardson L, Anderson C, Jorch UM, Cook M: Radiographic<br />

studies on bone in Beagles subjected to low levels of dietary lead since birth.<br />

Vet Hum Toxicol 1982, 24:401-405.<br />

14. Kealy RD, Lawler DF, Ballam JM, Lust G, Smith GK, Biery DN, Olsson SE:<br />

Five-year longitudinal study on limited food consumption and development of<br />

osteoarthritis in coxofemoral joints of dogs. J Am Vet Med Assoc 1997, 210:222-<br />

225.<br />

15. Henschel E: Zur Anatomie und Klinik der wachsenden Unterarmknochen.<br />

Arch Exp Vet Med 1972, 26:741-787.<br />

16. Olson NC, Carrig CB, Brinker WO: Asynchronous growth of the canine<br />

radius and ulna: effects of retardation of longitudinal growth of the radius. Am<br />

J Vet Res 1979, 40:351- 355.<br />

17. Vanden Berg-Foels WS, Todhunter RJ, Schwager SJ, Reeves AP: Effect of<br />

early postnatal body weight on femoral head ossification onset and hip<br />

osteoarthritis in a canine model of developmental dysplasia of the hip. Pediat<br />

Res 2006, 60:549-554.<br />

18. Weise G: Über das Wachstum verschiedener Hunderassen. Z Säugetierk<br />

1964:257-282.<br />

19. Yonamine H, Ogi N, Ishikawa T, Ichiki H: Radiographic studies on skeletal<br />

growth of the pectoral limb of the beagle. Jpn J Vet Sci 1980, 42:417-425.<br />

20. Conzemius MG, Smith GK, Brighton CT, Marion MJ, Gregor TP: Analysis of<br />

physeal growth in dogs, using biplanar radiography. Am J Vet Res 1994, 55:22-<br />

27.<br />

21. Salomon F-V, Schulze A, Böhme U, Arnold U, Gericke A, Gille U: Das<br />

postnatale Wachstum des Skeletts und der Körpermasse beim Beagle. Anat<br />

Histol Embryol 1999, 28:221-228.<br />

35


Studie I: Ontogenetic allometry of the Beagle<br />

22. Schulze A, Kaiser M, Gille U, Salomon F-V: Vergleichende Untersuchung<br />

zum postnatalen Wachstum der Vordergliedmaße verschiedener Hunderassen.<br />

Tierärztl Prax Kleint 2003, 4:219-224.<br />

23. Schulze A, Gille U, vom Stein S, Salomon F-V: Vergleichende Untersuchungen<br />

zum postnatalen Wachstum der Hintergliedmaßen verschiedener<br />

Hunderassen. Tierärztl Prax Kleint 2007, 3:200-205.<br />

24. Hawthorne AJ, Booles D, Nugent PA, Gettinby G, Wilkinson J: Body-weight<br />

changes during growth in puppies of different breeds. J Nutr 2004, 134:S2027-<br />

S2030.<br />

25. Schmidt M, Fischer MS: Morphological integration in mammalian limb<br />

proportions: Dissociation between function and development. Evolution 2009,<br />

63:749-766.<br />

26. Fischer MS: Crouched posture and high fulcrum, a principle in the<br />

locomotion of small mammals: The example of the rock hyrax (Procavia<br />

capensis) (Mammalia: Hyracoidea). J Hum Evol 1994, 26:501-524.<br />

27. Fischer MS, Schilling N, Schmidt M, Haarhaus D, Witte HF: Basic limb<br />

kinematics of small therian mammals. J Exp Biol 2002, 205:1315-1338.<br />

28. Lilje KE, Tardieu C, Fischer MS: Scaling of long bones of ruminants, with<br />

respect to the scapula. J Zool Syst Evol Res 2003, 41:118-126.<br />

29. Richmond RJ, Berg RT: Bone growth and distribution in swine as influenced<br />

by live weight, breed, sex, and ration. Can J Anim Sci 1972, 52:47-56.<br />

30. Carrier DR: Postnatal ontogeny of the musculo-skeletal system in the<br />

Black-tailed jack rabbit (Lepus californicus). J Zool (Lond) 1983, 201:27-55.<br />

31. Roth VL: How elephants grow: heterochrony and the calibration of<br />

developmental stages in some living and fossil species. J Vert Paleontol 1984,<br />

4:126-145.<br />

32. Schilling N, Petrovitch A: Postnatal allometry of the skeleton of Tupaia glis<br />

(Scandentia: Tupaiidae) and Galea musteloides (Rodentia: Caviidae) - a test of<br />

the three-segment limb hypothesis. Zoology 2006, 109:148-163.<br />

33. Prittie J: Canine parvoviral enteritis: a review of diagnosis, management,<br />

and prevention. J Vet Emerg Crit Care 2004, 14:167-176.<br />

36


Studie I: Ontogenetic allometry of the Beagle<br />

34. Helmink SK, Shanks RD, Leighton EA: Breed and sex differences in growth<br />

curves for two breeds of dog guides. J Anim Sci 2000, 78:27-32.<br />

35. Lammers AR, German RZ: Ontogenetic allometry in the locomotor<br />

skeleton of specialized half-bounding mammals. J Zool (Lond) 2002, 258:485-<br />

495.<br />

36. Sokal RR, Rohlf FJ: Biometry. W H Freemann & Compay, New York 1981,<br />

2nd ed.:1-859.<br />

37. Zar JH: Calculation and miscalculation of the allometric equation as a<br />

model in biological data. BioScience 1968, 18:1118-1120.<br />

38. Schulze A, Gille U, Salomon F-V: Untersuchungen zum postnatalen<br />

Skelett- und Körpermassewachstum von Hunden der Rasse Deutsche Dogge.<br />

Tierärztl Prax Kleint 2001, 29:358-365.<br />

39. Skoglund S: On the postnatal development of postural mechanisms as<br />

revealed by electromyography and myography in decerebrate kittens. Acta<br />

Physiol Scand 1960, 49:299-371.<br />

40. Altman J, Sudarshan K: Postnatal development of locomotion in the<br />

laboratory rat. Anim Behav 1975, 23:896-920.<br />

41. Geisler HC, Westerga J, Gramsbergen A: Development of posture in the<br />

rat. Acta Neurobiol Exp 1993, 53:517-523.<br />

42. Cazalet JR, Menard I, Cremieux J, Clarac F: Variability as a characteristic<br />

of immature motor system: an electromyographic study of swimming in the<br />

newborn rat. Behav Brain Res 1990, 40:215-225.<br />

43. Schulze A, Salomon F-V: Das postnatale Wachstum der Gliedmaßenknochen<br />

bei Hunden der Rasse Deutsche Dogge. Kleintierpraxis 2001, 46:475-486.<br />

44. Lumer H, Schultz AH: Relative growth of the limb segments and tail in<br />

Ateles geoffroyi and Cebus capucinus. Hum Biol 1947, 19:53-67.<br />

45. Jungers WL, Fleagle JG: Postnatal growth allometry of the extremities in<br />

Cebus albifrons and Cebus apella: a longitudinal and comparative study. Am J<br />

Phys Anthrop 1980, 53:471-478.<br />

46. Seyfarth A, Günther M, Blickhan R: Stable operation of an elastic threesegment<br />

leg. Biol Cybern 2001, 84:365-382.<br />

37


Studie I: Ontogenetic allometry of the Beagle<br />

47. Günther M, Keppler V, Seyfarth A, Blickhan R: Human leg design: optimal<br />

axial alignment under constraints. J Math Biol 2004, 48:623-646.<br />

48. Fischer MS, Witte H: The functional morphology of the three-segmented<br />

limb of mammals and its specialities in small and medium-sized mammals.<br />

Proc Eur Mechanics Coll Euromech 375, Biology and Technology of Walking 1998,<br />

(375):10-17.<br />

49. Fischer MS, Lilje KE: Hunde in Bewegung. Kosmos Verlag 2011:pp. 1-207.<br />

50. Taylor AB: Relative growth, ontogeny, and sexual dimorphism in Gorilla<br />

(Gorilla gorilla gorilla and G. g. beringei): Evolutionary and ecological<br />

considerations. Am J Primatol 1997, 43:1-31.<br />

51. Maunz M, German RZ: Ontogeny and limb bone scaling in two New World<br />

marsupials, Monodelphis domestica and Didelphis virginiana. J Morph 1997,<br />

231:117-130.<br />

52. Turnquist JE, Wells JP: Ontogeny of locomotion in rhesus macaques<br />

(Macaca mulatta): I. Early postnatal ontogeny of the muskuloskeletal system. J<br />

Hum Evol 1994, 26:487-499.<br />

53. Watkins MA, German RZ: Ontogenetic allometry of ossified fetal limb<br />

bones. Growth Dev Aging 1992, 56:259-267.<br />

54. Glassman DM: The relation of long bone diaphyseal length to chronological<br />

age in immature saddle-back tamarius, Saguinus fuscicollis. Primates 1984,<br />

25:352-361.<br />

38


Studie I: Ontogenetic allometry of the Beagle<br />

2.15. Figures<br />

Fig. 1: Recorded measurements. Photograph of dog #4 at the age of 15 weeks to<br />

illustrate the body and segment lengths measured. (The dog’s back was partially<br />

shaved for a joined study.)<br />

39


Studie I: Ontogenetic allometry of the Beagle<br />

Fig. 2: Body mass development of the dogs studied and average growth curve<br />

estimated with the Gompertz function. The parental data were added for comparison.<br />

40


Studie I: Ontogenetic allometry of the Beagle<br />

Fig. 3: Body proportions. Logarithmic plots of withers and pelvic height, trunk and<br />

head lengths as well as trunk circumference vs. body mass. Mean±SD of the<br />

allometric coefficients of the juveniles as well as the information of whether the<br />

respective parameter showed positive (+) or negative (-) allometry are given in the<br />

top left corner of each graph (first line). Numbers in parentheses indicate the UL and<br />

the LL of the 95% confidence intervals (second line). For allometric coefficients of<br />

each dog, see Table l.<br />

41


Studie I: Ontogenetic allometry of the Beagle<br />

Fig. 4: Limb proportions. Logarithmic plots of the segments of the fore- and<br />

hindlimb vs. body mass. Mean±SD of the allometric coefficients of the juveniles as<br />

well as the information of whether the respective parameter showed positive (+) or<br />

negative (-) allometry are given in the top left corner of each graph (first line).<br />

Numbers in parentheses indicate the UL and the LL of the 95% confidence intervals<br />

(second line). For allometric coefficients of each dog, see Table 2.<br />

42


Studie I: Ontogenetic allometry of the Beagle<br />

Fig. 5: Ontogenetic changes of relative segment lengths. Relative segment<br />

lengths were determined as the proportion of the respective segment of the<br />

anatomical limb length (i.e., sum of scapula, brachium, antebrachium and hand as<br />

well as of femur, crus and pes, respectively). The parental data were added in black<br />

for comparison.<br />

43


Studie I: Ontogenetic allometry of the Beagle<br />

2.16. Tables<br />

Tab. 1: Individual parameters of body proportions for all siblings studied. Allometric<br />

coefficient (slope), intercept, standard deviation of the slope (SD slope),<br />

correlation coefficient (R) and the upper and the lower limit of the 95% confidence<br />

interval (95% UL, 95% LL) of all body proportions plotted against body mass on loglog<br />

scales (base 10). Isometry (iso) was given if the slope b=0.333 was within the<br />

confidence interval; otherwise, it was negative (-) or positive (+) allometry. For<br />

comparison, the growth sequence based on the slopes and the respective CIs is<br />

indicated for each dog in the last line. Abbreviations: hd-head length, wi-withers<br />

height, ph-pelvic height, trl-trunk length, trc-trunk circumference.<br />

44


Studie I: Ontogenetic allometry of the Beagle<br />

45


Studie I: Ontogenetic allometry of the Beagle<br />

Tab. 2: Individual parameters of limb segments for all siblings studied. Allometric<br />

coefficient (slope), intercept, standard deviation of the slope (SD slope), correlation<br />

coefficient (R) and the upper and the lower limit of the 95% confidence intervals (95%<br />

UL, 95% LL) of all body proportions plotted against body mass on log-log scales<br />

(base 10). Isometry (iso) was given if the slope b=0.333 was within the confidence<br />

interval; otherwise, it was negative (-) or positive (+) allometry. For comparisons with<br />

previously published results (see Tab. 4), the growth sequences based on the slopes<br />

and the respective CIs are indicated for each dog in the last line. Abbreviations: scscapula,<br />

br-brachium, ab-antebrachium, ma-manus; fe-femur, cr-crus, ps-pes.<br />

46


Studie I: Ontogenetic allometry of the Beagle<br />

47


Studie I: Ontogenetic allometry of the Beagle<br />

Tab. 3: Interspecific comparison of the ontogenetic allometry in various mammalian<br />

species. (+) positive allometry, (-) negative allometry, (iso) isometry. ** Different<br />

measurements among studies (i.e., [30] pelvis, [2] ischium, [50] ilium). Note, two<br />

symbols in ma or ps indicate separate measurements for metacarpus or metatarsus<br />

and phalanges, respectively. Abbreviations: sc-scapula, br-brachium, abantebrachium,<br />

ma-manus; pe-pelvic, fe-femur, cr-crus, ps-pes; m-male, f-female.<br />

Species Forelimb Hindlimb Reference<br />

sc br ab ma pe ** fe cr ps<br />

Domestic cat + + + - + + + - [2]<br />

Black-tailed jack rabbit + + + - + + + - [30]<br />

Western lowland gorilla + + + + [50]<br />

Mountain gorilla<br />

+ m<br />

+ m<br />

[50]<br />

+<br />

- f +<br />

- f<br />

European rabbit + + iso + + iso [35]<br />

Norway rat + iso - + + - [35]<br />

Grey short-tailed<br />

[35]<br />

+ iso - + + iso<br />

opossum<br />

Long-tailed chinchilla iso - - + + - [35]<br />

Tree-shrew<br />

- [32]<br />

+ + - - + iso<br />

iso<br />

Cui<br />

- [32]<br />

+ - - - + -<br />

-<br />

Domestic dog (Beagle) + + + - - + + - this study<br />

** Different measurements among studies (i.e., [30] pelvis, [2] ischium, [50] ilium).<br />

Note, two symbols in ma or ps indicate separate measurements for metacarpus or<br />

metatarsus and phalanges, respectively.<br />

48


Studie I: Ontogenetic allometry of the Beagle<br />

Tab. 4: Interspecific comparison of the growth sequences in various mammalian<br />

species based on the slopes observed in the respective studies. The species in the<br />

upper half of the table show a proximo-distal growth sequence for both fore- and<br />

hindlimbs, while the species in the lower half show deviations from this sequence in<br />

either both or only the forelimb. Note that the separate measurements for metatarsus<br />

and phalanges were combined as pes herein. Abbreviations: sc-scapula, brbrachium,<br />

ab-antebrachium, ma-manus; fe-femur, cr-crus, ps-pes.<br />

Species Forelimb Hindlimb Reference<br />

Grey short-tailed opossum br > ab fe > cr > ps [51,35]<br />

Long-tailed chinchilla br > ab fe > cr > ps [35]<br />

Norway rat br > ab fe > cr > ps [35]<br />

Tree-shrew sc > br > ab fe > cr > ps [32]<br />

Rhesus macaque br > ab fe > cr > ps [52]<br />

Human br > ab fe > cr [53]<br />

Brown-mantled tamarin br > ab fe > cr [54]<br />

African elephant sc > br > ab fe > cr [31]<br />

Asian elephant sc > br > ab fe > cr [31]<br />

Cui sc > br > ab fe > cr > ps [32]<br />

Western lowland gorilla sc > br [50]<br />

Mountain gorilla sc > br [50]<br />

Tuffed capuchin ab > br fe > cr > ps [45]<br />

White-fronted capuchin ab > br fe > cr > ps [45]<br />

Domestic pig sc > ab > br fe > cr [29]<br />

European rabbit ab > br fe = cr > ps [35]<br />

Domestic dog (Beagle) ab > br = sc fe = cr > ps this study<br />

Domestic dog (Great Dane) ab > br fe > cr [38]<br />

Domestic dog (Bernese Mountain dog) ab > br fe > cr [22]<br />

Domestic dog (Rottweiler) ab > br fe > cr [22]<br />

Geoffroy’s spider monkey ab > br cr > fe > ps [44]<br />

White-headed capuchin ab > br cr > fe > ps [44]<br />

Domestic cat ab > br cr > fe > ps [2]<br />

Black-tailed jack rabbit sc > ab > br cr > fe > ps [30]<br />

Virginia opossum la > br ps > fe > cr [51]<br />

49


Studie II: Shift of the CoM in growing dogs<br />

3. Studie II: Shift of the whole-body center of mass in growing dogs<br />

Daniela Helmsmüller 1 , Alexandra Anders 1 , Ingo Nolte 1 and Nadja Schilling 2*<br />

1 Small Animal Clinic, University of Veterinary Medicine <strong>Hannover</strong>, Foundation,<br />

Bünteweg 9, 30559 <strong>Hannover</strong>, Germany<br />

2 Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-<br />

University, Erbertstr. 1, 07743 Jena, Germany<br />

*Correspondence to:<br />

PD Dr. rer. nat. Nadja Schilling; Friedrich-Schiller-Universität; Institut für Spezielle<br />

Zoologie und Evolutionsbiologie; Erbertstr. 1; 07743 Jena; Germany; Phone: ++49<br />

175 5257195; e-mail: nadja.schilling@uni-jena.de<br />

Running headline: Shift of the CoM in growing dogs<br />

Supporting grant information:<br />

This study was supported by the Center of interdisciplinary prevention of diseases<br />

related to professional activities (KIP) founded and funded by the Friedrich-Schiller-<br />

University Jena and the Berufsgenossenschaft Nahrungsmittel und Gastgewerbe<br />

Erfurt and the <strong>Hannover</strong>sche Gesellschaft zur Förderung der Kleintiermedizin<br />

(HGFK).<br />

This study represents a portion of the Doctoral thesis by DH as partial fulfillment of<br />

the requirements for a Dr. med. vet. degree.<br />

3.1. Abstract<br />

Variation in body shape and thus the antero-posterior distribution of body mass<br />

are associated with differences in the relative position of the center of mass of the<br />

body (CoM). We hypothesized that the ontogenetic changes in body proportions<br />

would affect the location of the whole-body CoM and tested this hypothesis by<br />

examining the vertical ground reaction forces in growing dogs. Six male Beagle<br />

siblings were studied from 9 to 51 weeks of age while they trotted on an instrumented<br />

50


Studie II: Shift of the CoM in growing dogs<br />

treadmill. Ontogenetic shifting of the CoM was evaluated using the vertical force ratio<br />

as well as the stance time ratio of the fore- and hindlimbs. The ratio of the thorax and<br />

abdomen diameters was determined to assess the developmental changes in trunk<br />

shape. As in adult dogs, the forelimbs carried a greater proportion of the body weight<br />

than the hindlimbs at all ages. When the dogs were younger, peak vertical force<br />

occurred earlier during stance in the hindlimbs but not the forelimbs. Both the<br />

increasing ratio of the vertical force (i.e., peak force, impulse) and the increasing ratio<br />

of the stance times indicate a net cranial shift of the CoM during growth. Associated<br />

with that, the forelimbs supported an increasing (59% vs. 63%) and the hindlimbs<br />

bore a decreasing proportion (41% vs. 37%) of the body weight during ontogeny. The<br />

observed net cranial shift of the CoM is likely the consequence of the substantial<br />

change in trunk shape and thus of the growth patterns of the inner organs.<br />

Key words: kinetic, Canis, development, gait analysis<br />

3.2. Abbreviations<br />

Ab abdomen<br />

BW body weight<br />

CoM center of body mass<br />

FL forelimb<br />

GRF ground reaction forces<br />

HL hindlimb<br />

IFz vertical impulse<br />

MFz mean vertical force<br />

PFz peak vertical force<br />

PW postnatal week<br />

SI symmetry index<br />

Th thorax<br />

U Froude number<br />

51


Studie II: Shift of the CoM in growing dogs<br />

3.3. Introduction<br />

Natural variation in body shape and the antero-posterior distribution of body mass<br />

are associated with differences in fore- vs. hindlimb loading and the relative position<br />

of the center of mass of the body (CoM). While in quadrupeds with heavy tails (e.g.,<br />

alligators) or relatively large hindlimb muscles (e.g., many primates) the CoM is more<br />

caudal and the forelimbs support less than half of the body weight, the CoM is<br />

located relatively cranial in most quadrupedal mammals and the forelimbs carry more<br />

than half of the body’s weight (e.g., Rollinson and Martin, 1981; Pandy et al., 1988;<br />

Kimura, 1992; Rumph et al., 1994; Demes et al., 1994; Lee et al., 1999; Walter and<br />

Carrier, 2002; Aerts et al., 2003; Willey et al., 2004; Schmidt, 2005; Hanna et al.,<br />

2006).<br />

Among the quadrupeds with a cranial location of the CoM, species with massive<br />

forelimbs and/or heavy heads bear a comparatively greater proportion of their body<br />

weight on the forelimbs compared with species with rather muscular hindlimbs (e.g.,<br />

Rollinson and Martin, 1981; Demes et al., 1994). For example, the fore- to hindlimb<br />

proportion is 52% to 48% in the cheetah and 66% to 34% in the camel (Rollinson and<br />

Martin, 1981). Among closely related species, variation in muscle mass distribution<br />

due to for example differences in locomotor adaptation or male agonistic behavior<br />

have also been described (Grand, 1997). Additionally to these interspecific<br />

variations, differences in limb loading were observed among breeds with different<br />

builds. For example, warmbloods load their forelimbs more than quarter-horses<br />

(Back et al., 2007). Dogs bred for high acceleration and speed (i.e., with large<br />

hindlimb muscles; Williams et al., 2008) support a relatively greater proportion of their<br />

body weight with the hindlimbs than dogs that have a more muscular chest and<br />

larger heads (Bertram et al., 2000; Voss et al., 2011). Thus, the Rottweiler bears<br />

64% of its body weight on the forelimbs compared with 57% in the Borzoi (Voss et<br />

al., 2011).<br />

Physiological variation in an individual’s antero-posterior body mass distribution<br />

occurs during ontogeny due to the allometric growth of muscles, bones and organs.<br />

Mammalian juveniles, for example, have relatively large heads compared to adults<br />

(e.g., Trotter et al., 1975; Kimura, 1987; Schilling and Petrovitch, 2006; Helmsmüller<br />

52


Studie II: Shift of the CoM in growing dogs<br />

et al., subm.). This together with the hindlimbs increasing in length and/or muscularity<br />

more than the forelimbs leads to a net caudal translation of the CoM and thus a<br />

decreasing relative forelimb loading in various growing mammals (rhesus macaque:<br />

Grand, 1977; Turnquist and Wells, 1994; chimpanzee: Kimura, 1987; Japanese<br />

macaque: Kimura, 2000; koala: Grand and Barboza, 2001; yellow baboon: Shapiro<br />

and Raichlen, 2006; squirrel monkey: Young, 2012). On the other hand, mammalian<br />

juveniles often appear plump and lack the athletic body shape that their adult<br />

conspecifics show. Developing the adult appearance could therefore be associated<br />

with a net cranial translation of the CoM in species like the dog that undergo a more<br />

pronounced change in trunk shape. Furthermore, in contrast to the hindlimbdominated<br />

species that have been studied previously, dogs provide a test for the<br />

ontogenetic shifting of the CoM in a species that supports a greater proportion of the<br />

body weight with the forelimbs.<br />

In order to test whether mammals with a cranial location of the CoM also show a<br />

net caudal translation of their CoM or whether they experience a net cranial shift<br />

during growth, we studied the ontogenetic changes in the fore- vs. the hindlimb<br />

loading in dogs. Because the distribution of body mass is reflected by the fore- to<br />

hindlimb relationship of the vertical force (e.g., Rollinson and Martin, 1981; Budsberg<br />

et al., 1987; Lee et al., 2004; Voss et al., 2011), we recorded the ground reaction<br />

forces (GRF) in the dogs while trotting at steady speed on an instrumented treadmill.<br />

Three parameters of the force distribution between the fore- and the hindlimbs were<br />

tested: peak and mean vertical force as well as vertical impulse. Additionally to<br />

evaluating the fore- to hindlimb vertical force ratio, we determined the stance<br />

durations of the limbs, because a higher fraction of the vertical impulse of a limb is<br />

associated with a relatively higher duty factor and the ratio between fore- and<br />

hindlimb stance times has been suggested to reflect the antero-posterior mass<br />

distribution of trotting quadrupeds (Lee et al., 2004; Witte et al., 2004). To evaluate<br />

the change in trunk shape during postnatal development, we determined the ratio<br />

between the diameters of the thorax and the abdomen in the growing dogs.<br />

----- Figure 1 ------<br />

53


Studie II: Shift of the CoM in growing dogs<br />

3.4. Animals and Methods<br />

Dogs<br />

Six male Beagle siblings (Canis lupus familiaris, Linnaeus 1758) from the same<br />

litter were used in this longitudinal study. The dogs were from a breeding colony of<br />

the University of Veterinary Medicine <strong>Hannover</strong> (Germany) and came to the Small<br />

Animal Clinic at the age of 9 weeks (i.e., PW9). During the study period, all dogs<br />

underwent two standard orthopedic exams, one at PW14 and one at PW50, which<br />

confirmed that the dogs were sound. For the gait analysis, the puppies were gently<br />

introduced to ambulating on the treadmill when they were 9 weeks old. All<br />

experiments were carried out in accordance with the German Animal Welfare<br />

guidelines and notice was given to the Ethics committee of Lower Saxony<br />

(Germany).<br />

Data collection<br />

GRF measurements started at PW9 and continued until PW51. Data were<br />

collected weekly up to PW20, fortnightly up to PW32 and monthly henceforth.<br />

Additionally to the GRF recordings, various morphometric measurements (e.g.,<br />

segment and limb lengths) were taken for a related study (Helmsmüller et al., subm.)<br />

and the dogs were photographed in lateral perspective standing as balanced and<br />

square as possible (Fig. 1). From all recordings, data from PW11, 13, 19, 22, 26, 30,<br />

43 and 51 were selected for further analysis. Two dogs could not participate in the<br />

data collection at PW19 and were therefore measured the following week (i.e.,<br />

PW20).<br />

During GRF data collection, the dogs trotted on a horizontal treadmill with four<br />

separate belts and integrated force plates underneath each belt (Model 4060-08,<br />

Bertec Corporation, Columbus, OH, USA). Because of their small body size, the<br />

puppies trotted on one side of the treadmill allowing the forces exerted by the foreand<br />

the hindlimbs to be recorded separately (sample rate 1,000 Hz). Separate force<br />

curves for the left and the right limbs were nevertheless obtained because the duty<br />

factor was less than 0.5 during all recordings. To identify whether the right or the left<br />

54


Studie II: Shift of the CoM in growing dogs<br />

limbs were exerting force, a digital camera synchronized with the GRF recordings<br />

imaged the dogs from the lateral perspective (NVGS60, Panasonic).<br />

Kinetic data were collected and analyzed using Vicon Nexus (Vicon Motion<br />

Systems Ltd., Oxford, UK). During each session, at least 3 trials per dog were<br />

obtained lasting about 30 seconds and covering approximately 65 strides. Of these,<br />

10 valid steps (i.e., without overstepping) were analyzed per dog and age. The<br />

selected strides were not always consecutive because the dogs, particularly when<br />

very young, did not run as consistently as when they were older. Touch down and lift<br />

off events were determined manually using the vertical force curves; force threshold<br />

was set at 5% of the dog’s body weight. Then, the force data were time-normalized to<br />

100% stance duration (i.e., 101 data points) using linear interpolation and exported to<br />

Microsoft Excel together with the temporal gait parameters (i.e., stance duration in s).<br />

Data analysis<br />

Vertical force data from the 10 steps were averaged per dog and normalized to the<br />

dog’s body weight (BW) using equation (1):<br />

(1) GRFs (%BW) = vertical force*100/(body mass*9.81 m/s2)<br />

The vertical GRF parameters compared among the ages were peak and mean<br />

vertical force as well as vertical impulse. Additionally, symmetry indices for the foreand<br />

hindlimbs, time to peak vertical force (in % stance duration) and the distribution<br />

of the dog’s body weight among the four limbs were determined. Body weight<br />

distribution was calculated using equation (2):<br />

(2) % BW bearing = vertical force of the limb/total vertical force of all limbs*100<br />

Symmetry indices (SI) were determined using equation (3) (according to Herzog et<br />

al., 1989):<br />

(3) SI = 100 * (Xl - Xr)/(0.5* (Xl + Xr))<br />

with X being the vertical force of the left (l) and right (r) fore- or hindlimb averaged<br />

across the ten steps. Furthermore, the ratio of the stance times of the fore- and<br />

hindlimbs (i.e., forelimb stance time divided by hindlimb stance time) were<br />

determined.<br />

55


Studie II: Shift of the CoM in growing dogs<br />

Treadmill speed had to be matched more or less to the preferred speed of the<br />

dogs (i.e., the speed at which they trotted most comfortably) in order to record as<br />

many valid strides as possible. Because absolute speed cannot be compared among<br />

different-sized individuals, Froude number (U) was calculated using the equation (4):<br />

(4) U = v2/g*l<br />

v represents absolute speed (in m/s), g is gravitational acceleration (9.81 ms-2)<br />

and l is hindlimb length (based on Alexander and Jayes, 1983).<br />

To evaluate the change in trunk shape, the diameters of the thorax and the<br />

abdomen were measured in the photographs using Adobe PhotoShop Version 5. The<br />

thoracic diameter was determined posterior to the forelimb at the deepest point of the<br />

sternum; the abdominal diameter was measured cranial to the prepuce (Fig. 1).<br />

Then, the ratio of the two lengths was calculated. A ratio of 1.0 indicates a<br />

rectangular area in the image (i.e., a cylindrical trunk shape), while a ratio >1.0<br />

indicates a trapezoid (i.e., a conical trunk shape with the abdominal diameter being<br />

smaller than the thoracic one).<br />

Statistics<br />

The data were tested for normal distribution using the Kolmogorov-Smirnov-Test.<br />

Differences among the vertical force or the stance duration ratios as well as the<br />

thorax-to-abdomen ratio and the ages were tested using a one-way analysis of<br />

variance (ANOVA) for repeated measures followed by post hoc Tukey test. P values<br />

of p


Studie II: Shift of the CoM in growing dogs<br />

puppies’ force parameters were as symmetrical as those of adult dogs despite the<br />

puppies’ seemingly more irregular gait.<br />

----- Table 1 -----<br />

During the course of the study, the dogs’ preferred trotting speeds increased and<br />

therefore the Froude number differed slightly but significantly between the first and<br />

the last recordings (PW11: U=0.5±0.1, PW51: U=0.9±0.1; Tab. 2). Consequently,<br />

younger dogs trotted at treadmill speeds at which they still walked when older.<br />

Because both vertical force and temporal gait parameters are dependent on speed<br />

(see discussion), we will focus on fore- to hindlimb ratios of these parameters in the<br />

following. Fore- and hindlimb values are detailed in the supplementary file (Tab. S1).<br />

----- Table 2 -----<br />

At all ages, peak vertical force and vertical impulse were significantly greater in the<br />

forelimbs than the hindlimbs, indicating that the CoM was in a relatively cranial<br />

position at all ages (Fig. 2, Tab. 3). The ANOVA revealed that both peak vertical<br />

force and vertical impulse showed significant differences among the ages; with age,<br />

they increased in the forelimb and consequently decreased in the hindlimb.<br />

Accordingly, the fraction of the body weight supported by the forelimbs increased<br />

from 59.2 1.7% to 62.9 1.9% (PFz) while that of the hindlimbs decreased from<br />

40.8 1.7% to 37.1 1.9% during the course of the study. Similarly, vertical impulse<br />

shifted by ca. 4% of the body weight from caudal to cranial. In contrast, mean<br />

normalized vertical force was not significantly different among sessions (Tab. 3). The<br />

ratio between fore- and hindlimb stance times increased significantly; thus, stance<br />

time of the forelimb increased relative to the stance time of the hindlimb (Tab. 2).<br />

While the time to peak vertical force did not change with age in the forelimbs, it<br />

increased significantly in the hindlimb indicating that maximum force occurred earlier<br />

during stance phase when the dogs were younger (Tab. 4).<br />

The ratio of the thoracic vs. the abdominal diameter indicated that the trunk shape<br />

of the puppies was nearly cylindrical (i.e., thorax-to-abdomen ratio 1.1 at PW11; Tab.<br />

4). During the study period, the thorax-to-abdomen ratio increased significantly, so<br />

that the trunk shape resembled a frustum at the end of the study (i.e., thorax-toabdomen<br />

ratio 1.3 at PW51; Tab. 4).<br />

57


Studie II: Shift of the CoM in growing dogs<br />

----- Tables 3 and 4 -----<br />

3.6. Discussion<br />

Influence of speed on force and stance parameters<br />

In the current study, Froude number significantly increased between 11 and 51<br />

weeks of age. Because many gait parameters depend on locomotor speed, the<br />

observed changes in the vertical force and the stance time ratios may potentially<br />

result from differences in speed rather than age. In adult dogs, for example, peak<br />

vertical force increases and vertical impulse decreases with increasing trotting<br />

velocity (Riggs et al., 1993; McLaughlin and Roush, 1994, Voss et al., 2010).<br />

Because maximum vertical force increases more in the forelimbs than the hindlimbs<br />

when dogs trot faster, the increase in the fore- to hindlimb peak vertical force ratio<br />

observed in the current study may partially be explained by the increase in relative<br />

velocity with age. However, compared with the change in the peak vertical force ratio<br />

observed in this study (ca. 4%), the speed related changes reported for adult dogs<br />

across a similar change of relative velocity were small (ca. 2%; Riggs et al., 1993;<br />

McLaughlin and Roush, 1994). Furthermore, in adult trotting dogs, the vertical<br />

impulse of fore- and hindlimbs decreases at similar rates with increasing speed and<br />

therefore impulse ratio is independent of speed (Riggs et al., 1993; McLaughlin and<br />

Roush, 1994; see also Witte et al., 2004). In contrast, the fore- to hindlimb impulse<br />

ratio increased significantly with age in the current study; that is, the forelimbs’<br />

vertical impulse was relatively larger in older dogs than puppies. This observation<br />

resembles results from adult dogs, in which experimental loading of the pectoral<br />

girdle resulted in an increase of the vertical impulse ratio (Lee et al., 2004). In<br />

summary, our data suggest that the position of the whole-body CoM undergoes a<br />

net-cranial translation in growing dogs and accordingly the forelimbs support a<br />

relatively smaller proportion of the body weight in puppies than adult dogs.<br />

Similar to other mammals, when dogs increase locomotor speed, stance time<br />

decreases (Arshavskii et al., 1965; McLaughlin and Roush, 1994; Maes et al., 2008).<br />

Because stance duration decreases more in the forelimbs than the hindlimbs, stance<br />

time ratio decreases when adult dogs trot faster (McLaughlin and Roush, 1994). In<br />

58


Studie II: Shift of the CoM in growing dogs<br />

contrast, the stance time ratio between fore- and hindlimbs increased during the<br />

course of this study despite an increase in relative velocity. Relative fore- and<br />

hindlimb duty factors have been suggested to reflect the antero-posterior mass<br />

distribution of trotting quadrupeds and adding mass to the forelimb led to an increase<br />

in the fore- to hindlimb stance time ratio (Lee et al., 2004). Therefore, the increase in<br />

the stance time ratio observed herein corroborates our conclusion that the CoM shifts<br />

cranially when dogs grow.<br />

Ontogenetic changes in limb loading and the position of the CoM<br />

Between PW11 and PW13 (three dogs) or PW19 (three dogs), the time to peak<br />

vertical force increased significantly in the hind- but not the forelimbs. Therefore,<br />

loading rate was greater in the hindlimbs when the dogs were very young. Various<br />

factors influence the shape of the GRF curve such as the geometric compression of<br />

the leg spring due to the forward motion of the body as well as the limb’s angle of<br />

attack, stiffness and anatomical design (Farley et al., 1993; Witte et al., 2004).<br />

Spring-mass-model simulations, for example, have shown that the trajectory of the<br />

CoM during a stride depends, among other factors, on the angle of attack (Farley et<br />

al., 1993; Seyfarth et al., 2002). That is, steeper angles are associated with a<br />

relatively earlier minimum in the trajectory of the CoM and accordingly an earlier<br />

peak of the vertical force. Compared with when older, puppies appear to protract<br />

their limbs less and hit the ground in a more vertical paw trajectory and a more<br />

flatfooted manner; thus, they seem to have a lower angle of limb retraction before<br />

touch down and therefore a greater rate of limb compression. One consequence of a<br />

steeper angle of touch down is that limb muscle force must be build up more rapidly<br />

(Seyfarth et al., 2002). However, without the according kinematic and electromyographic<br />

data, it remains open whether the increased loading rate in the hindlimbs of<br />

puppies is the consequence of differences in limb behavior.<br />

Numerous studies have shown that the whole-body CoM is situated relatively<br />

cranial in dogs (Bryant et al., 1987; Budsberg et al., 1987; Rumph et al., 1994;<br />

DeCamp, 1997; Lee et al., 1999; ; Bertram et al., 2000; McLaughlin, 2001; Fanchon<br />

et al., 2006; Bockstahler et al., 2007; Walter and Carrier, 2007; Katic et al., 2009;<br />

59


Studie II: Shift of the CoM in growing dogs<br />

Mölsa et al., 2010; Kim et al., 2011; Voss et al., 2011) and, as this and one previous<br />

study examining dogs between PW4 and PW15 show (Biknevicius et al., 1997), this<br />

is true from early on in life. Therefore, in puppies and adult dogs, the forelimbs<br />

consistently support a greater proportion of the body weight than the hindlimbs. At<br />

the end of this study, at PW51, load distribution of the dogs studied herein was<br />

comparable with adult individuals of the same breed (Abdelhadi et al., 2013).<br />

Variation in how much the fore- vs. the hindlimbs support in adult dogs, however,<br />

is related to morphological differences among breeds (i.e., the antero-posterior<br />

distribution of body mass). Sighthounds such as Greyhounds or Borzoi show lower<br />

vertical force ratios compared to other breeds such as Labrador Retriever,<br />

Rhodesian Ridgeback or Rottweiler (Bertram et al., 2000; Mölsa et al., 2010; Kim et<br />

al., 2011; Voss et al., 2011). Thus, depending on morphology, the specific position of<br />

the whole-body CoM varies in adult dogs. Similarly, morphological variation due to<br />

growth results in changes in the weight-supporting characteristics of fore- vs.<br />

hindlimbs in mammals (Grand, 1977; Turnquist and Wells, 1994; Kimura, 1987;<br />

Kimura, 2000; Grand and Barboza, 2001; Shapiro and Raichlen, 2006; Young, 2012;<br />

this study). Both, vertical force and stance time ratios evaluated in the current study<br />

indicate a net cranial shift of the CoM in growing dogs. This is in contrast to the<br />

previous studies, which consistently reported a net caudal shift of the CoM and thus<br />

a relative decrease in forelimb and conversely an increase in hindlimb loading with<br />

age (Grand, 1977; Turnquist and Wells, 1994; Kimura, 1987; Kimura, 2000; Grand<br />

and Barboza, 2001; Shapiro and Raichlen, 2006; Young, 2012).<br />

At least two observations may explain the net cranial translation of the CoM in<br />

growing dogs. First, the postural index (i.e., withers or pelvic height divided by the<br />

sum of the segment lengths) decreases more in the hindlimbs than the forelimbs<br />

(from 1.17 to 1.07 and 1.31 to 1.24 between PW11 and PW51, respectively; D.<br />

Helmsmüller, unpubl. data). Therefore, similar to growing horses (Grossi and Canals,<br />

2010), older dogs have relatively more erect hindlimbs than when they are younger.<br />

The increasingly erect hindlimbs result in a postural change of the body that is<br />

consistent with a net cranial translation of the CoM.<br />

60


Studie II: Shift of the CoM in growing dogs<br />

Second, puppies have a relatively voluminous belly and a cylindrical rather than<br />

the conical body form that adults show (Fig. 1). Abdominal organs such as spleen or<br />

kidneys show negative allometry, while the heart (Lützen et al., 1976; but see<br />

Deavers et al., 1972) and the stomach exhibit positive allometry in various mammals<br />

(guinea pig: Bessesen and Carlson, 1923; dog: Deavers et al., 1972; Lützen et al.,<br />

1976; rat: Stewart and German, 1999). Furthermore, to fuel ontogenetic growth and<br />

provide the developing body with the tissue necessary for digestion and absorption of<br />

high dietary loads, the small intestine is enlarged in growing animals. For example,<br />

Beagle puppies at PW9 have a small intestine that is 33% longer, weighs 45% more,<br />

has 40% more mucosa and 35% more surface area compared with adults (Paulsen<br />

et al., 2003). Taken together, the growth patterns of the inner organs and particularly<br />

of the small intestine are in accordance with a cranial shift of the CoM. On the<br />

contrary, muscularity increases more in the hindlimbs than the forelimbs in cursorial<br />

mammals such as bovids (Grand, 1991), and dogs, as other mammals, show<br />

negative allometry of their heads (Helmsmüller et al., subm.). Nevertheless, although<br />

the latter two observations would be consistent with net caudal shift of the CoM, our<br />

results indicate that the growth patterns of the inner organs dominate the limb loading<br />

changes in growing dogs.<br />

3.7. Acknowledgments<br />

We thank our colleagues J. Abdelhadi, S. Fischer, V. Galindo-Zamora and P.<br />

Wefstaedt for discussions, K. Lucas for technical assistance and the animal keepers<br />

of the Small Animal Clinic for their support.<br />

3.8. Conflict of interest statement<br />

None of the authors has any financial or personal relationship that could inappropriately<br />

influence or bias the content of the paper.<br />

61


Studie II: Shift of the CoM in growing dogs<br />

3.9. Literature cited<br />

Abdelhadi J, Wefstaedt P, Galindo-Zamora V, Anders A, Nolte I, Schilling N. 2013.<br />

Load redistribution in walking and trotting Beagles with induced forelimb lameness.<br />

Am J Vet Res 74:34-39.<br />

Aerts P, van Damme R, D'Aout K, Van Hooydonck B. 2003. Bipedalism in lizards:<br />

whole-body modelling reveals a possible spandrel. Phil Trans Royal Soc B: Biol<br />

Sci 358:1525-1533.<br />

Alexander RM, Jayes AS. 1983. A dynamic similarity hypothesis for the gaits of<br />

quadrupedal mammals. J Zool (Lond) 201:135-152.<br />

Arshavskii YI, Kots YM, Orlovskii GN, Rodiononov IM, Shik ML. 1965. Biophysics of<br />

complex systems and mathematical models. Investigation of the biomechanics of<br />

running by the dog. Biophysics 10:737-746.<br />

Back W, MacAllister CG, van Heel MCV, Pollmeier M, Hanson PD. 2007. Vertical<br />

frontlimb ground reaction forces of sound and lame Warmbloods differ from those<br />

in Quarter horses. J Equine Vet Sci 27:123-129.<br />

Bertram JEA, Lee DV, Case HN, Todhunter RJ. 2000. Comparison of the trotting<br />

gaits of Labrador Retrievers and Greyhounds. Am J Vet Res 61:832-838.<br />

Bessesen ANJ, Carlson HA. 1923. Postnatal growth in weight of the body and of the<br />

various organs in the guinea-pig. Am J Anat 31:483-521.<br />

Biknevicius AR, Heinrich RE, Dankoski E. 1997. Effects of ontogeny on locomotor<br />

kinetics. J Morph 232:235.<br />

Bockstahler BA, Skalicky M, Peham C, Müller M, Lorinson D. 2007. Reliability of<br />

ground reaction forces measured on a treadmill system in healthy dogs. Vet J<br />

173:373-378.<br />

Bryant JD, Bennett MB, Brust J, Alexander RM. 1987. Forces exerted on the ground<br />

by galloping dogs (Canis familiaris). J Zool (Lond) 213:193-203.<br />

Budsberg SC, Jevens DJ, Brown J, Foutz TL, DeCamp CE, Reece L. 1993.<br />

Evaluation of limb symmetry indices, using ground reaction forces in healthy dogs.<br />

Am J Vet Res 54:1569-1574.<br />

Budsberg SC, Verstraete MC, Soutas-Little RW. 1987. Force plate analysis of the<br />

walking gait in healthy dogs. Am J Vet Res 48:915-918.<br />

62


Studie II: Shift of the CoM in growing dogs<br />

Deavers S, Huggins RA, Smith EL. 1972. Absolute and relative organ weights of the<br />

growing beagle. Growth 36:195-208.<br />

DeCamp CE. 1997. Kinetic and kinematic gait analysis and the assessment of<br />

lameness in the dog. Vet Clin Small Anim 27:825-840.<br />

Demes B, Larson SG, Stern JTJ, Jungers WL, Biknevicius AR, Schmitt D. 1994. The<br />

kinetics of primate quadrupedalism: "hindlimb drive" reconsidered. J Hum Evol<br />

26:353-374.<br />

Fanchon L, Valette JP, Sanaa M, Grandjean D. 2006. The measurement of ground<br />

reaction force in dogs trotting on a treadmill: an investigation of habituation. Vet<br />

Comp Orthop Traumatol 19:81-86.<br />

Farley CT, Glasheen J, McMahon TA. 1993. Running springs: Speed and animal<br />

size. J Exp Biol 185:71-86.<br />

Grand TI. 1977. Body weight: its relation to tissue composition, segment distribution,<br />

and motor function. II. Development of Macaca mulatta. Am J Phys Anthrop<br />

47:241-248.<br />

Grand TI. 1991. Patterns of muscular growth in the African bovidae. App Anim Behav<br />

Sci 29:471-482.<br />

Grand TI. 1997. How muscle mass is part of the fabric of behavioral ecology in East<br />

African bovids (Madoqua, Gazella, Damaliscus, Hippotragus). Anat Embryol<br />

195:375-386.<br />

Grand TI, Barboza PS. 2001. Anatomy and development of the koala, Phascolarctos<br />

cinereus: An evolutionary perspective on the superfamily vombatoidea. Anat<br />

Embryol 203:211-223.<br />

Grossi B, Canals M. 2010. Comparison of the morphology of the limbs of juvenile and<br />

adult horses (Equus caballus) and their implications on the locomotor<br />

biomechanics. J Exp Zool A Ecol Genet Physiol 313:292-300.<br />

Hanna JB, Polk JD, Schmitt D. 2006. Forelimb and hindlimb forces in walking and<br />

galloping primates. Am J Phys Anthrop 130:529-535.<br />

Helmsmüller D, Wefstaedt P, Nolte I, Schilling N. subm. Ontogenetic allometry of the<br />

Beagle. BMC Vet Res.<br />

63


Studie II: Shift of the CoM in growing dogs<br />

Herzog W, Nigg BM, Read LJ, Olsson E. 1989. Asymmetries in ground reaction force<br />

patterns in normal human gait. Med Sci Sports Exerc 21:110-114.<br />

Katic N, Bockstahler BA, Müller M, Peham C. 2009. Fourier analysis of vertical<br />

ground reaction forces in dogs with unilateral hindlimb lameness caused by<br />

degenerative disease of the hip joint and in dogs without lameness. Am J Vet Res<br />

70:118-126.<br />

Kim J, Kazmierczak KA, Breur GJ. 2011. Comparison of temporospatial and kinetic<br />

variables of walking in small and large dogs on a pressure-sensing walkway. Am J<br />

Vet Res 72:1171-1177.<br />

Kimura T. 1987. Development of chimpanzee locomotion on level surfaces. Hum<br />

Evol 2:107-119.<br />

Kimura T. 1992. Hindlimb dominance during primate high-speed locomotion.<br />

Primates 33:465-476.<br />

Kimura T. 2000. Development of quadrupedal locomotion on level surfaces in<br />

Japanese macaques. Folia Primatol 71:323-333.<br />

Lee DV, Bertram JE, Todhunter RJ. 1999. Acceleration and balance in trotting dogs.<br />

J Exp Biol 202:3565-3573.<br />

Lee DV, Stakebake EF, Walter RM, Carrier DR. 2004. Effects of mass distribution on<br />

the mechanics of level trotting in dogs. J Exp Biol 207:1715-1728.<br />

Lützen L, Trieb G, Pappritz G. 1976. Allometric analysis of organ weights: II. Beagle<br />

dogs. Toxicol Appl Pharmacol 35:543-551.<br />

Maes LD, Herbin M, Hackert R, Bels VL, Abourachid A. 2008. Steady locomotion in<br />

dogs: temporal and associated spatial coordination patterns and the effect of<br />

speed. J Exp Biol 211:138-149.<br />

McLaughlin RM. 2001. Kinetic and kinematic gait analysis in dogs. Vet Clin Small<br />

Anim 31:193-201.<br />

McLaughlin RMJ, Roush JK. 1994. Effects of subject stance time and velocity on<br />

ground reaction forces in clinically normal greyhounds at the trot. Am J Vet Res<br />

55:1666-1671.<br />

64


Studie II: Shift of the CoM in growing dogs<br />

Mölsa SH, Hielm-Björkman AK, Laitinen-Vapaavouri OM. 2010. Force platform<br />

analysis in clinically healthy Rottweilers: comparison with Labrador Retrievers. Vet<br />

Surg 39:701-707.<br />

Pandy MG, Kumar V, Berme N, Waldron KJ. 1988. The dynamics of quadrupedal<br />

locomotion. J Biomech Eng 110:230-237.<br />

Paulsen DB, Buddington KK, Buddington RK. 2003. Dimensions and histologic<br />

characteristics of the small intestine of dogs during postnatal development. Am J<br />

Vet Res 64:618-626.<br />

Riggs CM, DeCamp CE, Soutas-Little RW, Braden TD, Richter MA. 1993. Effects of<br />

subject velocity on force plate-measured ground reaction forces in healthy<br />

Greyhounds at the trot. Am J Vet Res 54:1523-1526.<br />

Rollinson J, Martin RD. 1981. Comparative aspects of primate locomotion with<br />

special reference to arboreal cercopithecines. Symp Zool Soc Lond 48:377-427.<br />

Rumph PF, Lander JE, Kincaid SA, Baird DK, Kammermann JR, Visco DM. 1994.<br />

Ground reaction force profiles from force platform gait analyses of clinically normal<br />

mesomorphic dogs at the trot. Am J Vet Res 55:756-761.<br />

Schilling N, Petrovitch A. 2006. Postnatal allometry of the skeleton of Tupaia glis<br />

(Scandentia: Tupaiidae) and Galea musteloides (Rodentia: Caviidae) - a test of<br />

the three-segment limb hypothesis. Zoology 109:148-163.<br />

Schmidt M. 2005. Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri<br />

sciureus) - A cineradiographic study of limb kinematics and related substrate<br />

reaction forces. Am J Phys Anthrop 128:359-370.<br />

Seyfarth A, Geyer H, Günther M, Blickhan R. 2002. A movement criterion for running.<br />

J Biomech 35:649-655.<br />

Shapiro LJ, Raichlen DA. 2006. Limb proportions and the ontogeny of quadrupedal<br />

walking in infant baboons (Papio cynocephalus). J Zool 269:191-203.<br />

Stewart SA, German RZ. 1999. Sexual dimorphism and ontogenetic allometry of soft<br />

tissues in Rattus norvegicus. J Morph 242:57-66.<br />

Trotter M, Hixun BB, Deaton SS. 1975. Sequential changes in weight of the skeleton<br />

and in length of long limb bones of Macaca mulatta. Am J Phys Anthrop 43:79-94.<br />

65


Studie II: Shift of the CoM in growing dogs<br />

Turnquist JE, Wells JP. 1994. Ontogeny of locomotion in rhesus macaques (Macaca<br />

mulatta): I. Early postnatal ontogeny of the muskuloskeletal system. J Hum Evol<br />

26:487-499.<br />

Voss K, Galeandro L, Wiestner T, Heassig M, Montavon PM. 2010. Relationships of<br />

body weight, body size, subject velocity, and vertical ground reaction forces in<br />

trotting dog. Vet Surg 39:863-869.<br />

Voss K, Wiestner T, Galeandro L, Hässig M, Montavon PM. 2011. Effect of dog<br />

breed and body conformation on vertical ground reaction forces, impulses, and<br />

stance times. Vet Comp Orthop Traumatol 24:106-112.<br />

Walter RM, Carrier DR. 2002. Scaling of rotational inertia in murine rodents and two<br />

species of lizard. J Exp Biol 205:2135-2141.<br />

Walter RM, Carrier DR. 2007. Ground forces applied by galloping dogs. J Exp Biol<br />

210:208-216.<br />

Willey JS, Biknevicius AR, Reilly SM, Earls KD. 2004. The tale of the tail: limb<br />

function and locomotor mechanics in Alligator mississippiensis. J Exp Biol<br />

207:553-563.<br />

Williams SB, Wilson AM, Daynes J, Peckham K, Payne RC. 2008. Functional<br />

anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete:<br />

the racing greyhound (Canis familiaris). J Anat 213:361-372.<br />

Witte TH, Knill K, Wilson AA. 2004. Determination of peak vertical ground reaction<br />

force from duty factor in the horse (Equus caballus). J Exp Biol 207:3639-3648.<br />

Young JW. 2012. Gait selection and the ontogeny of quadrupedal walking in squirrel<br />

monkeys (Saimiri boliviensis). Am J Phys Anthrop 147:580-592.<br />

66


Studie II: Shift of the CoM in growing dogs<br />

3.10. Figures<br />

Fig. 1: One of the subjects at four different time points during development. Size<br />

was scaled to the same trunk length to illustrate the changes in body proportions and<br />

particularly in trunk shape. The vertical lines indicate where the thoracic and<br />

abdominal diameters were measured to evaluate the change in trunk shape during<br />

the study period. (The two sites shaved on the back provided data for a separate<br />

study.)<br />

67


Studie II: Shift of the CoM in growing dogs<br />

Fig. 2: Vertical force curves of the fore- and the hindlimbs time-normalized to the<br />

stance duration of the forelimbs. Plotted are the means from the six dogs, error bars<br />

indicate standard deviation. Note, the decrease of the hindlimb’s stance time relative<br />

to that of the forelimbs and the increasing force difference between fore- and<br />

hindlimbs. *Two dogs were studied at PW20.<br />

68


Studie II: Shift of the CoM in growing dogs<br />

3.11. Tables<br />

Table 1: Symmetry indices (mean ± s.d.) of the vertical force parameters for all<br />

dogs at the different ages. Perfect symmetry is given at SI=0. Physiological ranges<br />

are up to 4% and 6% difference for the fore- and the hindlimbs, respectively<br />

(Budsberg et al., 1993). Negative values indicate that the parameters were greater<br />

for the right than the left limb; positive values indicate the reverse.<br />

PW PFz MFz IFz<br />

FL HL FL HL FL HL<br />

11 -0.2 ± 1.5 -0.2 ± 1.3 -0.3 ± 3.6 3.6 ± 3.0 -0.2 ± 4.1 4.4 ± 4.5<br />

13 -0.9 ± 1.7 1.7 ± 2.5 0.0 ± 2.0 1.1 ± 2.5 0.8 ± 4.3 0.9 ± 3.6<br />

19* -0.2 ± 0.4 0.0 ± 1.3 -1.9 ± 3.1 -0.1 ± 2.4 -1.9 ± 1.4 -0.2 ± 3.7<br />

22 -0.3 ± 1.3 0.3 ± 1.7 -1.5 ± 2.7 0.8 ± 3.0 -0.1 ± 4.4 1.6 ± 5.7<br />

26 -0.4 ± 1.6 -0.1 ± 1.6 -0.3 ± 2.5 -0.7 ± 3.6 -0.3 ± 3.3 -2.5 ± 5.6<br />

30 0.2 ± 0.9 -0.4 ± 2.0 -0.1 ± 2.4 0.6 ± 2.4 0.7 ± 3.9 1.5 ± 4.3<br />

43 -0.1 ± 1.8 -1.0 ± 1.9 1.1 ± 3.1 0.2 ± 2.5 0.3 ± 3.6 1.2 ± 3.3<br />

51 0.3 ± 2.7 -0.5 ± 1.6 0.6 ± 2.6 0.1 ± 4.2 -0.2 ± 1.9 1.0 ± 7.1<br />

*Note that two individuals were measured at PW20.<br />

Abbreviations: PFz, peak vertical force; MFz, mean vertical force; IFz, vertical<br />

impulse; FL, forelimb; HL, hindlimb; PW, postnatal week.<br />

Table 2: Stance duration (mean ± s.d. in s) for the fore- and hindlimbs and stance<br />

duration ratio as well as Froude number (mean ± s.d.) for all dogs at the different<br />

ages.<br />

PW FL HL FL/HL U<br />

11 0.20 ± 0.01 0.19 ± 0.01 1.05 ± 0.06 a 0.53 ± 0.09 a<br />

13 0.22 ± 0.01 0.20 ± 0.01 1.07 ± 0.02 b 0.52 ± 0.09 b<br />

19* 0.23 ± 0.01 0.22 ± 0.01 1.06 ± 0.02 c 0.56 ± 0.04 c<br />

22 0.23 ± 0.01 0.21 ± 0.01 1.09 ± 0.05 d 0.62 ± 0.04 d<br />

26 0.22 ± 0.00 0.19 ± 0.01 1.15 ± 0.05 a,b,c 0.78 ± 0.05 a,b,c,d,e<br />

30 0.22 ± 0.01 0.19 ± 0.01 1.16 ± 0.05 a,b,c 0.85 ± 0.06 a,b,c,d<br />

43 0.22 ± 0.00 0.18 ± 0.01 1.18 ± 0.05 a,b,c,d 0.87 ± 0.08 a,b,c,d<br />

51 0.21 ± 0.01 0.18 ± 0.02 1.15 ± 0.08 a,b,c 0.93 ± 0.11 a,b,c,d,e<br />

*Note that two individuals were measured at PW20.<br />

Abbreviations: FL, forelimb; HL, hindlimb; PW, postnatal week, U Froude number.<br />

Paired letters in subscript refer to a significant difference (p


Studie II: Shift of the CoM in growing dogs<br />

Table 3: Mean load distribution (mean ± s.d. in %BW) between the fore- and the<br />

hindlimbs of all dogs at the different ages.<br />

PW PFz MFz IFz<br />

FL HL FL HL FL HL<br />

11 59.2 ± 1.7 a 40.8 ± 1.7 a 61.7 ± 5.0 38.3 ± 5.0 62.4 ± 4.7 a 37.6 ± 4.7 a<br />

13 60.6 ± 1.8 b 39.4 ± 1.8 b 61.6 ± 0.8 38.4 ± 0.8 63.0 ± 1.0 b 37.0 ± 1.0 b<br />

19 61.8 ± 2.2 38.2 ± 2.2 61.1 ± 1.8 38.9 ± 1.8 62.5 ± 1.2 c 37.5 ± 1.2 c<br />

*<br />

22 61.7 ± 1.9 38.3 ± 1.9 61.3 ± 1.8 38.7 ± 1.8 63.3 ± 1.2 d 36.7 ± 1.2 d<br />

26 62.8 ± 2.4 a 37.2 ± 2.4 a 62.6 ± 2.1 37.4 ± 2.1 65.8 ± 1.4 34.2 ± 1.4<br />

30 63.1 ± 2.9 a,b 36.9 ± 2.9 a 62.5 ± 2.7 37.5 ± 2.7 66.0 ± 1.6 34.0 ± 1.6<br />

43 63.7 ± 2.1 a,b 36.3 ± 2.1 a,b 63.6 ± 1.6 36.4 ± 1.6 67.4 ± 0.8 a,b,c,d 32.6 ±<br />

0.8 a,b,c,d<br />

51 62.9 ± 1.9 a 37.1 ± 1.9 a 63.3 ± 2.0 36.7 ± 2.0 66.5 ± 0.7 a,c 33.6 ± 0.7 a,c<br />

*Note that two individuals were measured at PW20.<br />

For abbreviations, see Table 1. For explanation of the subscripts, see Table 2.<br />

Table 4: Time to peak force (mean ± s.d. in % of stance duration) of the fore- and<br />

hindlimbs and thorax-to-abdomen ratio (mean ± s.d.) for all dogs at the different<br />

ages.<br />

PW FL HL Th/Ab<br />

11 47.7 ± 4.1 39.8 ± 3.3 a 1.09 ± 0.06 a<br />

13 44.8 ± 4.8 41.8 ± 2.6 b 1.07 ± 0.04 b<br />

19* 42.4 ± 2.2 44.6 ± 2.9 a 1.13 ± 0.05 c<br />

22 44.5 ± 2.4 45.6 ± 2.5 a 1.21 ± 0.05 a,b,d<br />

26 45.3 ± 2.2 46.7 ± 2.8 a,b 1.21 ± 0.06 a,b,e<br />

30 45.5 ± 2.1 45.3 ± 1.1 a 1.28 ± 0.06 a,b,c<br />

43 44.7 ± 1.7 46.5 ± 2.1 a,b 1.31 ± 0.05 a,b,c,d,e<br />

51 46.4 ± 1.3 46.2 ± 0.9 a,b 1.27 ± 0.05 a,b,c<br />

*Note that two individuals were measured at PW20.<br />

For abbreviations, see Table 1; Th, thorax; Ab, abdomen. For explanation of the<br />

subscripts, see Table 2.<br />

70


Studie II: Shift of the CoM in growing dogs<br />

Supplementary data<br />

Tab. S1: Vertical force parameters (mean ± s.d. in %BW) for all dogs at the<br />

different ages.<br />

PW PFz MFz IFz<br />

FL HL FL HL FL HL<br />

11 101.0 ± 7.0 69.9 ± 7.1 59.7 ± 7.6 36.8 ± 3.5 12.1 ± 1.8 7.2 ± 0.5<br />

13 107.1 ± 6.4 69.7 ± 4.3 59.6 ± 3.2 37.2 ± 2.2 12.8 ± 0.8 7.5 ± 0.7<br />

19* 114.1 ± 3.1 70.7 ± 5.7 60.8 ± 1.6 38.8 ± 2.7 13.9 ± 0.8 8.3 ± 0.5<br />

22 118.0 ± 6.4 73.2 ± 4.6 62.1 ± 2.6 39.2 ± 2.1 14.4 ± 0.7 8.3 ± 0.5<br />

26 124.1 ± 5.8 73.7 ± 5.7 64.6 ± 2.9 38.6 ± 2.1 14.1 ± 0.5 7.3 ± 0.4<br />

30 127.4 ± 4.7 75.0 ± 9.0 65.3 ± 2.1 39.2 ± 3.9 14.1 ± 0.4 7.3 ± 0.5<br />

43 125.9 ± 3.4 71.9 ± 5.6 65.7 ± 1.6 37.6 ± 1.9 14.2 ± 0.7 6.9 ± 0.3<br />

51 124.4 ± 5.3 73.3 ± 4.8 64.6 ± 1.6 37.5 ± 2.7 13.5 ± 0.5 6.8 ± 0.3<br />

*Note that two individuals were measured at PW20.<br />

Abbreviations: PFz, peak vertical force; MFz, mean vertical force; IFz, vertical<br />

impulse; FL, forelimb; HL, hindlimb; PW, postnatal week.<br />

71


Diskussion<br />

4. Diskussion<br />

In dieser Studie wurden die Proportionsänderungen während des Wachstums<br />

beim Beagle und ihr Einfluss auf die kraniokaudale Lage des Körpermasseschwerpunktes<br />

während der Ontogenese untersucht. Erstmalig wurde dabei die Skapula als<br />

lokomotorisch relevantes Element der Vorderextremität in die morphometrische<br />

Analyse der Ontogenese des Hundes einbezogen. <strong>Die</strong>ses proximale Segment der<br />

Vordergliedmaße trägt wie bei anderen Säugetieren maßgeblich zum Rumpfvortrieb<br />

bei (FISCHER u. LILJE 2011). Ihr Drehpunkt liegt in den symmetrischen Gangarten<br />

wie Schritt und Trab auf der gleichen Höhe wie der des Femurs, und beide<br />

proximalen Elemente ähneln sich in ihrer Bewegungstrajektorie und ihrem<br />

Bewegungsumfang. Damit entsprechen sich bei den Säugetieren nicht seriell<br />

homologe Segmentabschnitte funktionell, während bei Vertretern der Lissamphibia<br />

oder der Lepidosauria die ursprünglich seriellen Gliedmaßenabschnitte auch<br />

funktionell homolog sind (BARCLAY 1946, JENKINS & GOSLOW 1983). Der<br />

Einschluss der Skapula in die vorliegende Untersuchung ermöglichte eine<br />

vergleichende Betrachtung der <strong>ontogenetische</strong>n Entwicklung der sich funktionell<br />

entsprechenden Vorder- und Hintergliedmaßenabschnitte. Im Unterschied zu<br />

früheren Befunden an nicht-cursorialen Säugetieren (SCHILLING u. PETROVITCH<br />

2006), unterschieden sich die Entwicklungsverläufe der funktionell homologen<br />

Abschnitte beim Beagle, indem Femur und auch Crus höhere positive Allometrie<br />

zeigten als Skapula und Brachium (Fe: 0,44 Cr: 0,43 vs. Sk: 0,40 Br: 0,41).<br />

Simulationen mit variierenden relativen Längen eines dreisegmentigen Feder-<br />

Masse-Modells zeigten, dass das Modell hohe selbststabilisierende Eigenschaften<br />

hatte, wenn sich die Abschnitte in ihrer Länge wie 1:1:1 verhielten (SEYFARTH<br />

2001, GÜNTHER 2004). Insbesondere die Länge des mittleren Abschnittes<br />

(Brachium und Crus) hatte einen entscheidenden Einfluss darauf, ob das Modell<br />

nach Perturbation zu seiner stabilen Bewegungstrajektorie zurückkehrte oder nicht.<br />

Im Unterschied dazu spielten die Längen des proximalen und des distalen<br />

Abschnittes eine untergeordnete Rolle. <strong>Die</strong> Ergebnisse der vorliegenden Arbeit<br />

zeigten, dass bei Beaglen sehr früh in der Ontogenese ein nahezu optimales<br />

Längenverhältnis der Extremitätenabschnitte vorliegt (Vordergliedmaßen 1,2:1,2:1,1<br />

72


Diskussion<br />

PW9, 1,1:1,0:1,1 PW51; Hintergliedmaßen 1,1:1,0:1,1 PW9, 1,1:1,0:0,9 PW51). Im<br />

Unterschied zu Befunden an anderen Säugetieren (SCHMIDT u. FISCHER 2009)<br />

blieb in Übereinstimmung mit den Modellvorhersagen nur die relative Länge des<br />

Brachiums an der Gesamtlänge des Vorderbeines konstant in der Ontogenese,<br />

während die relative Länge des Crus an der Gesamtlänge des Hinterbeines zunahm.<br />

Weitere Verschiebungen der Segmentproportionen innerhalb der Extremitäten<br />

betrafen die relative Längenzunahme des Antebrachiums und Femur und die relative<br />

Längenabnahme der Autopodien (Manus und Pes), die in Übereinstimmung mit<br />

früheren Befunden an verschiedenen Säugetieren sind und die typischen Proportionsverschiebungen<br />

bei Säugetieren für die Hinterextremitäten bei Hunden<br />

bestätigen.<br />

<strong>Die</strong> beobachteten Proportionsverschiebungen innerhalb der Extremitäten haben<br />

biomechanische Konsequenzen; beispielsweise ändern sich dadurch die Hebelarmverhältnisse<br />

der Muskulatur. <strong>Die</strong>s ist möglicherweise ein Grund dafür, dass es<br />

während des Wachstums zu orthopädischen Problemen kommen kann. Zur<br />

Beurteilung der physiologischen Proportionsverschiebungen können die in der<br />

vorliegenden Arbeit erhobenen Daten als Referenz zumindest für die Rasse Beagle<br />

dienen. Inwiefern die beobachteten morphometrischen Veränderungen für andere<br />

Rassen gelten, die beispielsweise als Adulti deutlich von der Norm abweichende<br />

Extremitätenproportionen zeigen, wie z.B. der Dackel oder der Scottish Terrier<br />

(FISCHER u. LILJE 2011), bleibt zu prüfen. Darüber hinaus sollten zukünftige<br />

Studien die Skapula in ihre Erhebungen einbeziehen, um so eine zunehmend<br />

vollständigere Befundlage zu schaffen.<br />

Weitere morphometrische Veränderungen in der Ontogenese betrafen die relative<br />

Länge des Kopfes und die Proportionen des Rumpfes. Wie alle Säugetiere haben<br />

auch junge Hunde einen relativ großen Kopf; so dass die Ergebnisse der vorliegenden<br />

Arbeit im Mittel ein negativ allometrisches Wachstum für die Kopflänge zeigten.<br />

Dadurch besitzt der erwachsene Hund einen relativ kürzeren Kopf bezogen auf die<br />

Körpermasse oder -länge als der junge Hund. <strong>Die</strong> erhobenen Rumpfproportionen<br />

zeigten ein negatives allometrisches Wachstum des Umfanges und eine relative<br />

Zunahme der Rumpflänge. Zusätzlich nahm das Verhältnis Thorax zu Abdomen<br />

73


Diskussion<br />

während des Messzeitraums zu (1,1 bis 1,3; Tab. 4, Studie 2), sodass sich die<br />

Rumpfform von einer eher zylindrischen Form beim Welpen zu einer deutlich<br />

taillierten und konischen Form beim adulten Hund änderte.<br />

Während die relative Abnahme der Kopfgröße gemeinsam mit der stärker<br />

zunehmenden Muskularisierung der Hinterextremität (GRAND 1991) für eine<br />

Verschiebung des CoM nach kaudal sprechen würde, lässt sich aus der Veränderung<br />

der Rumpfform eine kraniale Verschiebung vermuten. <strong>Die</strong> kinetischen und<br />

metrischen Analysen zeigten eine kraniale Verschiebung des Körpermasseschwerpunktes<br />

um im Mittel ca. 4%, im Unterschied zu allen vorangegangenen Studien an<br />

Primaten, die eine kaudale Verschiebung berichteten (KIMURA 1987, 2000;<br />

TURNQUIST u. WELLS 1994; YOUNG 2012). Bei Beaglen im Alter von 9 Wochen<br />

trägt die Vorderextremität im Mittel 59,7% der Körpermasse, während es im Alter von<br />

einem Jahr 63,5% sind. Damit überwiegen die Veränderungen der Rumpfform über<br />

die übrigen morphometrischen Veränderungen und dominieren die Verschiebung der<br />

Lage des CoM nach kranial. Ontogenetische Studien bei Säugetieren zum<br />

Wachstum verschiedener Organe zeigten in Übereinstimmung mit einer kranialen<br />

Verschiebung des CoM ein negativ allometrisches Wachstum von z.B. Niere und<br />

Milz, während der Magen positive Allometrie zeigte (DEAVERS et al. 1972; LÜTZEN<br />

et al. 1976; STEWART u. GERMAN 1999).<br />

<strong>Die</strong> Verschiebung des CoM nach kranial ist aber nicht allein durch die Veränderungen<br />

der Körperproportionen bedingt, sondern scheint auch durch posturale<br />

Veränderungen hervorgerufen zu sein. Der posturale Index als Maß für das<br />

Verhältnis von funktioneller zu anatomischer Beinlänge ermittelt aus der Länge des<br />

Beines (von außen gemessen, vom Boden bis zum Widerrist bzw. Trochanter major)<br />

im Stand geteilt durch die Summe der Länge der einzelnen Beinabschnitte<br />

(BIEWENER 2003) zeigte beim Beagle v.a. für die Hinterextremität deutliche<br />

Veränderungen. Wie auch bei Pferden (GROSSI u. CANALS 2010) wird beim Beagle<br />

mit zunehmendem Alter die Hinterextremität gestreckter, und funktionelle und<br />

anatomische Beinlänge nähern sich einander an. Umgekehrt heißt das, dass das<br />

Hinterbein der jungen Hunde stärker flektiert ist. Aus der zunehmenden Streckung<br />

der Hinterextremität resultiert ein Aufrichten der kaudalen Körperhälfte, welches<br />

74


Diskussion<br />

unweigerlich zu einer Verschiebung des Körpermasseschwerpunktes nach kranial<br />

führt.<br />

Im Unterschied zu den Befunden an Primaten liegt bei Hunden der CoM immer<br />

relativ kranial, und diese Lage wird in der Ontogenese durch die Proportionsänderungen<br />

verstärkt. Für verschiedene Primaten hat man, passend zur negativen<br />

Allometrie des Kopfes, eine stärkere Änderung der Lage des Körpermasseschwerpunktes<br />

beobachtet (Schimpansen, Japanmakaken: KIMURA 1987, 2000;<br />

Rhesusaffen: TURNQUIST u. WELLS 1993; Totenkopfäffchen: YOUNG 2012). Hier<br />

tragen die Vorderbeine über 50% des Körpergewichtes während des ersten<br />

Lebensjahres, während der Körpermasseschwerpunkt bei adulten Tieren kaudal der<br />

Körpermitte liegt und mehr als die Hälfte des Körpergewichtes auf den Hinterextremitäten<br />

lastet. Bei den Jungbeaglen dagegen verlagert sich der Körpermasseschwerpunkt<br />

zum einen nicht über die Körpermitte hinweg, und die beobachtete<br />

Verschiebung erfolgt zum anderen in die entgegengesetzte Richtung. Ob sich ein<br />

allgemeingültiges Muster dahinter verbirgt und sich bei Tieren, die als Adulti mehr als<br />

50% des Körpergewichtes auf den Vorderbeinen tragen, der CoM während der<br />

Ontogenese durchgehend weiter nach kranial verschiebt, bleibt offen, da bisher<br />

<strong>ontogenetische</strong> Daten nur von Primaten und vom Beagle vorliegen. Darüber hinaus<br />

wäre es interessant, die <strong>ontogenetische</strong>n Veränderungen der Lage des CoM bei<br />

anderen Rassen mit deutlich abweichenden Körperbautypen zu untersuchen.<br />

Als Intermediärtyp zwischen Platzhockern und Laufjungen sind junge Hunde daran<br />

angepasst, relativ früh in der Entwicklung mit dem Rudel umher zu ziehen. Bezogen<br />

auf die Körpergröße ist die Umwelt für kleine Säugetiere und damit auch für<br />

Jungtiere stärker strukturiert. <strong>Die</strong>ses verlangt von kleinen Tieren eine größere<br />

Wendigkeit. Ein weiter kaudal liegender CoM wirkt sich biomechanisch vorteilhaft auf<br />

die Wendigkeit aus (AEARTS et al. 2003), und daher könnte die relativ weiter<br />

kaudale Lage des CoM bei Welpen einen Vorteil für deren Manövrierfähigkeit bieten.<br />

Um allerdings sogenannte ‚kick-starts’ (AERTS et al. 2003; WALTER u. CARRIER<br />

2011) zu vermeiden, ist eine insgesamt kraniale Lage des CoM von Vorteil, so wie er<br />

bei den Hunden dieser Arbeit von Beginn an zu beobachten war.<br />

75


Diskussion<br />

<strong>Die</strong> zunehmende kraniale Lage des Körpermasseschwerpunktes während des<br />

Wachstums geht einher mit einer zunehmenden Belastung der Vordergliedmaßen in<br />

der Ontogenese des Hundes. <strong>Die</strong>s könnte ein Faktor sein, der zu skelettalen<br />

Erkrankungen von Junghunden gerade an den Knochen der Vorderbeine, wie die<br />

Ellbogengelenksdysplasie, beitragen kann. Darüber hinaus führen Aktivitäten wie<br />

Treppen hinuntersteigen zu einer besonders hohen Belastung der Vordergliedmaßen,<br />

da die Neigung zu einer noch stärkeren Verschiebung des CoM nach kranial<br />

führt.<br />

Ein leicht zu ermittelnder Indikator für die Entwicklung eines Junghundes ist das<br />

Körpergewicht. <strong>Die</strong> Jungbeagle in dieser Studie nahmen in den ersten vier<br />

Lebensmonaten intensiv an Gewicht zu. Am Ende der Studie hatte noch kein Hund<br />

das Gewicht der Elterntiere erreicht. Aus dem Vergleich der Ergebnisse dieser Arbeit<br />

mit denen anderer Studien (HAWTHORNE et al. 2004; SALOMON et al. 1999) lässt<br />

sich vermuten, dass kleinere Zuchtlinien des Beagles schneller die Zeit der<br />

intensiven Gewichtszunahme abschließen und auch ihr Endgewicht früher erreichen.<br />

Innerhalb einer Rasse kann es also abhängig vom Endgewicht der Hunde<br />

Unterschiede in den Entwicklungszeiträumen geben, wobei Hunde größerer Linien<br />

wahrscheinlich mehr Zeit für das Wachstum benötigen. Eine Validierung dieser<br />

Beobachtung ist durch zukünftige Studien an anderen Rassen mit verschiedenen<br />

Zuchtlinien nötig.<br />

Vergleicht man die Wurfgeschwister aus dieser Studie untereinander, so ähneln<br />

sich die Wachstumskurven unabhängig vom individuellen Gewicht. Hier nahm weder<br />

der Schwerste länger zu, noch erreichte der Leichteste die Endwerte der Studie<br />

früher. Darüber hinaus blieb die Gewichts- und Größenreihenfolge unter den<br />

Geschwistern über den gesamten Studienzeitraum gleich. <strong>Die</strong>s deckt sich mit den<br />

Ergebnissen einer früheren Studie (WEISE 1964). Bei der Auswahl eines Welpen im<br />

Alter von neun Wochen kann also die Größe der Elterntiere zusammen mit den<br />

Größenverhältnissen der Geschwister untereinander hilfreich sein zur Beurteilung<br />

der Endgrößen der verschiedenen Individuen.<br />

Durch die vorgelegte Arbeit sind erste Referenzdaten für die morphometrische<br />

Entwicklung des Beagles und den Einfluss der Proportionsverschiebungen auf die<br />

76


Diskussion<br />

Lage des CoM erhoben worden. Inwiefern es sich bei den hier beobachteten Mustern<br />

um für Hunde allgemeingültige Befunde handelt, muss durch zukünftige Arbeiten<br />

geprüft werden, die insbesondere weitere Würfe der Rasse Beagle und von Rassen<br />

verschiedener Körperbautypen und Körpergrößen einbeziehen. Erst dann können<br />

fundierte Vergleiche zwischen Rassen und Zuchtlinien angestellt werden. Dabei<br />

sollten zukünftige Arbeiten auch die ersten neun Lebenswochen als die intensivste<br />

Entwicklungsphase einschließen. Ganganalytisch bleibt zu prüfen, welche anderen<br />

Größen, wie z.B. Parameter der Bewegungsabläufe, sich neben der Lage des CoM<br />

durch die Verschiebungen der Körperproportionen verändern. Hier soll die<br />

anstehende Auswertung der kinematischen Daten und ihre Integration mit den<br />

bereits bestehenden Befunden Aufschluss geben. Eine umfassendere Datenlage, die<br />

morphometrische und ganganalytische Aspekte integriert, wird weiterhin <strong>ontogenetische</strong><br />

Vergleiche zwischen Rassen, aber auch zwischen Säugetierarten ermöglichen.<br />

<strong>Die</strong> Ergebnisse können für den Vergleich mit orthopädischen Wachstumspathologien<br />

genutzt werden.<br />

77


Zusammenfassung<br />

5. Zusammenfassung<br />

Daniela Helmsmüller<br />

<strong>Die</strong> <strong>ontogenetische</strong> Entwicklung des Bewegungsapparates beim Beagle -<br />

eine morphometrische und kinetische Analyse<br />

Im Leben von Hunden als cursoriale Säugetiere spielt die Fortbewegung eine<br />

große Rolle. Störungen in der Entwicklung des Bewegungsapparates während des<br />

Wachstums sind zu vermeiden bzw. wenn möglich frühzeitig zu diagnostizieren und<br />

therapieren. Ziel dieser Arbeit war es, die <strong>ontogenetische</strong> Allometrie von Hunden am<br />

Beispiel des Beagles zu dokumentieren und die Lage des Körpermasseschwerpunktes<br />

zu analysieren. Besonderes Augenmerk galt der Skapula in der morphometrischen<br />

Analyse, als bislang in <strong>ontogenetische</strong>n Studien vernachlässigter, aber<br />

lokomotorisch relevanter Vordergliedmaßenknochen.<br />

In dieser longitudinalen Studie wurden sechs Beaglerüden aus einem Wurf von<br />

der neunten postnatalen Woche bis zum Alter von einem Jahr regelmäßig<br />

untersucht. Ihr Gewicht, ihre Körperproportionen und die Längen der einzelnen<br />

Gliedmaßenknochen wurden allometrisch betrachtet. Für die Bestimmung der<br />

Verteilung des Körpergewichtes zwischen den Gliedmaßen trabten die Hunde auf<br />

einem Laufband mit vier integrierten Kraftmessplatten, das die Erfassung der<br />

vertikalen Bodenreaktionskraft und der Bodenkontaktzeiten erlaubte.<br />

Beim Vergleich der sich funktionell entsprechenden Vorder- und Hintergliedmaßenabschnitte<br />

zeigten sich beim Hund Unterschiede zu früheren Befunden von<br />

Säugetieren durch eine höhere positive Allometrie von Femur und Crus im Vergleich<br />

zu den Werten von Skapula und Brachium. Relativ zur Gesamtlänge des Beines<br />

nahmen Antebrachium, Femur und Crus zu, während die Autopodien an Länge<br />

abnahmen. Durch ihre nahezu optimalen Längenverhältnisse der Gliedmaßenabschnitte<br />

von 1:1:1 und aufgrund der konstanten relativen Länge des Brachiums kann<br />

vermutet werden, dass Hunde früh in ihrer Ontogenese selbststabilisierende<br />

Mechanismen verwenden. Das negative allometrische Wachstum des Rumpfumfan-<br />

78


Zusammenfassung<br />

ges und eine relative Zunahme der Rumpflänge gingen mit einer Änderung der<br />

Rumpfform von zylindrisch beim Junghund zu einer deutlich konischeren Form beim<br />

Adulten einher. <strong>Die</strong>se Veränderung, gepaart mit einer gestreckteren Hintergliedmaße<br />

beim erwachsenen Hund sowie beschriebenen Allometrien der inneren Organe,<br />

führte zu einer Verschiebung des Körpermasseschwerpunktes nach kranial. <strong>Die</strong><br />

relativ stärkere kaudale Lage des CoM bei Welpen könnte einen Vorteil für deren<br />

Wendigkeit bieten, um allerdings sogenannte ‚kick-starts’ zu vermeiden, ist die<br />

generell kraniale Lage des CoM bei Hunden von Vorteil. <strong>Die</strong> sich kontinuierlich<br />

verändernden Gliedmaßenverhältnisse und auch die unterschiedliche Lage des<br />

Körpermasseschwerpunktes zusammen mit weiteren auslösenden Faktoren können<br />

ein Grund für orthopädische Probleme im Wachstum sein. Zur einfachen Überprüfung<br />

des physiologischen Wachstums von Hunden bietet sich die Gewichtsentwicklung<br />

an. <strong>Die</strong> Dauer bis zum Erreichen des Endgewichtes und der intensivsten<br />

Gewichtszunahme scheint verglichen mit kleineren Beagle-Linien und anderen<br />

Rassen vom Endgewicht abhängig zu sein, wobei schwerere Hunde längere Zeiten<br />

benötigen. <strong>Die</strong> Größenverhältnisse unter den Beaglegeschwistern blieben über den<br />

gesamten Messzeitraum gleich und unter den Geschwistern unterschieden sich<br />

Zunahmezeiten nicht. Inwiefern es sich bei den hier beobachteten Mustern um für<br />

Hunde allgemeingültige Befunde handelt, muss durch zukünftige Arbeiten geprüft<br />

werden, die insbesondere Rassen verschiedener Körperbautypen und Körpergrößen<br />

einbeziehen.<br />

79


Summary<br />

6. Summary<br />

Daniela Helmsmüller<br />

Ontogenetic development of the locomotor system of the Beagle - a morphometric<br />

and kinetic analysis<br />

Locomotion plays a significant role in the life of the dog as a cursorial mammal and<br />

one essential prerequisite for this is a physiologically developed musculoskeletal<br />

system. To ensure its proper functioning, abnormalities in its development should be<br />

avoided or at least if possible diagnosed and treated at an early stage. It was hence<br />

the aim of this study to document the ontogenetic allometry of Beagles, in example of<br />

dogs in general, and to analyse the location of the centre of body mass during<br />

growth. Heed was paid in this study to the scapula as a locomotory important but in<br />

ontogenetic studies often neglected element of the forelimb.<br />

In this longitudinal study, six male Beagle siblings were analysed regularly from<br />

the ninth postnatal week until they reached one year of age. Their weight, body<br />

proportions and the lengths of their individual limb bones were measured and the<br />

results evaluated allometrically. To determine the body weight distribution and<br />

thereby the craniocaudal location of the center of body mass, the dogs trotted on the<br />

treadmill with four integrated force plates and the vertical ground reaction forces as<br />

well as the stance duration ratios were determined.<br />

Comparing the functionally analogous fore- and hindlimb segments, deviations<br />

from previously reported patterns were observed, i.e., femur and crus showed a<br />

stronger positive allometry than scapula and brachium. Relative to limb length,<br />

antebrachium, femur and crus increased whereas manus and pes decreased in<br />

length. Because dogs show a segment ratio of nearly 1:1:1 and the relative length of<br />

the middle segment of the forelimb (i.e., the brachium) is constant during growth, it is<br />

postulated that dogs use self-stabilizing mechanisms from early on. The negative<br />

allometric growth of the trunk circumference and a relative increase in the trunk<br />

length compared with body mass were accompanied by a change of the shape of the<br />

80


Summary<br />

trunk from a cylindrical shape in the puppy to a more conical shape in the adult dog.<br />

These changes, together with the elongation of the hindlimbs due to postural<br />

changes and the described allometries of the inner organs led to a net-cranial shift of<br />

the center of body mass. In contrast to primates, the location of the center of mass<br />

was always situated cranially. The more caudal position of the CoM in puppies could<br />

be advantageous for their maneuverability; to avoid the risk of pitching, however, a<br />

net-cranial location is beneficial. The changing limb proportions together with the shift<br />

of the body’s center of mass and other triggering factors could be a cause for<br />

orthopaedical problems in growing dogs. A good indicator for a dogs’ growth is its<br />

weight development. Compared to smaller-bodied Beagle lines and other breeds, the<br />

growth period to reach the final weight as well as the period of the most intensive<br />

weight gain seems to depend on the final weight. Thereby, relatively heavier dogs<br />

need more time for growth. The body size relationships amongst the Beagle siblings<br />

remained unchanged during the study period and their duration of weight increase<br />

did not differ. Whether the data collected in this study are representative for dogs<br />

remains to be tested in future studies, which should include breeds of varying builds<br />

and body sizes.<br />

81


Literaturverzeichnis<br />

7. Literaturverzeichnis<br />

ABDELHADI, J., P. WEFSTAEDT, V. GALINDO-ZAMORA, A. ANDERS, I. NOLTE u.<br />

N. SCHILLING (2013):<br />

Load redistribution in walking and trotting Beagles with induced forelimb lameness.<br />

Am. J. Vet. Res. 74, 34-39<br />

AERTS, P., R. VAN DAMME, K. D'AOUT u. B. VAN HOOYDONCK (2003):<br />

Bipedalism in lizards: whole-body modelling reveals a possible spandrel.<br />

Phil. Trans. Royal Soc. B: Biol. Sci. 358, 1525-1533<br />

ALEXANDER, R.M. u. A. S. JAYES (1983):<br />

A dynamic similarity hypothesis for the gaits of quadrupedal mammals.<br />

J. Zool. (Lond.) 201, 135-152<br />

ALTMAN, J. u. K. SUDARSHAN (1975):<br />

Postnatal development of locomotion in the laboratory rat.<br />

Anim. Behav. 23, 896-920.<br />

ARSHAVSKII, Y.I., Y.M. KOTS, G.N. ORLOVSKII, I.M. RODIONONOV u. M.L. SHIK<br />

(1965):<br />

Biophysics of complex systems and mathematical models. Investigation of the<br />

biomechanics of running by the dog.<br />

Biophysics 10, 737-746<br />

BACK, W., C.G. MACALLISTER, M.C.V. VAN HEEL, M. POLLMEIER u. P.D.<br />

HANSON (2007):<br />

Vertical frontlimb ground reaction forces of sound and lame Warmbloods differ<br />

from those in Quarter horses.<br />

J. Equine Vet. Sci. 27, 123-129<br />

BARCLAY, O.R. (1946):<br />

The mechanics of amphibian locomotion.<br />

J. Exp. Biol. 23, 177-203<br />

BERTRAM, J.E.A., D.V. LEE, H.N. CASE u. R.J. TODHUNTER (2000):<br />

Comparison of the trotting gaits of Labrador Retrievers and Greyhounds.<br />

Am. J. Vet. Res. 61, 832-838<br />

82


Literaturverzeichnis<br />

BESSESEN, A.N.J. u. H.A. CARLSON (1923):<br />

Postnatal growth in weight of the body and of the various organs in the guinea-pig.<br />

Am. J. Anat. 31, 483-521<br />

BIKNEVICIUS, A.R., R.E. HEINRICH and E. DANKOSKI (1997):<br />

Effects of ontogeny on locomotor kinetics.<br />

J. Morph. 232, 235<br />

BIEWENER, A.A. (2003):<br />

Animal locomotion.<br />

New York, USA: Oxford University Press<br />

BOCKSTAHLER, B.A., M. SKALICKY, C. PEHAM, M. MÜLLER u. D. LORINSON<br />

(2007):<br />

Reliability of ground reaction forces measured on a treadmill system in healthy<br />

dogs.<br />

Vet. J. 173, 373-378<br />

BRYANT, J.D., M.B. BENNETT, J. BRUST u. R.M. ALEXANDER (1987):<br />

Forces exerted on the ground by galloping dogs (Canis familiaris).<br />

J. Zool. (Lond.) 213, 193-203<br />

BUDSBERG, S.C., M.C. VERSTRAETE u. R.W. SOUTAS-LITTLE (1987):<br />

Force plate analysis of the walking gait in healthy dogs.<br />

Am. J. Vet. Res. 48, 915-918<br />

BUDSBERG, S.C., D.J. JEVENS, J. BROWN, T.L. FOUTZ, C.E. DECAMP u. L.<br />

REECE (1993):<br />

Evaluation of limb symmetry indices, using ground reaction forces in healthy dogs.<br />

Am. J. Vet. Res. 54, 1569-1574<br />

CARRIER, D.R. (1983):<br />

Postnatal ontogeny of the musculo-skeletal system in the Black-tailed jack rabbit<br />

(Lepus californicus).<br />

J. Zool. (Lond.) 201, 27-55<br />

CARRIER, D.R. (1996):<br />

Ontogenetic limits on locomotor performance.<br />

Physiol. Zool. 69, 467-488<br />

83


Literaturverzeichnis<br />

CARRIER, D.R., K. CHASE u. K.G. LARK (2005):<br />

Genetics of canid skeletal variation: Size and shape of the pelvis.<br />

Genome Res. 15, 1825-1830<br />

CASINOS, A., J. BOU, M.J. CASTIELLA u. C. VILADIU (1986):<br />

On the allometry of long bones in dogs (Canis familiaris).<br />

J. Morph. 190, 73-79<br />

CAZALET, J.R., I. MENARD, J. CREMIEUX u. F. CLARAC (1990):<br />

Variability as a characteristic of immature motor system: an electromyographic<br />

study of swimming in the newborn rat.<br />

Behav. Brain Res. 40, 215-225<br />

CHASE, K., D.R. CARRIER, R.R. ADLER, T. JARVIK, E.A. OSTRANDER, T.D.<br />

LORENTZEN u. K.G. LARK (2002):<br />

Genetic basis for systems of skeletal quantitative traits: Principal component<br />

analysis of the canid skeleton.<br />

PNAS 99, 9930-9935<br />

CONZEMIUS, M.G., G.K. SMITH, C.T. BRIGHTION, M.J. MARION u. T.P. GREGOR<br />

(1994):<br />

Analysis of physeal growth in dogs, using biplanar radiography.<br />

Am. J. Vet. Res. 55, 22-27<br />

DEAVERS, S., R.A. HUGGINGS u. E.L. SMITH (1972):<br />

Absolute and relative organ weights of the growing beagle.<br />

Growth 36, 195-208<br />

DECAMP, C.E. (1997):<br />

Kinetic and kinematic gait analysis and the assessment of lameness in the dog.<br />

Vet. Clin. Small Anim. 27, 825-840<br />

DELAQUERRIERE-RICHARDSON, L., C. ANDERSON, U.M. JORCH u. M. COOK<br />

(1982):<br />

Radiographic studies on bone in Beagles subjected to low levels of dietary lead<br />

since birth.<br />

Vet. Hum. Toxicol. 24, 401-405<br />

84


Literaturverzeichnis<br />

DEMES, B., S.G. LARSON, J.T.J. STERN, W.L. JUNGERS, A.R. BIKNEVICIUS u.<br />

D. SCHMITT(1994).<br />

The kinetics of primate quadrupedalism: "hindlimb drive" reconsidered.<br />

J. Hum. Evol. 26, 353-374<br />

DRAKE, A.G. u. C.P. KLINGENBERG (2008):<br />

The pace of morphological change: historical transformation of skull shape in St<br />

Bernard dogs.<br />

Proc. Royal Soc. Biol. Sci. Ser. B 275, 71-76<br />

FANCHON, L., J.P. VALETTE, M. SANAA u. D. GRANDJEAN (2006):<br />

The measurement of ground reaction force in dogs trotting on a treadmill: an<br />

investigation of habituation.<br />

Vet. Comp. Orthop. Traumatol. 19, 81-86<br />

FARLEY, C.T., J. GLASHEEN u. T.A. MCMAHON (1993):<br />

Running springs: Speed and animal size.<br />

J. Exp. Biol. 185, 71-86<br />

FISCHER, M.S. (1994):<br />

Crouched posture and high fulcrum, a principle in the locomotion of small mammals:<br />

The example of the rock hyrax (Procavia capensis) (Mammalia: Hyracoidea).<br />

J. Hum. Evol. 26, 501-524<br />

FISCHER, M.S. (1998):<br />

<strong>Die</strong> Lokomotion von Procayia capensis (Mammalia Hydracoidea). Zur Evolution<br />

des Bewegungssystems bei Säugetieren.<br />

Abh. Naturwiss. Verein 33, 1-188<br />

FISCHER, M.S. u. H. WITTE (1998):<br />

The functional morphology of the three-segmented limb of mammals and its<br />

specialities in small and medium-sized mammals.<br />

Proc. Eur. Mechanics Coll. Euromech 375, Biology and Technology of Walking<br />

375, 10-17<br />

85


Literaturverzeichnis<br />

FISCHER, M.S., N. SCHILLING, M. SCHMIDT, D. HAARHAUS u. H.F. WITTE<br />

(2002):<br />

Basic limb kinematics of small therian mammals.<br />

J. Exp. Biol. 205, 1315-1338<br />

FISCHER, M.S. u. K.E. LILJE (2011):<br />

Hunde in Bewegung.<br />

Kosmos Verlag, pp. 1-207.<br />

GEISLER, H.C., J. WESTERGA u. A. GRAMSBERGEN (1993):<br />

Development of posture in the rat.<br />

Acta Neurobiol. Exp. 53, 517-523<br />

GLASSMAN, D.M. (1984):<br />

The relation of long bone diaphyseal length to chronological age in immature<br />

saddle-back tamarius, Saguinus fuscicollis.<br />

Primates 25, 352-361<br />

GRAND, T.I. (1977):<br />

Body weight: its relation to tissue composition, segment distribution, and motor<br />

function. II. Development of Macaca mulatta.<br />

Am. J. Phys. Anthrop. 47, 241-248<br />

GRAND, T.I. (1991):<br />

Patterns of muscular growth in the African bovidae.<br />

App. Anim. Behav. Sci. 29, 471-482<br />

GRAND, T.I. (1997):<br />

How muscle mass is part of the fabric of behavioral ecology in East African bovids<br />

(Madoqua, Gazella, Damaliscus, Hippotragus).<br />

Anat. Embryol. 195, 375-386<br />

GRAND, T.I. u. P.S. BARBOZA (2001):<br />

Anatomy and development of the koala, Phascolarctos cinereus: An evolutionary<br />

perspective on the superfamily vombatoidea.<br />

Anat. Embryol. 203, 211-223<br />

86


Literaturverzeichnis<br />

GREGORY, W.K. (1912):<br />

Notes on the principles of quadrupedal locomotion and on the mechanism of the<br />

limbs in hoofed animals.<br />

Ann. N. Y. Acad. Sci. 22, 267-294<br />

GROSSI, B. u. M. CANALS (2010):<br />

Comparison of the morphology of the limbs of juvenile and adult horses (Equus<br />

caballus) and their implications on the locomotor biomechanics.<br />

J. Exp. Zool. A Ecol. Genet. Physiol. 313, 292-300<br />

GÜNTHER, M., V. KEPPLER, A. SEYFARTH u. R. BLICKHAN (2004):<br />

Human leg design: optimal axial alignment under constraints.<br />

J. Math. Biol. 48, 623-646<br />

HANNA, J.B., J.D. POLK u. D. SCHMITT (2006):<br />

Forelimb and hindlimb forces in walking and galloping primates.<br />

Am. J. Phys. Anthrop. 130, 529-535<br />

HAWTHORNE, A.J., D. BOOLES, P.A. NUGENT, G. GETTINBY u. J. WILKINSON<br />

(2004):<br />

Body-weight changes during growth in puppies of different breeds.<br />

J. Nutr. 134, S2027-S2030<br />

HELMINK, S.K., R.D. SHANKS u. E.A. LEIGHTON (2000):<br />

Breed and sex differences in growth curves for two breeds of dog guides.<br />

J. Anim. Sci. 78, 27-32<br />

HELMSMÜLLER, D., P. WEFSTAEDT; I. NOLTE u. N. SCHILLING (subm.a):<br />

Ontogenetic allometry of the Beagle.<br />

BMC Vet. Res.<br />

HELMSMÜLLER, D., A. ANDERS; I. NOLTE u. N. SCHILLING (subm.b):<br />

Shift of the whole-body center of mass in growing dogs.<br />

J. Exp. Zool. A<br />

HENSCHEL, E. (1972):<br />

Zur Anatomie und Klinik der wachsenden Unterarmknochen.<br />

Arch. Exp. Vet. Med. 26, 741-787<br />

87


Literaturverzeichnis<br />

HERZOG, W., B.M. NIGG, L.J. READ u. E. OLSSON (1989):<br />

Asymmetries in ground reaction force patterns in normal human gait.<br />

Med. Sci. Sports. Exerc. 21, 110-114<br />

JENKINS, F.A.J. u. G. E. GOSLOW (1983):<br />

The functional anatomy of the shoulder of the Savannah monitor lizard (Varanas<br />

exanthematicus).<br />

J. Morph. 175, 195-216<br />

JUNGERS, W.L. u. J.G. FLEAGLE (1980):<br />

Postnatal growth allometry of the extremities in Cebus albifrons and Cebus apella:<br />

a longitudinal and comparative study.<br />

Am. J. Phys. Anthrop. 53, 471-478<br />

KATIC, N., B.A. BOCKSTAHLER, M. MÜLLER u. C. PEHAM (2009):<br />

Fourier analysis of vertical ground reaction forces in dogs with unilateral hindlimb<br />

lameness caused by degenerative disease of the hip joint and in dogs without<br />

lameness.<br />

Am. J. Vet. Res. 70, 118-126<br />

KEALY, R.D., D.F. LAWLER, J.M. BALLAM, G. LUST, G.K. SMITH, D.N. BIERY u.<br />

S.E. OLSSON(1997):<br />

Five-year longitudinal study on limited food consumption and development of<br />

osteoarthritis in coxofemoral joints of dogs.<br />

J. Am. Vet. Med. Assoc. 210, 222-225<br />

KIM, J., K.A. KAZMIERCZAK u. G.J: BREUR (2011):<br />

Comparison of temporospatial and kinetic variables of walking in small and large<br />

dogs on a pressure-sensing walkway.<br />

Am. J. Vet. Res. 72, 1171-1177<br />

KIMURA, T. (1987):<br />

Development of chimpanzee locomotion on level surfaces.<br />

Hum. Evol. 2, 107-119<br />

KIMURA, T. (1992):<br />

Hindlimb dominance during primate high-speed locomotion.<br />

Primates 33, 465-476<br />

88


Literaturverzeichnis<br />

KIMURA, T. (2000):<br />

Development of quadrupedal locomotion on level surfaces in Japanese macaques.<br />

Folia Primatol. 71, 323-333<br />

LAMMERS, A.R. u. R.Z. GERMAN (2002):<br />

Ontogenetic allometry in the locomotor skeleton of specialized half-bounding<br />

mammals.<br />

J. Zool. (Lond.) 258, 485-495<br />

LEE, D.V., J.E. BERTRAM u. R.J. TODHUNTER (1999):<br />

Acceleration and balance in trotting dogs.<br />

J. Exp. Biol. 202, 3565-3573<br />

LEE, D.V., E.F. STAKEBAKE, R.M. WALTER u. D.R. CARRIER (2004):<br />

Effects of mass distribution on the mechanics of level trotting in dogs.<br />

J. Exp. Biol. 207, 1715-1728<br />

LILJE, K.E., C. TARDIEU u. M.S. FISCHER (2003):<br />

Scaling of long bones of ruminants, with respect to the scapula.<br />

J. Zool. Syst. Evol. Res. 41, 118-126<br />

LULL, R.S. (1904):<br />

Adaptations to aquatic, Arboreal, Fossorial and Cursorial Habits in Mammals. IV<br />

Cursorial Adptations.<br />

Am. Nat. 38, 1-11<br />

LUMER, H. (1940):<br />

Evolutionary allometry in the skeleton of the domesticated dog.<br />

Am. Nat. 74, 439-467<br />

LUMER, H. u. A.H. SCHULTZ (1947):<br />

Relative growth of the limb segments and tail in Ateles geoffroyi and Cebus<br />

capucinus.<br />

Hum. Biol. 19, 53-67<br />

LÜTZEN, L., G. TRIEB u. G. PAPPRITZ (1976):<br />

Allometric analysis of organ weights: II. Beagle dogs.<br />

Toxicol. Appl. Pharmacol. 35, 543-551<br />

89


Literaturverzeichnis<br />

MAES, L.D., M. HERBIN, R. HACKERT, V.L. BELS u. A. ABOURACHID (2008):<br />

Steady locomotion in dogs: temporal and associated spatial coordination patterns<br />

and the effect of speed.<br />

J. Exp. Biol. 211, 138-149<br />

MAUNZ, M. u. R.Z. GERMAN (1997):<br />

Ontogeny and limb bone scaling in two New World marsupials, Monodelphis<br />

domestica and Didelphis virginiana.<br />

J. Morph. 231, 117-130<br />

MCLAIN, R.F., S.A. YERBY u. T.A. MOSELEY (2002):<br />

Comparative morphometry of L4 vertebrae: comparison of large animal models for<br />

the human lumbar spine.<br />

Spine 27, 200-206<br />

MCLAUGHLIN, R.M. (2001):<br />

Kinetic and kinematic gait analysis in dogs.<br />

Vet. Clin. Small Anim. 31, 193-201<br />

MCLAUGHLIN, R.M.J. u. J.K. ROUSH (1994):<br />

Effects of subject stance time and velocity on ground reaction forces in clinically<br />

normal greyhounds at the trot.<br />

Am. J. Vet. Res. 55, 1666-1671<br />

MCMAHON, T.A. (1973):<br />

Size and shape in biology.<br />

Science 179, 1201-1204<br />

MÖLSA, S.H., A.K. HIELM-BJÖRKMAN u. O.M. LAITINEN-VAPAAVOURI (2010):<br />

Force platform analysis in clinically healthy Rottweilers: comparison with Labrador<br />

Retrievers.<br />

Vet. Surg. 39, 701-707<br />

OCAL, M.K., O.C. ORTANCE u. U. PARIN (2006):<br />

A quantitative study on the sacrum of the dog.<br />

Ann. Anat. 188, 477-482<br />

90


Literaturverzeichnis<br />

OLSON, N.C., C.B. CARRIG u. W.O. BRINKER (1979):<br />

Asynchronous growth of the canine radius and ulna: effects of retardation of<br />

longitudinal growth of the radius.<br />

Am. J. Vet. Res. 40, 351- 355<br />

PANDY, M.G., V. KUMAR, N. BERME u. K.J. WALDRON (1988):<br />

The dynamics of quadrupedal locomotion.<br />

J. Biomech. Eng. 110, 230-237<br />

PETERS, S.E. (1983):<br />

Postnatal development of gait behavior and functional allometry in domestic cat<br />

(Felis catus).<br />

J. Zool. (Lond.) 199, 461-486<br />

PRITTIE, J. (2004):<br />

Canine parvoviral enteritis: a review of diagnosis, management, and prevention.<br />

J. Vet. Emerg. Crit. Care 14, 167-176<br />

QUIGNON, P., J.J. SCHOENEBECK, K. CHASE, H.G. PARKER, D.S. MOSHER,<br />

G.S. JOHNSON, K.G. LARK u. E.A. OSTRANDER (2009):<br />

Fine mapping a locus controlling leg morphology in the domestic dog.<br />

Cold Spring Harb. Symp. Quant. Biol. 74, 327-333<br />

RICHMOND, R.J. u. R.T. BERG (1972):<br />

Bone growth and distribution in swine as influenced by live weight, breed, sex, and<br />

ration.<br />

Can. J. Anim. Sci. 52, 47-56<br />

RIGGS, C.M., C.E. DECAMP, R.W. SOUTAS-LITTLE, T.D. BRADEN u. M.A.<br />

RICHTER (1993):<br />

Effects of subject velocity on force plate-measured ground reaction forces in<br />

healthy Greyhounds at the trot.<br />

Am. J. Vet. Res. 54, 1523-1526<br />

ROLLINSON, J. u. R.D. MARTIN (1981):<br />

Comparative aspects of primate locomotion with special reference to arboreal<br />

cercopithecines.<br />

Symp. Zool. Soc. Lond. 48, 377-427<br />

91


Literaturverzeichnis<br />

ROTH, V.L. (1984):<br />

How elephants grow: heterochrony and the calibration of developmental stages in<br />

some living and fossil species.<br />

J. Vert. Paleontol. 4, 126-145<br />

RUMPH, P.F., J.E. LANDER, S.A. KINCAID, D.K. BAIRD, J.R. KAMMERMANN u.<br />

D.M. VISCO (1994):<br />

Ground reaction force profiles from force platform gait analyses of clinically normal<br />

mesomorphic dogs at the trot.<br />

Am. J. Vet. Res. 55, 756-761<br />

SALOMON, F.-V., A. SCHULZE, U. BÖHME, U. ARNOLD, A. GERICKE u. U. GILLE<br />

(1999):<br />

Das postnatale Wachstum des Skeletts und der Körpermasse beim Beagle.<br />

Anat. Histol. Embryol. 28, 221-228<br />

SCHILLING, N. u. A. PETROVITCH (2006):<br />

Postnatal allometry of the skeleton of Tupaia glis (Scandentia: Tupaiidae) and<br />

Galea musteloides (Rodentia: Caviidae) - a test of the three-segment limb<br />

hypothesis.<br />

Zoology 109, 148-163<br />

SCHMIDT, M. (2005):<br />

Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri sciureus) - A<br />

cineradiographic study of limb kinematics and related substrate reaction forces.<br />

Am. J. Phys. Anthrop. 128, 359-370<br />

SCHMIDT, M. u. M.S. FISCHER (2009):<br />

Morphological integration in mammalian limb proportions: Dissociation between<br />

function and development.<br />

Evolution 63, 749-766<br />

SCHULZE, A. u. F.-V. SALOMON (2001):<br />

Das postnatale Wachstum der Gliedmaßenknochen bei Hunden der Rasse<br />

Deutsche Dogge.<br />

Kleintierpraxis 46, 475-486<br />

92


Literaturverzeichnis<br />

SCHULZE, A., U. GILLE u. F.-V. SALOMON (2001a):<br />

Untersuchungen zum postnatalen Skelett- und Körpermassewachstum von<br />

Hunden der Rasse Deutsche Dogge.<br />

Tierärztl. Prax. Kleint. 29, 358-365<br />

SCHULZE, A., M. KAISER, U. GILLE u. F.-V. SALOMON (2003):<br />

Vergleichende Untersuchung zum postnatalen Wachstum der Vordergliedmaße<br />

verschiedener Hunderassen.<br />

Tierärztl. Prax. Kleint. 4, 219-224<br />

SCHULZE, A., U. GILLE, S. VOM STEIN u. F.-V. SALOMON (2007):<br />

Vergleichende Untersuchungen zum postnatalen Wachstum der Hintergliedmaßen<br />

verschiedener Hunderassen.<br />

Tierärztl. Prax. Kleint. 3, 200-205<br />

SEYFARTH, A., M. GÜNTHER u. R. BLICKHAN (2001):<br />

Stable operation of an elastic three-segment leg.<br />

Biol. Cybern. 84, 365-382<br />

SEYFARTH, A., H. GEYER, M. GÜNTHER u. R. BLICKHAN (2002):<br />

A movement criterion for running.<br />

J. Biomech. 35, 649-655<br />

SHAPIRO, L.J. u. D.A. RAICHLEN (2006):<br />

Limb proportions and the ontogeny of quadrupedal walking in infant baboons<br />

(Papio cynocephalus).<br />

J. Zool. 269, 191-203<br />

SHAPIRO, L.J. u. J.W. YOUNG (2012):<br />

Kinematics of quadrupedal locomotion in sugar gliders (Petaurus breviceps):<br />

effects of age and substrate size.<br />

J. Exp. Biol. 215, 480-496<br />

SKOGLUND, S. (1960):<br />

On the postnatal development of postural mechanisms as revealed by electromyography<br />

and myography in decerebrate kittens.<br />

Acta Physiol. Scand. 49, 299-371<br />

93


Literaturverzeichnis<br />

SOKAL, R.R. u. F.J. ROHLF (1981):<br />

Biometry.<br />

W. H. Freemann & Compay, New York 2nd ed., 1-859<br />

STEWART, S.A. u. R.Z. GERMAN (1999):<br />

Sexual dimorphism and ontogenetic allometry of soft tissues in Rattus norvegicus.<br />

J. Morph. 242, 57-66<br />

TAYLOR, A.B. (1997):<br />

Relative growth, ontogeny, and sexual dimorphism in Gorilla (Gorilla gorilla gorilla<br />

and G. g. beringei): Evolutionary and ecological considerations.<br />

Am. J. Primatol. 43, 1-31<br />

TROTTER, M., B.B. HIXUN u. S.S. DEATON (1975):<br />

Sequential changes in weight of the skeleton and in length of long limb bones of<br />

Macaca mulatta.<br />

Am. J. Phys. Anthrop. 43, 79-94<br />

TURNQUIST, J.E. u. J.P. WELLS (1994):<br />

Ontogeny of locomotion in rhesus macaques (Macaca mulatta): I. Early postnatal<br />

ontogeny of the muskuloskeletal system.<br />

J. Hum. Evol. 26, 487-499<br />

VANDEN BERG-FOELS, W.S., R.J. TODHUNTER, S.J. SCHWAGER u. A.P.<br />

REEVES (2006):<br />

Effect of early postnatal body weight on femoral head ossification onset and hip<br />

osteoarthritis in a canine model of developmental dysplasia of the hip.<br />

Pediat. Res. 60, 549-554<br />

VOSS, K., L. GALEANDRO, T. WIESTNER, M. HEASSIG u. P.M. MONTAVON<br />

(2010):<br />

Relationships of body weight, body size, subject velocity, and vertical ground<br />

reaction forces in trotting dog.<br />

Vet. Surg. 39, 863-869<br />

94


Literaturverzeichnis<br />

VOSS, K., T. WIESTNER, L. GALEANDRO, M. HÄSSIG u. P.M. MONTAVON<br />

(2011):<br />

Effect of dog breed and body conformation on vertical ground reaction forces,<br />

impulses, and stance times.<br />

Vet. Comp. Orthop. Traumatol. 24, 106-112<br />

WALTER, R.M. u. D.R. CARRIER (2002):<br />

Scaling of rotational inertia in murine rodents and two species of lizard.<br />

J. Exp. Biol. 205, 2135-2141<br />

WALTER, R.M. u. D.R. CARRIER (2007):<br />

Ground forces applied by galloping dogs.<br />

J. Exp. Biol. 210, 208-216<br />

WALTER, R.M. u. D.R. CARRIER (2011):<br />

Effects of fore-aft body mass distribution on acceleration in dogs.<br />

J. Exp. Biol. 214, 1763-1772<br />

WATKINS, M.A. u. R.Z. GERMAN (1992):<br />

Ontogenetic allometry of ossified fetal limb bones.<br />

Growth Dev. Aging 56, 259-267<br />

WEISE, G. (1964):<br />

Über das Wachstum verschiedener Hunderassen.<br />

Z. Säugetierk., 257-282<br />

WILLEY, J.S., A.R. BIKNEVICIUS, S.M. REILLY u. K.D. EARLS (2004):<br />

The tale of the tail: limb function and locomotor mechanics in Alligator mississippiensis.<br />

J. Exp. Biol. 207, 553-563<br />

WILLIAMS, S.B., A.M. WILSON, J. DAYNES, K. PECKHAM u. R.C. PAYNE (2008):<br />

Functional anatomy and muscle moment arms of the pelvic limb of an elite<br />

sprinting athlete: the racing greyhound (Canis familiaris).<br />

J. Anat. 213, 361-372<br />

WILLIAMS, S.B., T. HUILING, J.R. USHERWOOD u. A.M. WILSON (2009):<br />

Pitch then power: limitations to acceleration in quadrupeds.<br />

Biol. Letters 5, 610-613.<br />

95


Literaturverzeichnis<br />

WITTE, T.H., K. KNILL u. A.A. WILSON (2004):<br />

Determination of peak vertical ground reaction force from duty factor in the horse<br />

(Equus caballus).<br />

J. Exp. Biol. 207, 3639-3648<br />

YONAMINE, H., N. OGI, T. ISHIKAWA u. H. ICHIKI (1980):<br />

Radiographic studies on skeletal growth of the pectoral limb of the beagle.<br />

Jpn. J. Vet. Sci. 42, 417-425<br />

YOUNG, J.W. (2012):<br />

Gait selection and the ontogeny of quadrupedal walking in squirrel monkeys<br />

(Saimiri boliviensis).<br />

Am. J. Phys. Anthrop. 147, 580-592<br />

ZAR, J.H. (1968).<br />

Calculation and miscalculation of the allometric equation as a model in biological<br />

data.<br />

BioScience 18, 1118-1120<br />

96


Danksagung<br />

8. Danksagung<br />

Mein ganz besonderer Dank gilt Herrn Prof. Nolte für die Überlassung dieses<br />

interessanten Themas und für die Möglichkeit, das hervorragend ausgestattete<br />

Ganganalyselabor der Klinik für Kleintiere, <strong>Stiftung</strong> <strong>Tierärztliche</strong> <strong>Hochschule</strong><br />

<strong>Hannover</strong> zu nutzen.<br />

Mein besonderer, herzlicher Dank gilt Frau PD Dr. Schilling für die interessante<br />

Aufgabenstellung, ihre große Unterstützung, zahlreiche Anregungen bei der<br />

Durchführung der Arbeit und ihr unermüdliches Engagement.<br />

Außerdem möchte ich mich bei Frau Anders für die Hilfe bei den Messungen und<br />

auch bei den Tierpflegern für die gute Betreuung der Studienteilnehmer bedanken.<br />

Auch allen weiteren Mitarbeitern der Klinik danke ich für ihre Hilfsbereitschaft.<br />

Bei allen Mitdoktorandinnen und Mitdoktoranden der Klinik und vor allem der<br />

Ganganalyse möchte ich mich für eine super Zusammenarbeit und ein tolles Team<br />

bedanken. Frau Fischer gerade in der Endphase sehr herzlichen Dank für den<br />

Informationsfluss.<br />

Danke, Ulrich, für die Hilfe bei den Graphiken und Geduld und Durchhaltevermögen.<br />

Auch meiner Familie, besonders Möni für ihr Englisch, und Freunden danke ich<br />

für die große Unterstützung in vielerlei Hinsicht.<br />

97

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!