Workshop #1 Part 2 - Grand River Conservation Authority

Workshop #1 Part 2 - Grand River Conservation Authority Workshop #1 Part 2 - Grand River Conservation Authority

grandriver.ca
from grandriver.ca More from this publisher
28.01.2014 Views

PROCESS LOADING EVALUATION & SLUDGE ACCOUNTABILITY • Step through the Performance Evaluation protocol; • Provide training in two components of evaluation: – Process loading evaluation – Sludge accountability analysis.

PROCESS LOADING EVALUATION &<br />

SLUDGE ACCOUNTABILITY<br />

• Step through the Performance Evaluation<br />

protocol;<br />

• Provide training in two components of<br />

evaluation:<br />

– Process loading evaluation<br />

– Sludge accountability analysis.


Two-Step Protocol<br />

COMPOSITE CORRECTION PROGRAM<br />

STEP 1<br />

COMPREHENSIVE PERFORMANCE<br />

EVALUATION (CPE)<br />

STEP 2<br />

COMPREHENSIVE TECHNICAL<br />

ASSISTANCE (CTA)


CPE OUTCOME<br />

• Identify, Classify, & Prioritize Major Performance<br />

Limiting Factors (5-8)<br />

• Classifies Design of Plant:<br />

• Type I (Adequate)<br />

• Type II (Marginal)<br />

• Type III (Inadequate)<br />

• Determine Suitability for Follow-up Technical<br />

Assistance<br />

• Findings presented at end of on-site activities;<br />

•Recommendations NOT Provided


CPE EVALUATORS<br />

• Design assessment experience<br />

• Operations experience<br />

• “Interview” skills i.e. tact;<br />

• Freedom/authority to address<br />

admin/management issues


Scheduling<br />

• Initial Set-up Activities<br />

• On-Site Evaluation<br />

‣ minimum 2 evaluators<br />

‣ typically 5 continuous working days<br />

• Follow-up CPE Report


CPE As Skills Development<br />

• Initial half day workshop<br />

• <strong>Part</strong>icipants support trainers:<br />

‣ “arms-length” from day-to-day operation<br />

‣ Maximum of 5-6 participants<br />

‣ Commitment for entire week;<br />

‣ Initially, trainers responsible for outcome;<br />

‣ Allow time for debriefing<br />

‣ CPE Exit Briefing is joint responsibility.<br />

• <strong>Part</strong>icipants debrief training experience.


CPE:<br />

REFERENCES<br />

• US EPA Handbook<br />

• Ontario CCP Handbook


Other:<br />

RESOURCES (con’t)<br />

Plant Name:<br />

Date Prepared:<br />

Prepared By:<br />

9-Nov-09<br />

Phil Wilson<br />

Step <strong>#1</strong>: Determine SOTR & alpha (based on system type)<br />

• ISCO Flow Measurement Handbook<br />

INPUT <strong>#1</strong>: OUTPUT <strong>#1</strong>:<br />

Fine bubble, total floor<br />

• Metcalf & Eddy<br />

ά<br />

• US EPA Design Manual<br />

INPUT #2:<br />

On Phosphorus<br />

OUTPUT<br />

Removal<br />

#2:<br />

Temp 20 o C K 0.847<br />

Diffuser Depth 14.4 feet AOTR/SOTR 0.42<br />

• Excel spreadsheet templates<br />

System SOTR 6.25 lb O 2 /wire.HP.h<br />

0.5 [no units]<br />

Mixed Liquor D.O. 2.0 mg/L AOTR 2.65 lb O 2 /wire.HP.h<br />

Elev<br />

572 feet<br />

Dunville WPCP<br />

Step #2: Determine AOTR (based on temperature, diffuser depth, D.O. and elevation)<br />

Figure 1: Dunville WPCP PPG Step#3: Determine OTC (based on HP available)<br />

Total HP 180 Criteria HP OTC 3,900 kg O 2 /d<br />

Unit Process (rating criteria) Size Units Stnd Max Units Base Increment Max<br />

Aeration HRT (6 h) m 3 h 11,600<br />

BOD Loading (0.5 kg BOD5/m 3 /d) m 3 kgBOD5/m 3 /d 7,792 2,640 10,432<br />

Step#4: Determine Oxygen Demand At Peak Monthly Flows<br />

INPUT #3: OUTPUT #3: Max Month<br />

O2 Avail. (1.0 kgO2/kg TBOD5 + 4.6 TKN) HP kgO2/kg BOD5 rev/d 8,714 1,125 9,839<br />

Sec. Clar. SOR (24 m 3 /m 2 /d) m 2 m 3 /m 2 /d 11,400<br />

Chlorine Contact (30 min) m 3 NA 7,800<br />

Aerobic Digester (35 d & 17.6 m3/d) m 3 d 7,700<br />

Sludge Lagoons (180 d at 18 m3/d) m 10,700<br />

Sludge Disposal (assumed) NA 5,698<br />

Annual Avg Flow 6,101 m 3 /d Carbon OD 1,147 kg O 2 /d<br />

Max Month Avg Flow 8,251 m 3 /d Nitrogen OD 1,271 kg O 2 /d<br />

Annual Avg Raw BOD 5 139.0 mg/L Total OD 2,418 kg O 2 /d<br />

Annual Avg Dunnville Raw TKNWPCP PPG for CAS 33.5 (Updated mg/L - Nov. 2009)<br />

Base Max Design 7728 5-Yr Flow 5698 Aug. 08-Jul. 09 6101<br />

Step#5: Determine Rated Capacity (based on Evaluation Criteria for O 2 Availability)<br />

INPUT #4: OUTPUT #4:<br />

Aeration Selection HRT (6 h) Nitrify use BOD5 &<br />

11,600<br />

TKN O2 Avail Criteria 1.0<br />

Rated Capacity 9,839 m 3 /d<br />

BOD Loading (0.5 kg BOD5/m3/d)<br />

O2 Avail. (1.0 kgO2/kg TBOD5 + 4.6 TKN)<br />

Sec. Clar. SOR (24 m3/m2/d)<br />

0 2,000 4,000 6,000 8,000 10,000 12,000<br />

7,792<br />

8,714<br />

11,400<br />

2,640<br />

1,125<br />

Design 7,728 m 3 /d<br />

Design 7728<br />

7,728 0<br />

7,728 100<br />

5-Yr Flow 5,698 m 3 /d<br />

5-Yr Flow 5698<br />

5,698 0<br />

5,698 100<br />

Aug. 08-Jul. 09 6,101 m 3 /d<br />

Aug. 08-Jul. 09 6101<br />

6,101 0<br />

6,101 100<br />

Chlorine Contact (30 min)<br />

7,800<br />

Aerobic Digester (35 d & 17.6 m3/d)<br />

7,700<br />

Sludge Lagoons (180 d at 18 m3/d)<br />

10,700<br />

Sludge Disposal (assumed)<br />

5,698<br />

Annual Average Flows (m 3 /d)


• Kick-off Meeting<br />

• Plant Tour<br />

OVERVIEW OF STEPS<br />

• Data Summaries & Performance Checks<br />

• Major Unit Process Capabilities<br />

• Personnel Interviews<br />

• Determine Limiting Factors<br />

• Exit Meeting<br />

GRCA<strong>Workshop</strong><br />

Tools


KICK-OFF MEETING<br />

• Explain objectives, approach & timing<br />

• Gain support for evaluation<br />

• Schedule interviews with plant & admin<br />

personnel<br />

• Identify information needs:<br />

‣ C. of A.<br />

‣ Historical monitoring data (12 months)<br />

‣ O&M manual<br />

‣ Budget information<br />

‣ Other engineering studies


PLANT TOUR<br />

• Become familiar with plant and layout<br />

• Preliminary assessment of operational<br />

flexibility<br />

• Initial information on performance, process<br />

control, and maintenance<br />

• Evaluator debriefing after plant tour


Plant Tour<br />

• Conventional activated sludge with UV disinfection;<br />

• Filter press dewatering & lime stabilization;<br />

What questions will you be asking on your plant tour of<br />

the facility below?


DATA GATHERING<br />

• Data Collection Forms from Handbooks:<br />

‣ Preliminary Plant Information<br />

‣ Administrative Data<br />

‣ Design Data<br />

‣ Operational Data<br />

‣ Maintenance Data<br />

‣ Performance Data<br />

• Main Focus:<br />

‣ “How does this affect plant<br />

performance?”


Flows ( m3/d)<br />

14,000<br />

12,000<br />

10,000<br />

Caledonia WPCP Flows<br />

Raw Flows<br />

Nominal Design<br />

Max Day = 12,168 m 3 /d<br />

Max Day<br />

PE Flow<br />

8,000<br />

6,000<br />

4,000<br />

2,000<br />

0<br />

Annual Average = 3,376 m 3 /d<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

Jan-08<br />

Feb-08<br />

Mar-08<br />

Apr-08<br />

May-08<br />

Jun-08


CBOD (mg/L)<br />

NH3 (mg/L)<br />

TSS (mg/L)<br />

TP (mg/L)<br />

Caledonia WPCP Effluent TSS<br />

Caledonia WPCP Effluent TP<br />

C of A TSS Eff TSS Eff Obj TSS<br />

C of A TP Eff TP Eff Obj TP<br />

30<br />

0.35<br />

25<br />

0.30<br />

20<br />

0.25<br />

15<br />

0.20<br />

0.15<br />

10<br />

0.10<br />

5<br />

0.05<br />

0<br />

0.00<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

Jan-08<br />

Feb-08<br />

Mar-08<br />

Apr-08<br />

May-08<br />

Jun-08<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

Jan-08<br />

Feb-08<br />

Mar-08<br />

Apr-08<br />

May-08<br />

Jun-08<br />

Caledonia WPCP Effluent CBOD<br />

Caledonia WPCP Effluent NH3<br />

C of A CBOD Eff CBOD Eff Obj CBOD<br />

Eff NH3<br />

CofA<br />

30<br />

25<br />

20<br />

2.50<br />

2.00<br />

1.50<br />

15<br />

10<br />

1.00<br />

5<br />

0.50<br />

0<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

Jan-08<br />

Feb-08<br />

Mar-08<br />

Apr-08<br />

May-08<br />

Jun-08<br />

0.00<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

Jan-08<br />

Feb-08<br />

Mar-08<br />

Apr-08<br />

May-08<br />

Jun-08


Process Loading<br />

Rate at which contaminants are added is<br />

determined by “process loading”<br />

– Loading = Flow x Concentration<br />

– Loading Plant Capacity & Sludge production<br />

Example: Organic loading<br />

PE BOD 5 = 200 mg/L<br />

= 200/1000 kg/m 3 = 0.200 kg/m 3<br />

Flow = 5,000 m 3 /d<br />

BOD 5 Loading = ?<br />

BOD 5 Loading = 0.200 kg BOD 5 /m 3 x 5,000 m 3 /d<br />

= 1000 kg BOD 5 /d


Questions<br />

• If a dairy moves to town, what likely<br />

happens to BOD 5 loading to the plant?<br />

• If one train of a plant is shut down for<br />

maintenance, what happens to the BOD 5<br />

loading to the other trains?<br />

• When flows increase during a storm,<br />

what happens to BOD 5 loading?<br />

• Should CBOD 5 or TBOD 5 be used to<br />

calculate organic loading to a plant?


PROCESS LOADING EVALUATION<br />

(12-months of Data)<br />

Calculate per Capita flows and Loads:<br />

‣ 350-500 L/d per person<br />

‣ 80 g/d BOD 5 per person;<br />

‣ 90 g/d TSS per person<br />

Calculate ratios:<br />

‣ Wastewater/Water: 0.7-0.9<br />

‣ Peak Day/Annual Avg Flow: 2.5-3 - ?<br />

‣ TSS/BOD 5 : 0.8 – 1.2<br />

‣ TKN/BOD 5 : 0.1-0.2<br />

‣Etc.<br />

• Spot check of flow metering (if required)


Exercise #2<br />

Background:<br />

• Plant is a 546 m 3 /d extended aeration package plant<br />

• Typically staffed less than 4 hours per day<br />

Data:<br />

• Population served = 1065<br />

• Annual average plant flow = 429 m 3 /d<br />

• Average influent BOD 5 = 98 mg/L = 0.098 kg/m 3<br />

Reference Information:<br />

• Per Capita Flows = 350 -500 L/person.d<br />

• Per Capita Organic Loading = 80 g BOD 5 /capita.d<br />

• 1 m 3 = 1000 L<br />

• 1 kg = 1000 g


Questions?<br />

1.) Calculate average per capita flow to plant<br />

(in L/person.d) and compare to typical:<br />

Per capita flow (L/person.d)<br />

= flow (m 3 /d)x 1000 L/m 3 / population<br />

= 429 m 3 /d x 1000 L/m 3 / 1065 persons<br />

= 403 L/person.d<br />

Typical = 350-500 L/person.d<br />

Therefore, reported plant flows are within<br />

typical


Questions?<br />

2.) Calculate average per capita BOD 5 loading (in<br />

g/person.d) to the plant and compare to typical<br />

Per capita BOD 5 loading (kg/person.d)<br />

= flow (m 3 /d) x concentration (kg/m 3 )/population<br />

= 429 m 3 /d x 0.098 kg/m 3 / 1065 persons<br />

= 0.039 kg BOD 5 /person.d<br />

Per capita BOD 5 loading (g/person.d)<br />

= 0.039 kg BOD 5 /person.d x 1000 g/kg<br />

= 39 g BOD 5 /person.d<br />

Typical = 70 – 90 g BOD 5 /d<br />

Therefore, plant’s per capita BOD 5 loading is less<br />

than typical


Questions?<br />

3.) Based on the population and the typical per capita<br />

BOD 5 loading, estimate the raw BOD 5 ( in mg/L).<br />

Estimated BOD 5 loading (kg/d) =<br />

= Population x Per Capita BOD 5 loading (g/person.d) /1000 (g/kg)<br />

= 1065 persons x 80 g/person day /1000 g/kg<br />

= 85.2 kg/d BOD 5<br />

Flow = 429 m 3 /d<br />

Estimated Concentration (kg/m 3 )<br />

= Estimated load (kg/d) / flow (m 3 /d)<br />

= 85.2 kg/d / 429 m 3 /d = 0.200 kg/m 3<br />

Estimated Concentration (mg/L)<br />

= Estimated concentration (kg/m 3 ) x 1000 (mg/L/kg/m 3 )<br />

= 0.200 (kg/m 3 ) x 1000 (mg/L/kg/m 3)<br />

= 200 mg/L BOD 5


Questions?<br />

4.) Something doesn’t “add up”. What follow-up<br />

information would you ask for?<br />

• What are the raw TSS concentrations and hence the<br />

TSS/BOD 5 and per capita TSS loadings?<br />

• What are the raw TKN concentrations and hence the<br />

TKN/BOD 5 ratio?<br />

• How are the raw samples collected (grab vs<br />

composite vs. flow proportioned composite), how<br />

often, and when?


SLUDGE ACCOUNTABILITY ANALYSIS<br />

Purpose:<br />

‣ Verify plant data<br />

‣ Assess monitoring & reporting practices<br />

‣ Help with rating sludge storage, treatment &<br />

disposal capacities.<br />

Steps:<br />

‣ Obtain 12-months sludge production from<br />

plant records (“reported sludge production”)<br />

‣ Estimate “projected” sludge production based<br />

on removal mechanisms;<br />

‣ Compare “projected” vs. “reported”;<br />

‣ Within +15% ok


“Reported” Sludge Production<br />

Plant Flow = 3,000 m 3 /d<br />

Concentration = 20 mg/L = 0.020 kg/m 3<br />

Unintentional Wastage = 3,000 m 3 /d x 0.020 kg/m 3 = 60 kg/d<br />

Primary Aeration Basin Secondary<br />

WAS<br />

Sludge Flow = 10 m 3 /d<br />

Concentration = 3% = 30,000 mg/L = 30 kg/m 3<br />

RAS<br />

Unintentional Wastage = 10 m 3 /d x 30 kg/m 3 = 300 kg/d<br />

Effluent<br />

Solids<br />

Co-Thickened<br />

Primary & WAS<br />

Sludge<br />

“Reported” Sludge Production =<br />

Unintentional Wastage + Intentional Wastage<br />

“Reported Sludge= Unintentional + Intentional<br />

= 60 kg/d + 300 kg/d = 360 kg/d


“Projected” Sludge Production<br />

Primary Sludge:<br />

based on TSS removal rates across the primary<br />

Biological Sludge:<br />

based on BOD 5 removal rates across the basin<br />

Primary Aeration Basin Secondary<br />

Chemical Sludge:<br />

based on coagulant addition rates to basin<br />

“Projected Sludge” = “Primary” + “Biological” + “Chemical”


Primary Sludge Production<br />

• Raw TSS = 200 mg/L<br />

• PE TSS = 100 mg/L<br />

• Flow = 1,000 m 3 /d<br />

• Primary Sludge =<br />

Flow (m 3 /d) x (Raw TSS – PE TSS) mg/L / 1000 mg/L/kg/m 3<br />

= 1,000 m 3 /d x (200 – 100)/1000 kg/m 3<br />

= 1,000 m 3 /d x 0.10 kg/m 3<br />

= 100 kg/d


Biological Sludge Production<br />

• PE BOD 5 = 110 mg/L<br />

• SE BOD 5 = 10 mg/L<br />

• Flow = 1,000 m 3 /d<br />

• Biological Sludge Production Ratio (SPR) (for CAS w/primary)<br />

= 0.70 kg TSS /kg BOD 5-removed<br />

• Biological Sludge =<br />

Flow (m 3 /d) x (PE BOD 5 – SE BOD 5 ) mg/L / 1000 mg/L/kg/m 3 x SPR<br />

= 1,000 m 3 /d x (110 – 10)/1000 kg/m 3 x 0.70<br />

= 1,000 m 3 /d x 0.10 kg/m 3 x 0.70<br />

= 70 kg/d


Chemical Sludge Production<br />

• Alum Dosage Rate = 1000 mL/min<br />

= 1000 mL/min x 1440 min/d / 1000 mL/L<br />

= 1440 L/d / 1000 L/ m 3<br />

= 1.44 m 3 /d<br />

• Weight of Alum Added per day<br />

= Volume Added per day x Specific Gravity<br />

= 1.44 m 3 /d x 1,330 kg/m 3<br />

= 1,915 kg/d<br />

• Weight of Al+3 Added per day<br />

= Weight of Alum per Day x %Al +3 (w/w)<br />

= 1915 kg/d x 4.3%<br />

= 82.3 kg/d


Chemical Sludge Production<br />

• Chemical Sludge Production Ratio<br />

= 4.79 kg TSS /kg Al +3 (for alum)<br />

• Chemical Sludge Production<br />

= Weight of Al +3 addition (kg/d) x SPR<br />

= 82.3 kg/d x 4.79<br />

= 394.5 kg/d


EXAMPLE RESULTS<br />

REPORTED:<br />

Source<br />

Secondary By-pass<br />

Effluent<br />

Co-thickened WAS + Primary<br />

PROJECTED:<br />

Source<br />

Primary Sludge<br />

Biological Sludge<br />

Chemical Sludge<br />

SUDGE ACCOUNTABILITY:<br />

Amount (kg)<br />

24, 000<br />

180, 000<br />

3, 247, 000<br />

3, 451, 000<br />

Amount (kg)<br />

2, 677, 000<br />

2, 589, 000<br />

284, 000<br />

5, 550, 000<br />

(PROJECTED – REPORTED)<br />

PROJECTED<br />

X 100% = +38%


Exercise #3<br />

Background:<br />

• Plant is an extended aeration package plant (no primary)<br />

• No coagulant addition for TP removal;<br />

Data:<br />

• Annual average flow rate = 3,200 m 3 /d<br />

• BOD 5 : Raw = 110 mg/L; Effluent = 6 mg/L<br />

• TSS: Effluent = 9 mg/L<br />

• Waste sludge: Volume = 35 m 3 /d Conc. = 3,400 mg/L<br />

Reference Information:<br />

Remember!: 1000 mg/L = 1 kg/m 3<br />

Process Type: SPR (kg TSS/kg BOD 5 r)<br />

Activated sludge w/o Primary:<br />

Conventional 0.85<br />

Extended Aeration 0.65


Questions<br />

1.) Calculate the average daily unintentional sludge wasted<br />

(in effluent TSS) as kg/d:<br />

Wastage (kg/d) = flow (m 3 /d) x ESS (mg/L) / 1000 mg/L/kg.m 3<br />

= 3,200 m 3 /d x 9/1000 kg/m 3<br />

= 28.8 kg/d<br />

2.) Calculate the average intentional sludge wasted as kg/d:<br />

Wastage (kg/d) = waste flow (m 3 /d) x waste concentration (kg/m 3 )<br />

= 35 m 3 /d x 3,400/1000 kg/m 3<br />

= 119.0 kg/d<br />

3.) Calculate total reported sludge production (1+2):<br />

Total reported (kg/d) = unintentional (kg/d) + intentional (kg/d)<br />

= 28.8 kg/d + 119.0 kg/d<br />

= 147.8 kg/d


4.) Calculate the projected sludge production:<br />

Rate of BOD 5 removed (kg/d) = Flow (m 3 /d) x (Raw – Effluent) kg/m 3<br />

= 3,200 m 3 /d x (110 – 6)/1000 kg/m 3<br />

= 3,200 m 3 /d x 0.104 kg BOD 5 /m 3 = 332.8 kg/d<br />

Choose SPR for applicable process<br />

SPR = 0.65 (extended aeration)<br />

Biological Sludge Production<br />

= SPR x BOD 5 Removal Rate<br />

Biological Sludge Production<br />

= 0.65 x 332.8 kg/d = 216.3 kg TSS/d<br />

5.) Calculate sludge accountability (%) & compare to +<br />

15%<br />

Sludge Accountability<br />

= (projected – reported)/projected x 100%<br />

= (216.3 – 147.8)/216.3x100% = + 32%<br />

Sludge Accountability falls outside + 15%


Questions<br />

6.) The sludge accountability doesn’t close (i.e. outside<br />

+ 15%). What follow-up information would you ask<br />

for?<br />

Information related to monitoring of the waste sludge:<br />

flows and frequency & analysis of waste solids<br />

Information related to monitoring of effluent TSS.<br />

Any observations that effluent TSS may be higher than<br />

reported i.e. sludge in chlorine contact chamber, etc.


Operating Parameter Evaluation<br />

Parameter<br />

Typical Range<br />

(M & E 1991)<br />

CAS* EA** OD***<br />

Plant X<br />

SRT Total<br />

(d)<br />

F/M<br />

(kg BOD 5<br />

/d<br />

per kg<br />

MLVSS)<br />

MLSS<br />

(mg/L)<br />

3-15 20-30 10-30 67<br />

0.2-0.5 0.05-0.15 0.05-0.3 0.05<br />

1,000 –3,000 3,000-5,000 1,500-5,000 4,800<br />

HRT<br />

(h)<br />

4-8 18-36 8-36 24.6<br />

* CAS = Conventional Activated Sludge; ** EA = Extended Aeration; *** OD<br />

= Oxidation Ditch


MAJOR UNIT PROCESS EVALUATION<br />

• Potential of major units to treat flows and<br />

loads<br />

• Identifies the “weakest link” i.e. most limiting<br />

unit<br />

• Assigns a “rated capacity” the annual<br />

average flow which can be treated by that unit<br />

• Establish plant type:<br />

• I – Capable<br />

• II – Marginal<br />

• III – Not Capable


Performance Potential Graph<br />

Flow <br />

Unit Process<br />

100 200 300 400 500 600<br />

Aeration Basin<br />

620<br />

Capable: > 100% Current<br />

Secondary Clarifier<br />

400<br />

Marginal: 80-100% Current<br />

Sludge Handling<br />

200<br />

Not Capable:


CPE PPG CALCULATIONS


FAPCC<br />

Annual Average Flows (m 3 /d)<br />

0 5,000 10,000 15,000 20,000 25,000 30,000<br />

Prim.Clar. SOR (24 m3/m2/d)<br />

25,272<br />

Aeration HRT (4-6 h)<br />

12,964<br />

BOD Loading (0.5-0.6 kg BOD5/m3/d)<br />

13,283<br />

O2 Avail. (1.4 kgO2/kg BOD5 rem.)<br />

39,300<br />

Sec. Clar. SOR (24 m3/m2/d)<br />

25,224<br />

UV Disinfection (45,400 @ peak)<br />

22,700<br />

Filter Press (1 unit @ 96 h/wk)<br />

35,300<br />

Sludge Haulage (on demand)<br />

17,665<br />

Base Max Current 17665 m3/d Nominal Design 22700 m3/d


Dunnville WPCP PPG for CAS<br />

Base Max Design 7728 m3/d Current Flow 5137 m3/d<br />

0 2,000 4,000 6,000 8,000 10,000 12,000<br />

Aeration HRT (6 h)<br />

11,600<br />

BOD Loading (0.5 kg BOD5/m3/d)<br />

7,600<br />

O2 Avail. (1.0 kgO2/kg TBOD5 + 4.6 TKN)<br />

6,600<br />

Sec. Clar. SOR (24 m3/m2/d)<br />

11,400<br />

Chlorine Contact (30 min)<br />

7,800<br />

Aerobic Digester (35 d & 2.0%)<br />

3,200<br />

Sludge Lagoons (180 d at 4% solids)<br />

9,000<br />

Sludge Disposal (assumed)<br />

5,100<br />

Annual Average Flows (m 3 /d)


INTERVIEWS<br />

• Previous steps complete prior to interviews<br />

• Staff interviewed<br />

• All plant staff<br />

• Key administrators<br />

• Interviews in private and information is kept<br />

confidential<br />

• Maintain performance focus<br />

• Debrief interviews


PERFORMANCE LIMITING FACTORS<br />

• Checklists with definitions provided in<br />

Handbook<br />

• Four Categories<br />

• Operations<br />

• Design<br />

• Maintenance<br />

• Administration<br />

• Rating System<br />

• A: Major Long Term Effect<br />

• B: Minimum Routine Effect or Major Periodic<br />

Effect<br />

• C: Minor Effect


PRIORITIZE FACTORS<br />

• A & B Factors only<br />

• Purpose:<br />

• Summarize Plant Status<br />

• Basis for Follow-up Activities


FACTORS MEETING


COMMON FACTORS<br />

• Lack of Application of Concepts and Testing to Achieve<br />

Process Control<br />

• Inadequate process monitoring and testing<br />

• No routine for sludge wasting to support process control<br />

• Inadequate Sludge Wasting and Disposal<br />

• Limited on-site storage<br />

• Inadequate land approved to spread sludge<br />

• Inability to measure waste sludge<br />

• Inappropriate Management Policies<br />

• Inadequate plant staffing<br />

• Focus on maintenance and housekeeping


EXIT MEETING<br />

• Plant/Administrative Personnel<br />

• Present Preliminary Findings<br />

• Summarize Factors: A & B<br />

• “Tell it like it is” with respect<br />

• Potential for follow-up


Outline:<br />

• Introduction<br />

REPORT<br />

• Facility Background<br />

• Performance Assessment<br />

• Major Unit Process Evaluation<br />

• Performance Factors


• Kick-off Meeting<br />

• Plant Tour<br />

SUMMARY<br />

• Data Summaries & Performance Checks<br />

• Major Unit Process Capabilities<br />

• Plant Personnel Interviews<br />

• Determine Limiting Factors<br />

• Exit Meeting<br />

Focus of Today’s <strong>Workshop</strong>:<br />

Process Loading Evaluation<br />

Sludge Accountability<br />

Focus of Nov. <strong>Workshop</strong>:<br />

Major Unit Process Capabilities =<br />

PPG

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!