the effect of hydric stress on some characteristics of sunflower plants

the effect of hydric stress on some characteristics of sunflower plants the effect of hydric stress on some characteristics of sunflower plants

incda.fundulea.ro
from incda.fundulea.ro More from this publisher
28.01.2014 Views

20 ROMANIAN AGRICULTURAL RESEARCH Number 16 / 2001 for Alex and Justin (37 and 30% respectively) than for Favorit hybrid (13%) (Tables 6 and 7). reduction ong>ofong> about 15% in ong>theong> concentration ong>ofong> oleic acid in standard hybrids. Fatty acids Table 6. The ong>effectong> ong>ofong> ong>hydricong> ong>stressong> (1 week) on fatty acid composition in several Romanian sunflower hybrids Experimental variants % from total area Alex Favorit Justin Romina Splendor differences % differences % diffe - % from differences % from from rences total from % total % total % area % total area area area differences % Palmitic Control 6.58 100 5.82 100 6.38 100 7.14 100 6.09 100 acid Hydric ong>stressong> 6.72 102 6.3 108 6.28 98 6.94 97 6.09 100 Stearic Control 6.57 100 4.32 100 3.6 100 4.41 100 6.41 100 acid Hydric ong>stressong> 5.63 86 3.89 90 4.05 113 5.37 122 5.02 78 Oleic Control 36.91 100 52.09 100 44.92 100 29.78 100 52.03 100 acid Hydric ong>stressong> 33.28 90 35.27 68 35.54 79 29.32 98 38.59 74 Linoleic Control 46.45 100 34.89 100 43.44 100 56.1 100 32.89 100 acid Hydric ong>stressong> 51.57 111 52.11 149 50.92 117 55.7 99 47.38 144 Table 7. The ong>effectong> ong>ofong> ong>hydricong> ong>stressong> (2 weeks) on fatty acid composition in several Romanian sunflower hybrids Fatty acids Experimental variants % from total area Alex Favorit Justin Romina Splendor % % % differences ences ences total ences diffe r- diffe r- % from differ- from from from total total total % % % area % area area area Palmitic Control 6.36 100 6.12 100 6.03 100 7.1 100 5.47 100 acid Hydric ong>stressong> 7.1 112 6.51 106 6.66 110 7.79 110 6.06 111 Stearic Control 6.24 100 4.52 100 4.05 100 4.23 100 5.07 100 acid Hydric ong>stressong> 6.1 98 3.19 71 3.85 95 3.23 76 4.29 85 Oleic Control 38.09 100 31.47 100 33.59 100 28.15 100 35.95 100 acid Hydric ong>stressong> 23.84 63 27.35 87 23.59 70 20.34 72 27.94 78 Linoleic Control 46.45 100 60.18 100 54.64 100 57 100 51.72 100 acid Hydric ong>stressong> 60.53 130 61.54 102 64.11 117 68.09 119 59.02 114 differences % In contrast, ong>theong> linoleic acid concentration increases in drought variants. The proportion ong>ofong> linoleic acid in fatty acid composition ranges between 59.02–64.11%. Because ong>theong> late sunflower hybrids are more sensitive to ong>hydricong> ong>stressong>, it is possible to accelerate ong>theong> maturation ong>ofong> seed process, so under ong>theong>se conditions ong>theong> linoleic acid concentration increases under ong>hydricong> ong>stressong> conditions. The Justin hybrid (ong>theong> latest sunflower hybrid ong>ofong> this study) presents ong>theong> most obvious differences concerning oleic acid: linoleic acid ratio (ong>theong> normal value ong>ofong> this ratio in mature seeds is 1:2). But, in this case is difficult to explain ong>theong> severe modification ong>ofong> oleic acid : linoleic acid ratio to Alex hybrid (early hybrid). The research work ong>ofong> Baldini et al. (2000) revealed that water ong>stressong> causes a significant CONCLUSIONS The reduction ong>ofong> leaf area, shoot size and biomass accumulation ong>ofong> sunflower seedlings under ong>hydricong> ong>stressong> conditions determined ong>theong> increase ong>ofong> root/shoot ratio. This suggests that for young plants ong>theong> main sink is ong>theong> survival. In late stage ong>ofong> vegetation, ong>theong> root/shoot ratio decreases under drought ong>stressong> in some hybrids but increases in oong>theong>r hybrids, this suggesting that for mature plants ong>theong> main sink is ong>theong> yield. The ong>hydricong> ong>stressong> has induced changes in peroxidase activities and perhaps ong>theong> ong>hydricong> ong>stressong> accelerates ong>theong> maturation ong>ofong> seeds, ong>theong> anoong>theong>r enzyme leading to ong>theong> modifications ong>ofong> fatty acid composition ong>ofong> seeds.

ELENA PETCU ET AL.: THE EFFECT OF HYDRIC STRESS ON SOME CHARACTERISTICS OF SUNFLOWER PLANTS 21 Acknowledgements This research was sponsored by ong>theong> Romanian Education and Research Ministry (Grant 6172/2000) and DAAD Research Fund (No. A/01/18349). We gratefully acknowledge Prong>ofong>. F. Marx (Institute for Food Science, Bonn) and Prong>ofong>. Schnabl’s team for technical assistance (Institute ong>ofong> Agricultural Botany, Bonn). REFERENCES Aguera, F., Villalobos, F.J., Orgaz, F., 1997. Evaluation ong>ofong> sunflower (Helianthus annuus, L) genotypes differing in early vigor using a simulation model. European Journal ong>ofong> Agronomy, 7: 109–118. Baldini, M., Givanardi, R., Vanozzi, G.P., 2000. Effect ong>ofong> different water availability on fatty acid composition ong>ofong> ong>theong> oil in standard and high oleic sunflower hyrids. Beard, J.B. 1973., Turfgrass: Science and culture. Prientice – Hall, Englewood Cliffs, NJ. Belhassen, E., 1995. An example ong>ofong> interdisciplinary drought tole rance study. Looking for physiological and molecular markers ong>ofong> low cuticular transpiration. Int. Congress on integrated studies on drought tolerance ong>ofong> higher plants, „Interdrought 95”, Montpellier, France. Blum, A., 1988. Breeding for ong>stressong> env ironments. Boca Raton: CRC Press. Castillo FJ, Penel C, Greppin H., 1984. Peroxidase release induced by ozone in Sedum album leaves. Involvement ong>ofong> Ca2+. Plant Physiol 74: 846–851. Castillo, FJ, Miller, PR, Greppin, H., 1987. Extracellular biochemical markers ong>ofong> photochemical oxidant air pollution damage to Norway spruce. Experientia 43: 111–115. Kim, K.S., Beard, J.B., Sifers, S.I., 1989. Drought resistance comparisons among major warm-season turfgrasses. USGA Green Section Record. Muriel, J.L., Downes, R.W., 1974. Effect ong>ofong> periods ong>ofong> moisture ong>stressong> during various phase ong>ofong> growth ong>ofong> sunflower in ong>theong> greenhouse. Proc.6 th Intern. Sunflower Conf., Bucharest, Romania: 127–132. Petcu, E., Þerbea, M., Vranceanu, A.V., Craiciu, D., Zglimbea, R.G. 1997. Relationship between free proline content and drought tolerance in some Romanian sunflower genotypes. Proceeding ong>ofong> international congress „Drought and plant production”: 437–443, Serbia. Ranieri, A., Castagna, A., Padu, E., Moldau, H., Rahi, M., Soldatini, G.F., 1999. The decay ong>ofong> O 3 through direct reaction with cell wall ascorbate is not sufficient to explain ong>theong> different degrees ong>ofong> O 3 sensitivity in two poplar clones. J. Plant Physiol. 154: 250–255. Sharp, R.E., and Davies, W.J., 1985. Rooth growth and water uptake by maize plants in draying soil. J. Exp.Bot. 36: 1441–1456. Sharp, R.E., Boyer, J.S., 1986. Photosynong>theong>sis at low water potentials in sunflower: lack ong>ofong> photosinhibitory ong>effectong>s. Plant Physiol., 82: 90–95. Talha, M., Osman, F., 1975. Effect ong>ofong> soil water ong>stressong> on water economy and oil composition in sunflower (Helia n- thus annuus L.). J. Agric. Sci. Camb., 84: 49–56. Þerbea, M., Vranceanu A, V., Petcu, E., Micuþ, G., 1995. Physiological response ong>ofong> sunflower drought ong>stressong>es plants. Proceeding ong>ofong> International Congress on Integrated Studies on Drought Tolerance ong>ofong> Heigher Plants. France S–IX 10. Vanacker, H., Carver, T.L.W., Foyer, C.H., 1998. Pathogeninduced changes in ong>theong> antioxidant status ong>ofong> ong>theong> apoplast in barley leaves. Plant Physiol. 117: 1103–1114.

20<br />

ROMANIAN AGRICULTURAL RESEARCH<br />

Number 16 / 2001<br />

for Alex and Justin (37 and 30% respectively)<br />

than for Favorit hybrid (13%) (Tables 6 and 7).<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 15% in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oleic acid in standard hybrids.<br />

Fatty<br />

acids<br />

Table 6. The <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hydric</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> (1 week) <strong>on</strong> fatty acid compositi<strong>on</strong> in several Romanian <strong>sunflower</strong> hybrids<br />

Experimental<br />

variants<br />

%<br />

from<br />

total<br />

area<br />

Alex Favorit Justin Romina Splendor<br />

differences<br />

%<br />

differences<br />

%<br />

diffe - % from differences<br />

%<br />

from<br />

from<br />

rences total<br />

from<br />

%<br />

total<br />

%<br />

total<br />

% area %<br />

total<br />

area<br />

area<br />

area<br />

differences<br />

%<br />

Palmitic C<strong>on</strong>trol 6.58 100 5.82 100 6.38 100 7.14 100 6.09 100<br />

acid Hydric <str<strong>on</strong>g>stress</str<strong>on</strong>g> 6.72 102 6.3 108 6.28 98 6.94 97 6.09 100<br />

Stearic C<strong>on</strong>trol 6.57 100 4.32 100 3.6 100 4.41 100 6.41 100<br />

acid Hydric <str<strong>on</strong>g>stress</str<strong>on</strong>g> 5.63 86 3.89 90 4.05 113 5.37 122 5.02 78<br />

Oleic C<strong>on</strong>trol 36.91 100 52.09 100 44.92 100 29.78 100 52.03 100<br />

acid Hydric <str<strong>on</strong>g>stress</str<strong>on</strong>g> 33.28 90 35.27 68 35.54 79 29.32 98 38.59 74<br />

Linoleic C<strong>on</strong>trol 46.45 100 34.89 100 43.44 100 56.1 100 32.89 100<br />

acid Hydric <str<strong>on</strong>g>stress</str<strong>on</strong>g> 51.57 111 52.11 149 50.92 117 55.7 99 47.38 144<br />

Table 7. The <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hydric</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> (2 weeks) <strong>on</strong> fatty acid compositi<strong>on</strong> in several Romanian <strong>sunflower</strong> hybrids<br />

Fatty<br />

acids<br />

Experimental<br />

variants<br />

%<br />

from<br />

total<br />

area<br />

Alex Favorit Justin Romina Splendor<br />

%<br />

%<br />

%<br />

differences<br />

ences ences total ences<br />

diffe r- diffe r- % from differ-<br />

from<br />

from<br />

from<br />

total<br />

total<br />

total<br />

%<br />

%<br />

% area %<br />

area<br />

area<br />

area<br />

Palmitic C<strong>on</strong>trol 6.36 100 6.12 100 6.03 100 7.1 100 5.47 100<br />

acid Hydric <str<strong>on</strong>g>stress</str<strong>on</strong>g> 7.1 112 6.51 106 6.66 110 7.79 110 6.06 111<br />

Stearic C<strong>on</strong>trol 6.24 100 4.52 100 4.05 100 4.23 100 5.07 100<br />

acid Hydric <str<strong>on</strong>g>stress</str<strong>on</strong>g> 6.1 98 3.19 71 3.85 95 3.23 76 4.29 85<br />

Oleic C<strong>on</strong>trol 38.09 100 31.47 100 33.59 100 28.15 100 35.95 100<br />

acid Hydric <str<strong>on</strong>g>stress</str<strong>on</strong>g> 23.84 63 27.35 87 23.59 70 20.34 72 27.94 78<br />

Linoleic C<strong>on</strong>trol 46.45 100 60.18 100 54.64 100 57 100 51.72 100<br />

acid Hydric <str<strong>on</strong>g>stress</str<strong>on</strong>g> 60.53 130 61.54 102 64.11 117 68.09 119 59.02 114<br />

differences<br />

%<br />

In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> linoleic acid c<strong>on</strong>centrati<strong>on</strong><br />

increases in drought variants. The proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> linoleic acid in fatty acid compositi<strong>on</strong><br />

ranges between 59.02–64.11%.<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> late <strong>sunflower</strong> hybrids are<br />

more sensitive to <str<strong>on</strong>g>hydric</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, it is possible to<br />

accelerate <str<strong>on</strong>g>the</str<strong>on</strong>g> maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seed process, so<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> linoleic acid c<strong>on</strong>centrati<strong>on</strong><br />

increases under <str<strong>on</strong>g>hydric</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s.<br />

The Justin hybrid (<str<strong>on</strong>g>the</str<strong>on</strong>g> latest <strong>sunflower</strong> hybrid<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this study) presents <str<strong>on</strong>g>the</str<strong>on</strong>g> most obvious differences<br />

c<strong>on</strong>cerning oleic acid: linoleic acid ratio<br />

(<str<strong>on</strong>g>the</str<strong>on</strong>g> normal value <str<strong>on</strong>g>of</str<strong>on</strong>g> this ratio in mature seeds is<br />

1:2). But, in this case is difficult to explain <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

severe modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oleic acid : linoleic acid<br />

ratio to Alex hybrid (early hybrid).<br />

The research work <str<strong>on</strong>g>of</str<strong>on</strong>g> Baldini et al. (2000)<br />

revealed that water <str<strong>on</strong>g>stress</str<strong>on</strong>g> causes a significant<br />

CONCLUSIONS<br />

The reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf area, shoot size and<br />

biomass accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sunflower</strong> seedlings<br />

under <str<strong>on</strong>g>hydric</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s determined <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> root/shoot ratio. This suggests that<br />

for young <strong>plants</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> main sink is <str<strong>on</strong>g>the</str<strong>on</strong>g> survival.<br />

In late stage <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> root/shoot ratio<br />

decreases under drought <str<strong>on</strong>g>stress</str<strong>on</strong>g> in <strong>some</strong> hybrids<br />

but increases in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hybrids, this suggesting<br />

that for mature <strong>plants</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> main sink is <str<strong>on</strong>g>the</str<strong>on</strong>g> yield.<br />

The <str<strong>on</strong>g>hydric</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> has induced changes<br />

in peroxidase activities and perhaps <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>hydric</str<strong>on</strong>g><br />

<str<strong>on</strong>g>stress</str<strong>on</strong>g> accelerates <str<strong>on</strong>g>the</str<strong>on</strong>g> maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds, <str<strong>on</strong>g>the</str<strong>on</strong>g> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

enzyme leading to <str<strong>on</strong>g>the</str<strong>on</strong>g> modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fatty acid compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!