27.01.2014 Views

Mass spectrometry

Mass spectrometry

Mass spectrometry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Bionanotools and Protein Structure 2005<br />

<strong>Mass</strong> <strong>spectrometry</strong><br />

of peptides and proteins<br />

by<br />

Henrik Karring<br />

1


Outline<br />

The genome and the proteome<br />

Genomics and proteomics<br />

An overview of the technologies of proteomics<br />

2D gel electrophoresis<br />

Protein visualization<br />

Image Analysis<br />

2


<strong>Mass</strong> <strong>spectrometry</strong><br />

Ionization (MALDI and Electrospray)<br />

<strong>Mass</strong> analyzers<br />

Detector<br />

Protein identification by mass <strong>spectrometry</strong><br />

Peptide mass fingerprinting (MALDI)<br />

Tandem mass <strong>spectrometry</strong> (MS/MS)<br />

CAF-MS/MS<br />

Characterization of the human cornea proteome<br />

with reference to ocular transparency<br />

3


What is a Genome ?<br />

The complete DNA sequence of an organism<br />

STATIC. The genome is the same in all cells – all the time.<br />

4


What is a Proteome ?<br />

A proteome is the entire protein complement<br />

expressed by a given biological system in given<br />

conditions.<br />

Wilkins et al., BioTechnology 14,61-65 (1996)<br />

DYNAMIC. The proteome is not the same in all cells and tissues.<br />

5


What is Proteomics?<br />

Proteomics is the systematic analysis of protein<br />

expression patterns and functions in biological systems.<br />

It involves identifying all proteins and determine how the<br />

proteins interact.<br />

6


Why proteomics ?<br />

1. Proteins are the “business end” of the genes, the final<br />

product that carry out all the DNA instructions.<br />

2. Proteins carry out and regulate body processes.<br />

E.g. hormones, antibodies, enzymes, structural proteins.<br />

3. The correlation between mRNA abundance and protein<br />

amount is not that good.<br />

You can have a protein in a cell/tissue without its mRNA<br />

present.<br />

You can have lots of mRNA without translation to protein.<br />

7


4. Alternative splicing of mRNA<br />

5. Post-translational modifications.<br />

Signal peptide cleavage, other proteolytic events,<br />

phosphorylation, disulfides, cross linking etc.)<br />

6. Protein location<br />

(intra- or extracellular, membrane or organel associated).<br />

7. Proteomics is used to study protein interactions<br />

8. Most drug targets are proteins<br />

Proteomics is the direct way to annotate the genome<br />

8


Summary<br />

Proteomics address fundamental problems like:<br />

(i) does the protein exist at all ?<br />

(ii) where is the protein ?<br />

(what tissue, cell type, inside or outside the cell)<br />

(iii) when is the protein present ?<br />

(during development, inflammation, all the time….)<br />

(iv)<br />

Structure / Function<br />

9


2D gel electrophoresis<br />

10


Two-dimensional gel electrophoresis<br />

Isoelectric focusing (pI)<br />

Molecular weight<br />

11


Sample preparation<br />

2D-PAGE<br />

Cells or tissue<br />

Extract<br />

proteins<br />

Good separation of proteins including<br />

post-translational modified isoforms.<br />

12


Step 1: the sample is applied to the immobilized pH<br />

gradient strip over night.<br />

13


Step 2: The isoelectric<br />

performed.<br />

focusing step is<br />

Step 3: the next day the<br />

strips are incubated in<br />

SDS-sample buffer and<br />

alkylated.<br />

14


Step 4: 2-Dimensional SDS-PAGE electrophoresis<br />

15


Protein visualization<br />

16


Coomassie Brilliant Blue R-250 staining<br />

MW: 826.0 g/mol<br />

Detection limit ~ 100 ng protein<br />

Max abs ~ 550 nm<br />

Formula: C 45 H 44 O 7 S 2 Na


1. Binds non-specifically to protonated amino<br />

groups by electrostatic interactions<br />

2. Useful for densitometry<br />

3. Simple protocol<br />

4. Compatible with mass <strong>spectrometry</strong>


Silver staining<br />

1. Reduction of Ag + to metallic Ag → staining<br />

Ag + ions complexed with sulfhydryl and carboxyl<br />

groups of proteins are selectively reduced.<br />

1. High sensitivity<br />

Detection limit ~ 2-5 ng protein<br />

4. Easy to use and not expensive.<br />

5. “Compatible with mass <strong>spectrometry</strong>”


pH 4<br />

7<br />

12.5%<br />

The protein stained with<br />

silver is not useful for<br />

mass <strong>spectrometry</strong><br />

20


Fluorescent dyes<br />

1. Cydye DIGE Fluors (Cy2, Cy3, and Cy5) – cyanine<br />

2. Cross-link to epsilon amine on lysine via amide linkage<br />

3. Cydyes are size and charge-matched<br />

- proteins with different labels will overlay<br />

4. Have narrow excitation and emission bands


Internal standard (pool of 1 and 2)<br />

Label with Cy2<br />

Protein sample 1 (normal)<br />

e.g. control label with Cy3<br />

Mix labelled<br />

samples<br />

Image gel on Typhoon<br />

Protein sample 2 (diseased)<br />

e.g. treated label with Cy5<br />

Excitation wavelength 1 Excitation wavelength 3<br />

Excitation wavelength 2


Ettan 2D difference gel electrophoresis<br />

(Ettan 2D-DIGE)


- no gel-to-gel variation<br />

- high sensitivity (~ 1 ng)<br />

- pH insensitive (no change in signal over wide pH range)<br />

-very accurate - good statistical analysis<br />

- can detect < 10% difference in expression<br />

- less analysis time<br />

- compatible with mass <strong>spectrometry</strong>


Image analysis<br />

25


PDQuest program for 2D-PAGE<br />

Normal Diseased Drug-treated<br />

Compare expression profiles<br />

Up- and down regulated<br />

26


Functions and principles<br />

1. Image fitting and Gaussian modeling.<br />

2. Spot detection<br />

3. Normalization and removing lines and speckles<br />

4. Matching of gels<br />

(e.g. normal, diseased, and treated tissues)<br />

5. Analysis of data (changes in expression)<br />

6. Annotation of spots<br />

(linking of data to spots – intensity and MS data etc.)<br />

27


3D viewer<br />

30


<strong>Mass</strong> <strong>spectrometry</strong><br />

31


Components of a <strong>Mass</strong> Spectrometer<br />

High Vacuum System<br />

Turbo pumps<br />

Rough pumps<br />

Inlet<br />

Ion<br />

source<br />

<strong>Mass</strong><br />

analyzer<br />

Detector<br />

Recorder<br />

HPLC<br />

Sample plate<br />

MALDI<br />

Electrospray<br />

TOF<br />

Quadropole<br />

Microchannel<br />

plate<br />

PC<br />

Macintosh<br />

<strong>Mass</strong> spectrometers measure the mass-to-charge (m/z)<br />

ratios of gas phase ions<br />

32


Ionization<br />

M + nH + (M+nH) n+<br />

MALDI: Matrix Assisted Laser Desorption Ionization<br />

Sample co-crystallized with a UV-absorbing matrix<br />

Pulsed ionization method<br />

Produces mainly single-charged ions (+1)<br />

ESI: ElectroSpray Ionization<br />

Sample in solution<br />

Continuous ionization method<br />

Produces multiple-charged ions (+1, +2, …..)<br />

33


What is a “matrix” for MALDI?<br />

A couple of representative matrices that have been<br />

demonstrated to be good "all-around" MALDI matrices.<br />

O<br />

O<br />

OH<br />

OH<br />

HO<br />

OH<br />

HO<br />

CN<br />

2,4-dihydroxy benzoic acid<br />

alpha-cyano-4-hydroxy<br />

cinnamic acid<br />

Adsorption: 337 nm<br />

34


MALDI<br />

Sample plate<br />

Nitrogen UV laser (337 nm, 3 nsec pulses)<br />

hν<br />

1. Sample is mixed with excess<br />

matrix and dried on a MALDI<br />

plate.<br />

MH +<br />

2. Laser flash ionizes matrix<br />

molecules.<br />

3. Sample molecules are ionized by<br />

proton transfer from matrix.<br />

+20 kV<br />

Variable<br />

Grid<br />

Ground<br />

Grid<br />

35


Target plates for MALDI<br />

36


Electrospray Ionization<br />

Nanoflow electrospray<br />

Flowrate: 200-300 nL/min<br />

37


<strong>Mass</strong> analyzers<br />

Time-of-flight (TOF)<br />

m/z can be calculated from the measured<br />

time-of-flight<br />

Quadrupole (mass filter)<br />

ions of a certain m/z are selected<br />

Ion trap<br />

ion are trapped and can be further analyzed<br />

(multiple MS/MS)


MALDI time-of-flight<br />

Target plate (+20kV)<br />

Reflector Detector<br />

Reflector<br />

Linear<br />

Detector<br />

Flight tube<br />

Laser<br />

1kV<br />

2kV 3kV<br />

10kV<br />

39


Reflector<br />

A reflector is an “ion mirror” that:<br />

1: increases the overall path<br />

length for an ion.<br />

2: provides higher performance<br />

(resolution and mass accuracy).<br />

40


Quadrupole (mass filter)<br />

41


Microchannel Plate Detector (MCP)<br />

Up close view<br />

The channels are 12.5 microns in diameter.<br />

(A human hair is 60 - 80 microns in diameter)<br />

42


Signal Amplification in a<br />

Microchannel plate<br />

43


Micromass Q-TOF Ultima Global<br />

mass spectrometer<br />

Peptide ions are selected in the<br />

quadrupole<br />

44


Protein identification by<br />

mass <strong>spectrometry</strong><br />

46


Peptide mass fingerprinting by<br />

MALDI-MS<br />

Trypsin<br />

digestion<br />

Abundance<br />

p5<br />

p3<br />

p1<br />

p4<br />

p2<br />

MALDI-MS<br />

Peptide<br />

extraction<br />

and matrix<br />

MALDI target<br />

m/z<br />

47


Combined spectrum of sample<br />

48


Isotope cluster of peptide<br />

Monoisotopic<br />

Peptide<br />

(all C 12 )<br />

49


What happens during the search?<br />

The protein databases contain<br />

all know protein sequences.<br />

Search:<br />

Which record in the<br />

database fits the<br />

determined masses<br />

best ?<br />

In-silico digestion:<br />

The theoretical mass<br />

of the tryptic peptides<br />

for each protein in<br />

the database.<br />

Peak list<br />

The mass of the “real” tryptic peptides<br />

determined by the mass spectrometer<br />

are compared to the each sequence<br />

record in the database.<br />

50


Choose database<br />

Choose organism<br />

Find peak list file<br />

Select modifications<br />

Peptide tolerance<br />

51


Protein score<br />

52


Tandem mass <strong>spectrometry</strong><br />

Peptide fragmentation<br />

53


Fragmentation<br />

The most commonly observed ions are the b- and y-<br />

ions<br />

54


Example of MS-MS Sequencing<br />

K EE P A N D I Q<br />

FA<br />

Parent ion<br />

D<br />

Spectrum can be complex to interpret<br />

55


LC-MS/MS<br />

MudPit: Multi-dimensional Protein identifiation technology<br />

1. Digestion of complex protein sample<br />

2. Online separation of peptides by<br />

SCX and reverse phase<br />

chromatography<br />

3. MS/MS sequencing of peptides<br />

4. Combining all MS/MS data<br />

5. Search databases<br />

56


Chemical-assisted fragmentation<br />

The problems of reading sequence from MS/MS spectra can be<br />

encountered by the use of CAF<br />

Lysine modification<br />

Prevents the reaction of<br />

lysine residues in<br />

second step<br />

57


Sulfonation<br />

Sulfonation of N-terminus.<br />

Introduces a negative charge<br />

58


Charges on sulfonated ion<br />

Tryptic peptide:<br />

Sulfonated peptide:<br />

-<br />

+<br />

Lys/Arg<br />

+<br />

Lys/Arg<br />

Peptide ion in positive mode:<br />

-<br />

+<br />

+<br />

Lys/Arg<br />

59


After quadrupole selection<br />

Parent ion<br />

60


After applying collision energy<br />

R<br />

R<br />

R<br />

R<br />

R<br />

Parent ion<br />

-<br />

CAF-ELINSWVESQTNGIIR + S<br />

N<br />

I<br />

L<br />

E<br />

CAF<br />

(R)<br />

I/L<br />

113<br />

I/L<br />

113<br />

G<br />

57<br />

N<br />

114<br />

E<br />

T Q S 129<br />

101 127 87<br />

V W S<br />

99 186 86<br />

N<br />

I/L<br />

114 113<br />

I/L<br />

E<br />

113 129<br />

134<br />

61


Something about sensitivity<br />

(a 50 kDa protein is used in the examples)<br />

500 pico mol -1 nano mol (25-50 micro g)<br />

SDS-PAGE (Coomassie): 20 pico mol (1 micro g)<br />

SDS-PAGE (Silver): 0.2 - 2 pico mol (10 - 100 nano g)<br />

Silver is 10 -100 x times more sensitive than Coomassie<br />

Edman degradation: 10-20 pico mol (0.5 - 1 micro g)<br />

Amino acid analysis: 10-20 pico mol (0.5 - 1 micro g)<br />

Sensitivity of MALDI or Electrospray is in<br />

the femto mol range or into even atto<br />

mole amount. 10 -6 micro<br />

10 -9 nano<br />

10 -12 pico<br />

10 -15 fento<br />

10 -18 atto<br />

62


The End<br />

63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!