27.01.2014 Views

Homogen catalysis

Homogen catalysis

Homogen catalysis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Homogen</strong> <strong>catalysis</strong><br />

1


<strong>Homogen</strong> <strong>catalysis</strong><br />

vs<br />

heterogeneous <strong>catalysis</strong><br />

2<br />

<strong>Homogen</strong>e <strong>catalysis</strong>:<br />

Production of compounds in multi-tons scale to gram scale –<br />

from simple to highly advanced compounds.<br />

Increased value ($/kg)<br />

Heterogenous <strong>catalysis</strong>:<br />

Production of compounds in multi-tons scale –<br />

mainly simple compounds<br />

Low value ($/kg)


<strong>Homogen</strong> <strong>catalysis</strong> vs<br />

heterogeneous <strong>catalysis</strong> –<br />

from a practical point of view<br />

3<br />

<strong>Homogen</strong>e <strong>catalysis</strong>:<br />

All constituents in one phase – liquid phase<br />

E.g. transition metal/organic catalyst – discrete catalyst<br />

Heterogenous <strong>catalysis</strong>:<br />

One or more of the constituents are in different phases<br />

Reaction takes place at the phase interface - the catalyst surface


Advantages - disadvantages<br />

<strong>Homogen</strong>e <strong>catalysis</strong>:<br />

Advantages: From small to large molecules<br />

One active site – control of selectivity<br />

Low catalyst loadings – high turnover<br />

4<br />

Disadvantages: Seperation<br />

Lower stability<br />

Sometimes – high catalyst loadings<br />

Complex mechanisms<br />

Heterogenous <strong>catalysis</strong>:<br />

Advantages: Seperation of reaction products from catalyst<br />

High stability<br />

Catalyst regeneration<br />

Low catalyst loadings – high turnover<br />

Disadvantages: Small molecules<br />

Several active sites - less control of side reactions<br />

”No” selectivity


Heterogeneous <strong>catalysis</strong> -<br />

small molecules with impact<br />

5<br />

N 2 + 3 H 2<br />

Catalyst<br />

2NH 3<br />

3-5% of the worlds<br />

energy production!


Small molecules with impact<br />

6<br />

H<br />

H<br />

H<br />

H<br />

+ O 2<br />

Ag110<br />

H<br />

H<br />

O<br />

H<br />

H<br />

H<br />

H<br />

O<br />

H<br />

H<br />

a large number of organic compounds<br />

- fundamental for the world<br />

H 3 C<br />

H 2<br />

C CH2<br />

CH 3<br />

V 2 O 5<br />

O<br />

O<br />

O<br />

14-electron oxidation!!!<br />

O<br />

O<br />

O<br />

+ O 2<br />

a large number of organic compounds<br />

- fundamental for the world


7<br />

Advantages for<br />

homogeneous <strong>catalysis</strong><br />

(a) Selectivity<br />

(b) Activity<br />

(c) Ease of modification<br />

(d) Easy of study<br />

(e) Efficiency


The physical chemistry behind <strong>catalysis</strong><br />

8


Activation of organic compounds<br />

by transition metals<br />

9<br />

Bonding ability - transition metal d-orbitals<br />

x<br />

z<br />

y<br />

d yz (d xy, d xz )<br />

d z 2 (d x 2 -y 2)<br />

Bonding ability - organic compounds<br />

LUMO - π*<br />

HOMO - π


Bonding interactions<br />

10<br />

HOMO<br />

LUMO<br />

LUMO<br />

HOMO<br />

M<br />

Cl<br />

Cl<br />

Pd<br />

Cl<br />

Electron-rich - HOMO(M)-LUMO(alkene)<br />

Wacker process<br />

Cl<br />

Cl<br />

Ti<br />

Cl<br />

Electron-poor - LUMO(M)-HOMO(alkene)<br />

Ziegler-Natta process


Wacker process<br />

11<br />

Cl<br />

Cl<br />

Pd<br />

Cl<br />

Electron-rich - HOMO(M)-LUMO(alkene)<br />

Wacker process<br />

H 2 O<br />

PdCl 2<br />

O<br />

Several millions tons/year<br />

Catalyst: [PdCl 2 ] n =<br />

Pd<br />

Cl<br />

Pd<br />

Cl<br />

Cl<br />

Cl<br />

Pd<br />

Cl<br />

Cl<br />

Pd<br />

Cl<br />

Cl<br />

Pd<br />

Commercially available<br />

insoluble oligomer<br />

rust brown


Looks simple – but no!<br />

12<br />

H 2 O<br />

O<br />

PdCl 2


R<br />

Ziegler-Natta<br />

TiCl 4 /<br />

AlCl 3<br />

R<br />

H 2<br />

C C<br />

H 2<br />

n<br />

Polymerization<br />

13


Reduction of alkenes<br />

14<br />

R<br />

H 2<br />

H<br />

R<br />

H<br />

L 3 RhCl


Asymmetric <strong>catalysis</strong><br />

15


Asymmetric <strong>catalysis</strong><br />

16


Pasteurs crystals<br />

17<br />

EtOOC<br />

OH<br />

HO<br />

COOEt<br />

EtOOC<br />

OH<br />

HO<br />

COOEt<br />

Chiral molecules


Chiral molecules<br />

18


Is the heart always to the left?<br />

19


Why are the stairs always turning the same<br />

way?<br />

20


21<br />

Carvone<br />

Mint<br />

Caraway


Chiral molecules - receptor interaction<br />

23


When it goes wrong<br />

24<br />

Goya: Mother showing her derformed child to two women<br />

Louvre, Paris


Nature gives us only one choice!<br />

26


Narwhale<br />

27


Chemical reaction<br />

31


Control of chirality with <strong>catalysis</strong><br />

32<br />

Energy<br />

Left<br />

Right<br />

E ‡ S<br />

E ‡cat R<br />

E ‡ R<br />

Reactants<br />

Product S<br />

Product R<br />

ee = (R-S)/(R+S)x100


Nobel prize – chemistry –<br />

2001<br />

33<br />

Dr. William S. Knowles, Monsanto Company, St. Louis, USA<br />

Professor Ryoji Noyori, Nagoya University, Japan<br />

”their work on chirally catalyzed hydrogenation reactions”<br />

Professor K. Barry Sharpless, The Scripps Research Institute, USA<br />

”his work on chirally catalyzed oxidation reactions”<br />

”This years Nobel Prize in Chemistry concerns the development of<br />

transition metal catalysts for stereoselective hydrogenation and oxidations –<br />

two important classes of synthetic reactions. Through the Laureates’ work<br />

a myriad of useful chiral compounds have become accessible”


34<br />

Catalytic asymmetric hydrogenation<br />

H<br />

H<br />

H H<br />

R<br />

R<br />

Kat.<br />

H H<br />

R<br />

H<br />

H


35<br />

Monsanto synthesis of L-DOPA - 1974<br />

MeO<br />

COOH<br />

H<br />

H<br />

MeO<br />

COOH<br />

AcO<br />

NHAc<br />

Rh-komplex<br />

AcO<br />

H NHAc<br />

100% udbytte<br />

95% ee<br />

OMe<br />

H 3 O<br />

P<br />

P<br />

HO<br />

COOH<br />

OMe<br />

HO<br />

H NHAc


Noyori hydrognation of alkenes<br />

36<br />

Ph Ph O<br />

P<br />

Ru<br />

P<br />

Ph Ph O<br />

O<br />

O<br />

(S)-BINAP-Ru-komplex<br />

CH 2<br />

MeO<br />

COOH<br />

H H<br />

Ru-komplex<br />

CH 3<br />

MeO<br />

(S)-Naproxen<br />

92% udbytte<br />

95% ee<br />

COOH<br />

H


38<br />

Warfarin<br />

- from rat poison to heart<br />

medicin<br />

OH<br />

O<br />

O<br />

O<br />

Warfarin


Warfarin<br />

39<br />

• One of the world’s most widely used anticoagulants<br />

• Prevents blood clotting and atrial fibrillation<br />

• Estimated 2 mill. users (USA) ~22 mill. presciptions/year (USA)<br />

• Sales ~500-1000 million $ a year (USA)<br />

• Different activity and metabolism of the enantiomers<br />

• Only marketed as a racemate for more than 40 years<br />

• Originally used as a rat poison<br />

OH<br />

O<br />

O<br />

O


Clinical pharmacology of warfarin<br />

40<br />

• 5-8 times higher anticoagulant activity of (S)-warfarin compared<br />

to (R)-warfarin<br />

• Half-lives of 21-43 h for (S)-warfarin and 37-89 h for (R)-warfarin<br />

• Different metabolic pathways of (S) and (R) enantiomers<br />

• Many problems with drug-drug interactions for racemic warfarin<br />

due to the metabolism of the (S)-enantiomer<br />

• A stable concentration is critical, but very difficult, to maintain<br />

OH<br />

O<br />

O<br />

O


41<br />

S-warfarin metabolized by cytochrome P450<br />

X-ray crystal structure of S-warfarin in cytochrome P450 2C9


Warfarin – clinical pharmacology<br />

42<br />

H<br />

N<br />

O<br />

H<br />

N<br />

O<br />

Glutamic acid residue<br />

in glycoprotein<br />

CO 2 H<br />

CO 2 H<br />

CO 2 H<br />

CO 2 γ-carboxy<br />

O glutamic acid<br />

2<br />

clotting factor<br />

OH<br />

OH<br />

Vit K - hydroquinone<br />

Me<br />

R<br />

O<br />

O<br />

Me<br />

O<br />

R<br />

Vit K - epoxide<br />

Vit K reductase<br />

O<br />

Me<br />

Vit K reductase<br />

Warfarin<br />

O<br />

R<br />

Vit K - quinone<br />

Warfarin


Asymmetrisk synthesis of<br />

warfarin<br />

43<br />

OH<br />

O<br />

O<br />

+<br />

Ph<br />

O<br />

Me<br />

Chiral catalysts<br />

OH Ph O<br />

O<br />

O<br />

Me<br />

Catalysts<br />

N<br />

H<br />

N<br />

Me<br />

CO 2 H<br />

H<br />

N<br />

N<br />

H<br />

(R) or(S)-warfarin<br />

>20 analogues<br />

CO 2 H<br />

Up to 85% yield<br />

70% ee<br />

Up to 96% yield<br />

82 % ee (99.9% ee after recrystallization)


How did it all start?<br />

45


46<br />

Questions - discussion<br />

• Discuss the origin of chirality<br />

• Discuss the activation of alkenes by early and late transition metal complexes<br />

• Try to understand the role of d-electron occupation<br />

• Discuss the reaction mechanism for Wacker process<br />

• Discuss the reaction mechanism for Ziegler-Natta procecss<br />

• Discuss the reaction mechanism for hydrogenation of alkenes<br />

• Calculate the increase in reaction rate by a reduction of the activation energy<br />

by 10 kcal/mol

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!