27.01.2014 Views

Chapter 25 Slides Sections 1-3

Chapter 25 Slides Sections 1-3

Chapter 25 Slides Sections 1-3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

“…sparked by just the right<br />

combination of physical events<br />

& chemical processes…”<br />

Origin of Life<br />

AP Biology 2010-2011


Millions of years ago<br />

ARCHEAN<br />

PROTEROZOIC<br />

PRECAMBRIAN<br />

0<br />

500<br />

1000<br />

Cenozoic<br />

Mesozoic<br />

Paleozoic<br />

Colonization of land<br />

by animals<br />

Appearance of animals<br />

and land plants<br />

First multicellular<br />

organisms<br />

Bacteria Archaebacteria<br />

Protista Plantae<br />

Fungi<br />

Animalia<br />

1500<br />

Oldest definite fossils<br />

of eukaryotes<br />

2000<br />

<strong>25</strong>00<br />

3000<br />

3500<br />

4000<br />

4500<br />

AP Biology<br />

Appearance of oxygen<br />

in atmosphere<br />

Oldest definite fossils<br />

of prokaryotes<br />

Molten-hot surface of<br />

earth becomes cooler<br />

Formation of earth<br />

The evolutionary tree of<br />

life can be documented<br />

with evidence.<br />

The Origin of Life on<br />

Earth is another story…


Concept <strong>25</strong>.1: Conditions on early<br />

Earth made the origin of life possible<br />

• Chemical and physical processes on early<br />

Earth may have produced very simple cells<br />

through a sequence of stages:<br />

1. Abiotic synthesis of small organic molecules<br />

2. Joining of these small molecules into<br />

macromolecules<br />

3. Packaging of molecules into protocells<br />

4. Origin of self-replicating molecules<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


AP Biology<br />

Synthesis of Organic Compounds on<br />

Early Earth<br />

• Earth formed about 4.6 billion years ago, along<br />

with the rest of the solar system<br />

• Bombardment of Earth by rocks and ice likely<br />

vaporized water and prevented seas from<br />

forming before 4.2 to 3.9 billion years ago<br />

• Earth’s early atmosphere likely contained<br />

water vapor and chemicals released by<br />

volcanic eruptions (nitrogen, nitrogen oxides,<br />

carbon dioxide, methane, ammonia, hydrogen,<br />

hydrogen sulfide)<br />

© 2011 Pearson Education, Inc.


• In the 1920s, A. I. Oparin and J. B. S. Haldane<br />

hypothesized that the early atmosphere was a<br />

reducing environment<br />

• In 1953, Stanley Miller and Harold Urey<br />

conducted lab experiments that showed that<br />

the abiotic synthesis of organic molecules in a<br />

reducing atmosphere is possible<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


• However, the evidence is not yet convincing<br />

that the early atmosphere was in fact reducing<br />

• Instead of forming in the atmosphere, the first<br />

organic compounds may have been<br />

synthesized near volcanoes or deep-sea vents<br />

• Miller-Urey type experiments demonstrate that<br />

organic molecules could have formed with<br />

various possible atmospheres<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Conditions on early Earth<br />

AP Biology<br />

• Reducing atmosphere<br />

water vapor (H 2 O), CO 2 , N 2 , NO x , H 2 , NH 3 ,<br />

CH 4 , H 2 S<br />

lots of available H & its electron<br />

no free oxygen<br />

• Energy source<br />

lightning, UV radiation,<br />

volcanic<br />

What’s missing<br />

from that<br />

atmosphere?<br />

low O 2 =<br />

organic molecules<br />

do not breakdown<br />

as quickly


Origin of Organic Molecules<br />

• Abiotic synthesis<br />

1920<br />

Oparin & Haldane<br />

organic molecules<br />

can form from<br />

inorganic<br />

molecules<br />

1953<br />

Miller & Urey<br />

test hypothesis<br />

• formed organic<br />

compounds<br />

AP Biology<br />

• amino acids<br />

• adenine<br />

Water vapor<br />

Mixture of gases<br />

("primitive<br />

atmosphere")<br />

Heated water<br />

("ocean")<br />

Electrodes discharge<br />

sparks<br />

(lightning simulation)<br />

NH 3<br />

CH 4<br />

H 2<br />

Condenser<br />

Water<br />

Condensed<br />

liquid with<br />

complex,<br />

organic<br />

molecules


Stanley Miller<br />

University of Chicago<br />

produced<br />

-amino acids<br />

-hydrocarbons<br />

-nitrogen bases<br />

-other organics<br />

AP Biology<br />

Why was<br />

this experiment<br />

important??!


Key Events in Origin of Life<br />

• Origin of Cells (Protocells)<br />

lipid bubbles separate inside from outside<br />

metabolism & reproduction<br />

• Origin of Genetics<br />

RNA is likely first genetic material<br />

multiple functions: encodes information (selfreplicating),<br />

enzyme, regulatory molecule,<br />

transport molecule (tRNA, mRNA)<br />

• makes inheritance possible<br />

• makes natural selection & evolution possible<br />

• Origin of Eukaryotes<br />

endosymbiosis<br />

AP Biology


Abiotic Synthesis of Macromolecules<br />

• RNA monomers have been produced<br />

spontaneously from simple molecules<br />

• Small organic molecules polymerize when they<br />

are concentrated on hot sand, clay, or rock<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Protocells<br />

• Replication and metabolism are key properties<br />

of life and may have appeared together<br />

• Protocells may have been fluid-filled vesicles<br />

with a membrane-like structure<br />

• In water, lipids and other organic molecules<br />

can spontaneously form vesicles with a lipid<br />

bilayer<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


• Adding clay can increase the rate of vesicle<br />

formation<br />

• Vesicles exhibit simple reproduction and<br />

metabolism and maintain an internal chemical<br />

environment<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Relative turbidity,<br />

an index of vesicle number<br />

Figure <strong>25</strong>.3<br />

0.4<br />

0.2<br />

Precursor<br />

molecules only<br />

Precursor molecules plus<br />

montmorillonite clay<br />

0<br />

0<br />

20 40<br />

60<br />

Time (minutes)<br />

(a) Self-assembly<br />

Vesicle<br />

boundary<br />

1 m<br />

AP Biology<br />

(b) Reproduction<br />

20 m<br />

(c) Absorption of RNA


Self-Replicating RNA and the Dawn of<br />

Natural Selection<br />

• The first genetic material was probably RNA,<br />

not DNA<br />

• RNA molecules called ribozymes have been<br />

found to catalyze many different reactions<br />

For example, ribozymes can make<br />

complementary copies of short stretches of<br />

RNA<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Concept <strong>25</strong>.2: The fossil record<br />

documents the history of life<br />

• The fossil record reveals changes in the<br />

history of life on Earth<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


The Fossil Record<br />

• Sedimentary rocks are deposited into layers<br />

called strata and are the richest source of<br />

fossils<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Figure <strong>25</strong>.4<br />

Dimetrodon<br />

Present<br />

100 mya<br />

Rhomaleosaurus<br />

victor<br />

0.5 m<br />

175<br />

200<br />

1 m<br />

Tiktaalik<br />

Coccosteus<br />

cuspidatus<br />

4.5 cm<br />

270<br />

300<br />

375<br />

400<br />

Hallucigenia<br />

1 cm<br />

Stromatolites<br />

500<br />

5<strong>25</strong><br />

565<br />

600<br />

2.5 cm<br />

Dickinsonia<br />

costata<br />

AP Biology<br />

Fossilized<br />

stromatolite<br />

1,500<br />

3,500<br />

Tappania


• Few individuals have fossilized, and even<br />

fewer have been discovered<br />

• The fossil record is biased in favor of species<br />

that<br />

Existed for a long time<br />

Were abundant and widespread<br />

Had hard parts<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


How Rocks and Fossils Are Dated<br />

• Sedimentary strata reveal the relative ages of<br />

fossils<br />

• The absolute ages of fossils can be<br />

determined by radiometric dating<br />

• A “parent” isotope decays to a “daughter”<br />

isotope at a constant rate<br />

• Each isotope has a known half-life, the time<br />

required for half the parent isotope to decay<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Fraction of parent<br />

isotope remaining<br />

Figure <strong>25</strong>.5<br />

Accumulating<br />

“daughter”<br />

isotope<br />

1 2<br />

1 4<br />

1 8<br />

1 16<br />

Remaining<br />

“parent”<br />

isotope<br />

AP Biology<br />

1 2 3 4<br />

Time (half-lives)


• Radiocarbon dating can be used to date fossils<br />

up to 75,000 years old<br />

• For older fossils, some isotopes can be used<br />

to date sedimentary rock layers above and<br />

below the fossil<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Concept <strong>25</strong>.3: Key events in life’s<br />

history include the origins of singlecelled<br />

and multicelled organisms and<br />

the colonization of land<br />

• The geologic record is divided into the<br />

Archaean, the Proterozoic, and the<br />

Phanerozoic eons<br />

• The Phanerozoic encompasses multicellular<br />

eukaryotic life<br />

• The Phanerozoic is divided into three eras: the<br />

Paleozoic, Mesozoic, and Cenozoic<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


AP Biology<br />

© 2011 Pearson Education, Inc.<br />

Animation: The Geologic Record<br />

Right-click slide / select “Play”


Table <strong>25</strong>.1<br />

AP Biology


Table <strong>25</strong>.1a<br />

AP Biology


Table <strong>25</strong>.1b<br />

AP Biology


Timeline<br />

AP Biology<br />

• Key events in<br />

evolutionary<br />

history of life on<br />

Earth<br />

3.5–4.0 bya:<br />

life originated<br />

2.7 bya:<br />

free O 2 =<br />

photosynthetic<br />

bacteria<br />

2 bya:<br />

first eukaryotes


Figure <strong>25</strong>.7-3<br />

Cenozoic<br />

Humans<br />

Colonization<br />

of land<br />

Animals<br />

Origin of solar<br />

system and<br />

Earth<br />

Multicellular<br />

eukaryotes<br />

1<br />

Proterozoic<br />

4<br />

Archaean<br />

2<br />

3<br />

AP Biology<br />

Single-celled<br />

eukaryotes<br />

Prokaryotes<br />

Atmospheric oxygen


Figure <strong>25</strong>.UN02<br />

1<br />

4<br />

2 3<br />

Prokaryotes<br />

AP Biology


Figure <strong>25</strong>.UN03<br />

1<br />

4<br />

2 3<br />

AP Biology<br />

Atmospheric<br />

oxygen


Photosynthesis and the Oxygen<br />

Revolution<br />

• Most atmospheric oxygen (O 2 ) is of biological<br />

origin<br />

• O 2 produced by oxygenic photosynthesis<br />

reacted with dissolved iron and precipitated<br />

out to form banded iron formations<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


• By about 2.7 billion years ago, O 2 began<br />

accumulating in the atmosphere and rusting<br />

iron-rich terrestrial rocks<br />

• This “oxygen revolution” from 2.7 to 2.3 billion<br />

years ago caused the extinction of many<br />

prokaryotic groups<br />

• Some groups survived and adapted using<br />

cellular respiration to harvest energy<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


(percent of present-day levels; log scale)<br />

Figure <strong>25</strong>.8<br />

1,000<br />

100<br />

Atmospheric O 2<br />

10<br />

1<br />

0.1<br />

0.01<br />

“Oxygen<br />

revolution”<br />

0.001<br />

0.0001<br />

4 3 2 1 0<br />

Time (billions of years ago)<br />

AP Biology


Figure <strong>25</strong>.UN04<br />

1<br />

4<br />

AP Biology<br />

Singlecelled<br />

eukaryotes<br />

2 3


The First Eukaryotes<br />

• The oldest fossils of eukaryotic cells date back<br />

2.1 billion years<br />

• Eukaryotic cells have a nuclear envelope,<br />

mitochondria, endoplasmic reticulum, and a<br />

cytoskeleton<br />

• The endosymbiont theory proposes that<br />

mitochondria and plastids (chloroplasts and<br />

related organelles) were formerly small<br />

prokaryotes living within larger host cells<br />

• An endosymbiont is a cell that lives within a<br />

host cell<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


First Eukaryotes<br />

• Development of internal membranes<br />

create internal micro-environments<br />

advantage: specialization = increase efficiency<br />

infolding of the<br />

plasma membrane<br />

• natural selection!<br />

plasma<br />

membrane<br />

endoplasmic<br />

reticulum (ER)<br />

~2 bya<br />

nuclear envelope<br />

nucleus<br />

DNA<br />

AP Biology<br />

Prokaryotic<br />

cell<br />

cell wall<br />

Prokaryotic<br />

ancestor of<br />

eukaryotic<br />

cells<br />

plasma<br />

membrane<br />

Eukaryotic<br />

cell


1 st Endosymbiosis<br />

• Evolution of eukaryotes<br />

<br />

<br />

<br />

origin of mitochondria<br />

engulfed aerobic bacteria, but<br />

did not digest them<br />

mutually beneficial relationship<br />

• natural selection!<br />

internal membrane<br />

system<br />

aerobic bacterium<br />

mitochondrion<br />

Endosymbiosis<br />

Ancestral<br />

eukaryotic cell<br />

AP Biology<br />

Eukaryotic cell<br />

with mitochondrion


2 nd Endosymbiosis<br />

• Evolution of eukaryotes<br />

origin of chloroplasts<br />

engulfed photosynthetic bacteria,<br />

but did not digest them<br />

mutually beneficial relationship<br />

• natural selection!<br />

photosynthetic<br />

bacterium<br />

Eukaryotic<br />

cell with<br />

mitochondrion<br />

chloroplast<br />

Endosymbiosis<br />

mitochondrion<br />

AP Biology<br />

Eukaryotic cell with<br />

chloroplast & mitochondrion


Theory of Endosymbiosis<br />

• Evidence<br />

AP Biology<br />

structural<br />

• mitochondria & chloroplasts<br />

resemble bacterial structure<br />

genetic<br />

• mitochondria & chloroplasts<br />

have their own circular DNA, like bacteria<br />

functional<br />

• mitochondria & chloroplasts<br />

move freely within the cell<br />

• mitochondria & chloroplasts<br />

reproduce independently<br />

from the cell<br />

Lynn Margulis


Figure <strong>25</strong>.UN05<br />

1<br />

4<br />

2 3<br />

AP Biology<br />

Multicellular<br />

eukaryotes


The Origin of Multicellularity<br />

• The evolution of eukaryotic cells allowed for a<br />

greater range of unicellular forms<br />

• A second wave of diversification occurred<br />

when multicellularity evolved and gave rise to<br />

algae, plants, fungi, and animals<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Figure <strong>25</strong>.UN06<br />

Animals<br />

1<br />

4<br />

2 3<br />

AP Biology


Cambrian explosion<br />

• Diversification of Animals<br />

within 10–20 million years most of the major<br />

phyla of animals appear in fossil record<br />

543 mya<br />

AP Biology


AP Biology


The Cambrian Explosion<br />

• The Cambrian explosion refers to the sudden<br />

appearance of fossils resembling modern<br />

animal phyla in the Cambrian period (535 to<br />

5<strong>25</strong> million years ago)<br />

• A few animal phyla appear even earlier:<br />

sponges, cnidarians, and molluscs<br />

• The Cambrian explosion provides the first<br />

evidence of predator-prey interactions<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Figure <strong>25</strong>.10<br />

Sponges<br />

Cnidarians<br />

Echinoderms<br />

Chordates<br />

Brachiopods<br />

Annelids<br />

Molluscs<br />

Arthropods<br />

AP Biology<br />

PROTEROZOIC<br />

Ediacaran<br />

PALEOZOIC<br />

Cambrian<br />

635 605 575 545 515 485 0<br />

Time (millions of years ago)


Figure <strong>25</strong>.UN07<br />

Colonization of land<br />

1<br />

4<br />

2 3<br />

AP Biology


The Colonization of Land<br />

• Fungi, plants, and animals began to colonize<br />

land about 500 million years ago<br />

• Vascular tissue in plants transports materials<br />

internally and appeared by about 420 million<br />

years ago<br />

• Plants and fungi today form mutually<br />

beneficial associations and likely colonized<br />

land together<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


• Arthropods and tetrapods are the most<br />

widespread and diverse land animals<br />

• Tetrapods evolved from lobe-finned fishes<br />

around 365 million years ago<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Is there life elsewhere?<br />

Does it look like life on Earth?<br />

They would<br />

Ask Questions!<br />

AP Biology 2008-2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!