27.01.2014 Views

Chapter 25 Slides Sections 1-3

Chapter 25 Slides Sections 1-3

Chapter 25 Slides Sections 1-3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

“…sparked by just the right<br />

combination of physical events<br />

& chemical processes…”<br />

Origin of Life<br />

AP Biology 2010-2011


Millions of years ago<br />

ARCHEAN<br />

PROTEROZOIC<br />

PRECAMBRIAN<br />

0<br />

500<br />

1000<br />

Cenozoic<br />

Mesozoic<br />

Paleozoic<br />

Colonization of land<br />

by animals<br />

Appearance of animals<br />

and land plants<br />

First multicellular<br />

organisms<br />

Bacteria Archaebacteria<br />

Protista Plantae<br />

Fungi<br />

Animalia<br />

1500<br />

Oldest definite fossils<br />

of eukaryotes<br />

2000<br />

<strong>25</strong>00<br />

3000<br />

3500<br />

4000<br />

4500<br />

AP Biology<br />

Appearance of oxygen<br />

in atmosphere<br />

Oldest definite fossils<br />

of prokaryotes<br />

Molten-hot surface of<br />

earth becomes cooler<br />

Formation of earth<br />

The evolutionary tree of<br />

life can be documented<br />

with evidence.<br />

The Origin of Life on<br />

Earth is another story…


Concept <strong>25</strong>.1: Conditions on early<br />

Earth made the origin of life possible<br />

• Chemical and physical processes on early<br />

Earth may have produced very simple cells<br />

through a sequence of stages:<br />

1. Abiotic synthesis of small organic molecules<br />

2. Joining of these small molecules into<br />

macromolecules<br />

3. Packaging of molecules into protocells<br />

4. Origin of self-replicating molecules<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


AP Biology<br />

Synthesis of Organic Compounds on<br />

Early Earth<br />

• Earth formed about 4.6 billion years ago, along<br />

with the rest of the solar system<br />

• Bombardment of Earth by rocks and ice likely<br />

vaporized water and prevented seas from<br />

forming before 4.2 to 3.9 billion years ago<br />

• Earth’s early atmosphere likely contained<br />

water vapor and chemicals released by<br />

volcanic eruptions (nitrogen, nitrogen oxides,<br />

carbon dioxide, methane, ammonia, hydrogen,<br />

hydrogen sulfide)<br />

© 2011 Pearson Education, Inc.


• In the 1920s, A. I. Oparin and J. B. S. Haldane<br />

hypothesized that the early atmosphere was a<br />

reducing environment<br />

• In 1953, Stanley Miller and Harold Urey<br />

conducted lab experiments that showed that<br />

the abiotic synthesis of organic molecules in a<br />

reducing atmosphere is possible<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


• However, the evidence is not yet convincing<br />

that the early atmosphere was in fact reducing<br />

• Instead of forming in the atmosphere, the first<br />

organic compounds may have been<br />

synthesized near volcanoes or deep-sea vents<br />

• Miller-Urey type experiments demonstrate that<br />

organic molecules could have formed with<br />

various possible atmospheres<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Conditions on early Earth<br />

AP Biology<br />

• Reducing atmosphere<br />

water vapor (H 2 O), CO 2 , N 2 , NO x , H 2 , NH 3 ,<br />

CH 4 , H 2 S<br />

lots of available H & its electron<br />

no free oxygen<br />

• Energy source<br />

lightning, UV radiation,<br />

volcanic<br />

What’s missing<br />

from that<br />

atmosphere?<br />

low O 2 =<br />

organic molecules<br />

do not breakdown<br />

as quickly


Origin of Organic Molecules<br />

• Abiotic synthesis<br />

1920<br />

Oparin & Haldane<br />

organic molecules<br />

can form from<br />

inorganic<br />

molecules<br />

1953<br />

Miller & Urey<br />

test hypothesis<br />

• formed organic<br />

compounds<br />

AP Biology<br />

• amino acids<br />

• adenine<br />

Water vapor<br />

Mixture of gases<br />

("primitive<br />

atmosphere")<br />

Heated water<br />

("ocean")<br />

Electrodes discharge<br />

sparks<br />

(lightning simulation)<br />

NH 3<br />

CH 4<br />

H 2<br />

Condenser<br />

Water<br />

Condensed<br />

liquid with<br />

complex,<br />

organic<br />

molecules


Stanley Miller<br />

University of Chicago<br />

produced<br />

-amino acids<br />

-hydrocarbons<br />

-nitrogen bases<br />

-other organics<br />

AP Biology<br />

Why was<br />

this experiment<br />

important??!


Key Events in Origin of Life<br />

• Origin of Cells (Protocells)<br />

lipid bubbles separate inside from outside<br />

metabolism & reproduction<br />

• Origin of Genetics<br />

RNA is likely first genetic material<br />

multiple functions: encodes information (selfreplicating),<br />

enzyme, regulatory molecule,<br />

transport molecule (tRNA, mRNA)<br />

• makes inheritance possible<br />

• makes natural selection & evolution possible<br />

• Origin of Eukaryotes<br />

endosymbiosis<br />

AP Biology


Abiotic Synthesis of Macromolecules<br />

• RNA monomers have been produced<br />

spontaneously from simple molecules<br />

• Small organic molecules polymerize when they<br />

are concentrated on hot sand, clay, or rock<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Protocells<br />

• Replication and metabolism are key properties<br />

of life and may have appeared together<br />

• Protocells may have been fluid-filled vesicles<br />

with a membrane-like structure<br />

• In water, lipids and other organic molecules<br />

can spontaneously form vesicles with a lipid<br />

bilayer<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


• Adding clay can increase the rate of vesicle<br />

formation<br />

• Vesicles exhibit simple reproduction and<br />

metabolism and maintain an internal chemical<br />

environment<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Relative turbidity,<br />

an index of vesicle number<br />

Figure <strong>25</strong>.3<br />

0.4<br />

0.2<br />

Precursor<br />

molecules only<br />

Precursor molecules plus<br />

montmorillonite clay<br />

0<br />

0<br />

20 40<br />

60<br />

Time (minutes)<br />

(a) Self-assembly<br />

Vesicle<br />

boundary<br />

1 m<br />

AP Biology<br />

(b) Reproduction<br />

20 m<br />

(c) Absorption of RNA


Self-Replicating RNA and the Dawn of<br />

Natural Selection<br />

• The first genetic material was probably RNA,<br />

not DNA<br />

• RNA molecules called ribozymes have been<br />

found to catalyze many different reactions<br />

For example, ribozymes can make<br />

complementary copies of short stretches of<br />

RNA<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Concept <strong>25</strong>.2: The fossil record<br />

documents the history of life<br />

• The fossil record reveals changes in the<br />

history of life on Earth<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


The Fossil Record<br />

• Sedimentary rocks are deposited into layers<br />

called strata and are the richest source of<br />

fossils<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Figure <strong>25</strong>.4<br />

Dimetrodon<br />

Present<br />

100 mya<br />

Rhomaleosaurus<br />

victor<br />

0.5 m<br />

175<br />

200<br />

1 m<br />

Tiktaalik<br />

Coccosteus<br />

cuspidatus<br />

4.5 cm<br />

270<br />

300<br />

375<br />

400<br />

Hallucigenia<br />

1 cm<br />

Stromatolites<br />

500<br />

5<strong>25</strong><br />

565<br />

600<br />

2.5 cm<br />

Dickinsonia<br />

costata<br />

AP Biology<br />

Fossilized<br />

stromatolite<br />

1,500<br />

3,500<br />

Tappania


• Few individuals have fossilized, and even<br />

fewer have been discovered<br />

• The fossil record is biased in favor of species<br />

that<br />

Existed for a long time<br />

Were abundant and widespread<br />

Had hard parts<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


How Rocks and Fossils Are Dated<br />

• Sedimentary strata reveal the relative ages of<br />

fossils<br />

• The absolute ages of fossils can be<br />

determined by radiometric dating<br />

• A “parent” isotope decays to a “daughter”<br />

isotope at a constant rate<br />

• Each isotope has a known half-life, the time<br />

required for half the parent isotope to decay<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Fraction of parent<br />

isotope remaining<br />

Figure <strong>25</strong>.5<br />

Accumulating<br />

“daughter”<br />

isotope<br />

1 2<br />

1 4<br />

1 8<br />

1 16<br />

Remaining<br />

“parent”<br />

isotope<br />

AP Biology<br />

1 2 3 4<br />

Time (half-lives)


• Radiocarbon dating can be used to date fossils<br />

up to 75,000 years old<br />

• For older fossils, some isotopes can be used<br />

to date sedimentary rock layers above and<br />

below the fossil<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Concept <strong>25</strong>.3: Key events in life’s<br />

history include the origins of singlecelled<br />

and multicelled organisms and<br />

the colonization of land<br />

• The geologic record is divided into the<br />

Archaean, the Proterozoic, and the<br />

Phanerozoic eons<br />

• The Phanerozoic encompasses multicellular<br />

eukaryotic life<br />

• The Phanerozoic is divided into three eras: the<br />

Paleozoic, Mesozoic, and Cenozoic<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


AP Biology<br />

© 2011 Pearson Education, Inc.<br />

Animation: The Geologic Record<br />

Right-click slide / select “Play”


Table <strong>25</strong>.1<br />

AP Biology


Table <strong>25</strong>.1a<br />

AP Biology


Table <strong>25</strong>.1b<br />

AP Biology


Timeline<br />

AP Biology<br />

• Key events in<br />

evolutionary<br />

history of life on<br />

Earth<br />

3.5–4.0 bya:<br />

life originated<br />

2.7 bya:<br />

free O 2 =<br />

photosynthetic<br />

bacteria<br />

2 bya:<br />

first eukaryotes


Figure <strong>25</strong>.7-3<br />

Cenozoic<br />

Humans<br />

Colonization<br />

of land<br />

Animals<br />

Origin of solar<br />

system and<br />

Earth<br />

Multicellular<br />

eukaryotes<br />

1<br />

Proterozoic<br />

4<br />

Archaean<br />

2<br />

3<br />

AP Biology<br />

Single-celled<br />

eukaryotes<br />

Prokaryotes<br />

Atmospheric oxygen


Figure <strong>25</strong>.UN02<br />

1<br />

4<br />

2 3<br />

Prokaryotes<br />

AP Biology


Figure <strong>25</strong>.UN03<br />

1<br />

4<br />

2 3<br />

AP Biology<br />

Atmospheric<br />

oxygen


Photosynthesis and the Oxygen<br />

Revolution<br />

• Most atmospheric oxygen (O 2 ) is of biological<br />

origin<br />

• O 2 produced by oxygenic photosynthesis<br />

reacted with dissolved iron and precipitated<br />

out to form banded iron formations<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


• By about 2.7 billion years ago, O 2 began<br />

accumulating in the atmosphere and rusting<br />

iron-rich terrestrial rocks<br />

• This “oxygen revolution” from 2.7 to 2.3 billion<br />

years ago caused the extinction of many<br />

prokaryotic groups<br />

• Some groups survived and adapted using<br />

cellular respiration to harvest energy<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


(percent of present-day levels; log scale)<br />

Figure <strong>25</strong>.8<br />

1,000<br />

100<br />

Atmospheric O 2<br />

10<br />

1<br />

0.1<br />

0.01<br />

“Oxygen<br />

revolution”<br />

0.001<br />

0.0001<br />

4 3 2 1 0<br />

Time (billions of years ago)<br />

AP Biology


Figure <strong>25</strong>.UN04<br />

1<br />

4<br />

AP Biology<br />

Singlecelled<br />

eukaryotes<br />

2 3


The First Eukaryotes<br />

• The oldest fossils of eukaryotic cells date back<br />

2.1 billion years<br />

• Eukaryotic cells have a nuclear envelope,<br />

mitochondria, endoplasmic reticulum, and a<br />

cytoskeleton<br />

• The endosymbiont theory proposes that<br />

mitochondria and plastids (chloroplasts and<br />

related organelles) were formerly small<br />

prokaryotes living within larger host cells<br />

• An endosymbiont is a cell that lives within a<br />

host cell<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


First Eukaryotes<br />

• Development of internal membranes<br />

create internal micro-environments<br />

advantage: specialization = increase efficiency<br />

infolding of the<br />

plasma membrane<br />

• natural selection!<br />

plasma<br />

membrane<br />

endoplasmic<br />

reticulum (ER)<br />

~2 bya<br />

nuclear envelope<br />

nucleus<br />

DNA<br />

AP Biology<br />

Prokaryotic<br />

cell<br />

cell wall<br />

Prokaryotic<br />

ancestor of<br />

eukaryotic<br />

cells<br />

plasma<br />

membrane<br />

Eukaryotic<br />

cell


1 st Endosymbiosis<br />

• Evolution of eukaryotes<br />

<br />

<br />

<br />

origin of mitochondria<br />

engulfed aerobic bacteria, but<br />

did not digest them<br />

mutually beneficial relationship<br />

• natural selection!<br />

internal membrane<br />

system<br />

aerobic bacterium<br />

mitochondrion<br />

Endosymbiosis<br />

Ancestral<br />

eukaryotic cell<br />

AP Biology<br />

Eukaryotic cell<br />

with mitochondrion


2 nd Endosymbiosis<br />

• Evolution of eukaryotes<br />

origin of chloroplasts<br />

engulfed photosynthetic bacteria,<br />

but did not digest them<br />

mutually beneficial relationship<br />

• natural selection!<br />

photosynthetic<br />

bacterium<br />

Eukaryotic<br />

cell with<br />

mitochondrion<br />

chloroplast<br />

Endosymbiosis<br />

mitochondrion<br />

AP Biology<br />

Eukaryotic cell with<br />

chloroplast & mitochondrion


Theory of Endosymbiosis<br />

• Evidence<br />

AP Biology<br />

structural<br />

• mitochondria & chloroplasts<br />

resemble bacterial structure<br />

genetic<br />

• mitochondria & chloroplasts<br />

have their own circular DNA, like bacteria<br />

functional<br />

• mitochondria & chloroplasts<br />

move freely within the cell<br />

• mitochondria & chloroplasts<br />

reproduce independently<br />

from the cell<br />

Lynn Margulis


Figure <strong>25</strong>.UN05<br />

1<br />

4<br />

2 3<br />

AP Biology<br />

Multicellular<br />

eukaryotes


The Origin of Multicellularity<br />

• The evolution of eukaryotic cells allowed for a<br />

greater range of unicellular forms<br />

• A second wave of diversification occurred<br />

when multicellularity evolved and gave rise to<br />

algae, plants, fungi, and animals<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Figure <strong>25</strong>.UN06<br />

Animals<br />

1<br />

4<br />

2 3<br />

AP Biology


Cambrian explosion<br />

• Diversification of Animals<br />

within 10–20 million years most of the major<br />

phyla of animals appear in fossil record<br />

543 mya<br />

AP Biology


AP Biology


The Cambrian Explosion<br />

• The Cambrian explosion refers to the sudden<br />

appearance of fossils resembling modern<br />

animal phyla in the Cambrian period (535 to<br />

5<strong>25</strong> million years ago)<br />

• A few animal phyla appear even earlier:<br />

sponges, cnidarians, and molluscs<br />

• The Cambrian explosion provides the first<br />

evidence of predator-prey interactions<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Figure <strong>25</strong>.10<br />

Sponges<br />

Cnidarians<br />

Echinoderms<br />

Chordates<br />

Brachiopods<br />

Annelids<br />

Molluscs<br />

Arthropods<br />

AP Biology<br />

PROTEROZOIC<br />

Ediacaran<br />

PALEOZOIC<br />

Cambrian<br />

635 605 575 545 515 485 0<br />

Time (millions of years ago)


Figure <strong>25</strong>.UN07<br />

Colonization of land<br />

1<br />

4<br />

2 3<br />

AP Biology


The Colonization of Land<br />

• Fungi, plants, and animals began to colonize<br />

land about 500 million years ago<br />

• Vascular tissue in plants transports materials<br />

internally and appeared by about 420 million<br />

years ago<br />

• Plants and fungi today form mutually<br />

beneficial associations and likely colonized<br />

land together<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


• Arthropods and tetrapods are the most<br />

widespread and diverse land animals<br />

• Tetrapods evolved from lobe-finned fishes<br />

around 365 million years ago<br />

AP Biology<br />

© 2011 Pearson Education, Inc.


Is there life elsewhere?<br />

Does it look like life on Earth?<br />

They would<br />

Ask Questions!<br />

AP Biology 2008-2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!