25.01.2014 Views

Application of Inversion of a Matrix in Cryptography - International ...

Application of Inversion of a Matrix in Cryptography - International ...

Application of Inversion of a Matrix in Cryptography - International ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

B.Vellaikannan,Dr.V.Mohan,V.Gnanaraj.,Int. J. Comp.Tech. Appl,Vol 1 (1), 78-87<br />

A NOTE ON THE APPLICATION OF QUADRATIC FORMS IN<br />

CODING THEORY WITH A NOTE ON SECURITY.<br />

B<br />

1<br />

2<br />

3<br />

. Vellaikannan<br />

Dr.<br />

V.<br />

Mohan<br />

V.<br />

Gnanaraj<br />

1. Senior Grade Lecturer <strong>in</strong> Mathematics, E Mail : bvkmat@tce.edu, 9944563124, 0452-2562693<br />

Thiagarajar College <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Madurai - 625 015. Tamil Nadu , India.<br />

2. Pr<strong>of</strong>essor and HOD <strong>of</strong> Mathematics, E Mail : vmohan@tce.edu, 9894026923, 0452-2482240<br />

Thiagarajar College <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Madurai - 625 015, Tamil Nadu , India.<br />

3. Selection Grade Lecturer <strong>in</strong> Mathematics, E Mail : vgmat@tce.edu 9442784592, 0452-2482240<br />

Thiagarajar College <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Madurai - 625 015. Tamil Nadu, India.<br />

ABSTRACT<br />

A novel approach which <strong>in</strong>corporates the salient features <strong>of</strong> message shar<strong>in</strong>g<br />

(Called cod<strong>in</strong>g theory) is presented and also extended to the messages <strong>of</strong> higher<br />

length. The proposed method is very simple <strong>in</strong> its pr<strong>in</strong>ciple and has great potential<br />

to be applied to other situations where the exchange <strong>of</strong> messages is done<br />

confidentially.<br />

Keywords<br />

Quadratic forms – Canonical form -- Matrices – <strong>Matrix</strong> Multiplication –<br />

Inverse <strong>Matrix</strong> – Invertible Matrices – Diagonal matrices – <strong>Matrix</strong> <strong>in</strong>duced by<br />

a Quadratic form -Encoder –Decoder – Message <strong>Matrix</strong>.<br />

1. Introduction<br />

Cod<strong>in</strong>g theory is a subject by which the exchange <strong>of</strong> messages is<br />

adm<strong>in</strong>istered <strong>in</strong> a confidential and more secured way hav<strong>in</strong>g a wide application <strong>in</strong> Military<br />

operations, Bank<strong>in</strong>g Transactions etc… Recently there has been a wide application <strong>of</strong><br />

<strong>in</strong>version <strong>of</strong> matrices (<strong>of</strong> order 2 whose <strong>in</strong>verses are readily obta<strong>in</strong>ed) [1], [2] to the<br />

problem <strong>of</strong> exchange <strong>of</strong> messages <strong>in</strong> a confidential and a secured way. In the proposed<br />

method the idea has been extended to the matrices ma<strong>in</strong>ly to nons<strong>in</strong>gular diagonal<br />

matrices <strong>of</strong> higher order, especially <strong>in</strong>duced from Quadratic forms. We know that<br />

determ<strong>in</strong>ation <strong>of</strong> the <strong>in</strong>verse <strong>of</strong> nons<strong>in</strong>gular matrices <strong>of</strong> higher order is difficult and this<br />

requires higher level algorithms for the use <strong>of</strong> computers.<br />

A newly developed method that avoids the difficulties <strong>in</strong> the<br />

determ<strong>in</strong>ation <strong>of</strong> <strong>in</strong>verse <strong>of</strong> a nons<strong>in</strong>gular matrix is <strong>in</strong>troduced <strong>in</strong> this paper. The results<br />

obta<strong>in</strong>ed us<strong>in</strong>g this method works vey well for the whole range <strong>of</strong> message exchang<strong>in</strong>g<br />

problems and the excellent agreement with the exist<strong>in</strong>g one.<br />

1.1 Theorem<br />

A text message <strong>of</strong> str<strong>in</strong>gs <strong>of</strong> some length / size l can be converted <strong>in</strong> to a matrix<br />

(called a message matrix M) <strong>of</strong> size m × n where<br />

n < m and n is the least such that mx n ≥ l depend<strong>in</strong>g up on the length <strong>of</strong> the<br />

message with help <strong>of</strong> suitably chosen numerals and zeros.<br />

78


B.Vellaikannan,Dr.V.Mohan,V.Gnanaraj.,Int. J. Comp.Tech. Appl,Vol 1 (1), 78-87<br />

Pro<strong>of</strong> :<br />

The pro<strong>of</strong> is by enumeration on numbers.<br />

Consider the follow<strong>in</strong>g<br />

For the text message <strong>of</strong> length up to l = 9 ; then we have m = 3 ; n = 3.<br />

Similarly For the text message <strong>of</strong> length up to l = 12 we have m = 4 ; n = 3.<br />

And so on. Hence the pro<strong>of</strong>.<br />

2. Basics<br />

Consider the text message<br />

I LOVE VINODHINI<br />

To every letter we will associate a number. The easiest way to do that is to associate 0 to<br />

a blank or space, 1 to A, 2 to B, etc... Another way is to associate 0 to a blank or space, 1<br />

to A, -1 to B, 2 to C, -2 to D, etc... Let us use the second choice. So our message is given<br />

by the str<strong>in</strong>g as<br />

I L O V E V I N O D H I N I<br />

5 0 -6 8 -11 3 0 -11 5 -7 8 -2 -4 5 -7 5<br />

Now we rearrange these numbers <strong>in</strong>to a matrix M (Row wise e/ Coolum wise).we use<br />

column wise. For our case, we have<br />

⎛ 5<br />

⎜<br />

⎜ 0<br />

⎜ − 6<br />

M = ⎜<br />

⎜ 8<br />

⎜<br />

⎜<br />

−11<br />

⎝ 3<br />

0<br />

−11<br />

5<br />

− 7<br />

8<br />

− 2<br />

− 4⎞<br />

⎟<br />

5 ⎟<br />

− 7⎟<br />

⎟<br />

5 ⎟<br />

0<br />

⎟<br />

⎟<br />

0<br />

⎠<br />

<strong>of</strong> order ( 6 × 3)<br />

(Us<strong>in</strong>g Theorem)<br />

Then we perform the product M A , where A is an arbitrary nons<strong>in</strong>gular matrix given by<br />

⎛ −1<br />

5<br />

⎜<br />

A = ⎜−<br />

2 11<br />

⎜<br />

⎝ 1 − 5<br />

Then, we get<br />

−1⎞<br />

⎟<br />

7 ⎟<br />

2 ⎟<br />

⎠<br />

−1<br />

whose <strong>in</strong>verse is given by A =<br />

⎛57<br />

⎜<br />

⎜ 11<br />

⎜<br />

⎝−1<br />

− 5<br />

−1<br />

0<br />

46⎞<br />

⎟<br />

9 ⎟<br />

−1⎟<br />

⎠<br />

79


B.Vellaikannan,Dr.V.Mohan,V.Gnanaraj.,Int. J. Comp.Tech. Appl,Vol 1 (1), 78-87<br />

X = MA=<br />

⎛ 5<br />

⎜<br />

⎜ 0<br />

⎜ − 6<br />

⎜<br />

⎜ 8<br />

⎜<br />

⎜<br />

−11<br />

⎝ 3<br />

0<br />

−11<br />

5<br />

− 7<br />

8<br />

− 2<br />

− 4⎞<br />

⎟<br />

5 ⎟<br />

⎟ ⎛ −1<br />

− 7 ⎜<br />

⎟ ⎜−<br />

2<br />

5 ⎟ ⎜<br />

0<br />

⎟ ⎝ 1<br />

⎟<br />

0<br />

⎠<br />

5<br />

11<br />

− 5<br />

−1⎞<br />

⎟<br />

7 ⎟<br />

2 ⎟<br />

⎠<br />

=<br />

⎛ − 9<br />

⎜<br />

⎜ 27<br />

⎜−11<br />

⎜<br />

⎜ 11<br />

⎜<br />

⎜<br />

− 5<br />

⎝ 1<br />

45<br />

−146<br />

60<br />

− 62<br />

33<br />

− 7<br />

−13<br />

⎞<br />

⎟<br />

− 67⎟<br />

27 ⎟<br />

⎟<br />

− 47⎟<br />

67<br />

⎟<br />

⎟<br />

−17<br />

⎠<br />

The encoded numeric message to be sent is<br />

-9, -27, -11, 11,………-47,67,-17.<br />

This encoded message is aga<strong>in</strong> decoded us<strong>in</strong>g the <strong>in</strong>verse <strong>of</strong> A as<br />

M =<br />

−1<br />

XA =<br />

⎛ − 9<br />

⎜<br />

⎜ 27<br />

⎜−11<br />

⎜<br />

⎜ 11<br />

⎜<br />

⎜<br />

− 5<br />

⎝ 1<br />

45<br />

−146<br />

60<br />

− 62<br />

33<br />

− 7<br />

−13<br />

⎞<br />

⎟<br />

− 67⎟<br />

⎟ ⎛57<br />

27 ⎜<br />

⎟ ⎜ 11<br />

− 47⎟<br />

⎜<br />

67<br />

⎟ ⎝−1<br />

⎟<br />

−17<br />

⎠<br />

− 5<br />

−1<br />

0<br />

46⎞<br />

⎟<br />

9 ⎟<br />

−1⎟<br />

⎠<br />

⎛ 5<br />

⎜<br />

⎜ 0<br />

⎜ − 6<br />

= ⎜<br />

⎜ 8<br />

⎜<br />

⎜<br />

−11<br />

⎝ 3<br />

0<br />

−11<br />

5<br />

− 7<br />

8<br />

− 2<br />

− 4⎞<br />

⎟<br />

5 ⎟<br />

− 7⎟<br />

⎟<br />

5 ⎟<br />

0<br />

⎟<br />

⎟<br />

0<br />

⎠<br />

80


B.Vellaikannan,Dr.V.Mohan,V.Gnanaraj.,Int. J. Comp.Tech. Appl,Vol 1 (1), 78-87<br />

This matrix is aga<strong>in</strong> converted <strong>in</strong> to a str<strong>in</strong>g <strong>of</strong> numerals as<br />

5 0 -6 8 -11 3 0 -11 5 -7 8 -2 -4 5 -7 5<br />

I L O V E V I N O D H I N I<br />

3. Solution Procedure<br />

A text message <strong>of</strong> str<strong>in</strong>gs <strong>of</strong> some length / size l from the sender is converted <strong>in</strong><br />

to a stream <strong>of</strong> numerals with the help <strong>of</strong> some cod<strong>in</strong>g process (Probably may be the<br />

standard codes like A – 1, B-2,….Z-26 and for space -0 ) which is aga<strong>in</strong> converted <strong>in</strong> to<br />

a matrix (called a message matrix M) <strong>of</strong> size m × n where<br />

n < m and n is the least such that mx n ≥ l depend<strong>in</strong>g up on the length <strong>of</strong> the<br />

message .In such case the size <strong>of</strong> the Encoder (The <strong>in</strong>duced Diagonal matrix <strong>of</strong> a<br />

Quadratic form <strong>of</strong> suitable variables ) becomes n . Then the Encoder need not be an<br />

arbitrary matrix where as it may be taken as a Diagonal matrix <strong>of</strong> size n whose <strong>in</strong>verse<br />

can be readily obta<strong>in</strong>ed.<br />

Then the message matrix is converted <strong>in</strong> to a New <strong>Matrix</strong> X (Encoded <strong>Matrix</strong>)<br />

us<strong>in</strong>g <strong>Matrix</strong> Multiplication as X = ME . Then this is sent to the Receiver. Then the<br />

receiver decode this matrix with the help <strong>of</strong> a matrix D (Decoder matrix) which is<br />

−1<br />

noth<strong>in</strong>g but the <strong>in</strong>verse <strong>of</strong> the encoder ( i . e.,<br />

D = E ) , to get the message matrix back as<br />

−1<br />

M = XE .Then with the previously used codes the receiver can get back the message<br />

<strong>in</strong> terms <strong>of</strong> the numerals which aga<strong>in</strong> can be converted to the orig<strong>in</strong>al text message. When<br />

the length / size <strong>of</strong> the text message is too large, the value <strong>of</strong> n become higher, lead<strong>in</strong>g<br />

to the need <strong>of</strong> higher order diagonal matrices <strong>in</strong>duced from the quadratic forms <strong>of</strong> higher<br />

number <strong>of</strong> variables.<br />

3. 1 Algorithm<br />

3.1.1 Encod<strong>in</strong>g Process<br />

1. Convert the text message <strong>of</strong> length l <strong>in</strong> to a stream <strong>of</strong> Numerals us<strong>in</strong>g a user<br />

friendly scheme for both the .sender and the receiver.<br />

2. Place the numerals <strong>in</strong> to a matrix <strong>of</strong> order m × n where<br />

n < m and n is the least such that mx n ≥ l where n depends on the size<br />

<strong>of</strong> the message and call this as a Message matrix M.<br />

3. Multiply this message matrix by the Encoder E <strong>of</strong> size n. (Normally a <strong>in</strong>duced<br />

diagonal matrix compatible for the product X = ME .) and get the encoded<br />

matrix X.<br />

4. Convert the message matrix <strong>in</strong> to the stream <strong>of</strong> numbers that conta<strong>in</strong>s the<br />

encrypted message and sent to the receiver.<br />

81


B.Vellaikannan,Dr.V.Mohan,V.Gnanaraj.,Int. J. Comp.Tech. Appl,Vol 1 (1), 78-87<br />

3.1 .2 Decod<strong>in</strong>g Process<br />

1. Place the encrypted stream <strong>of</strong> numbers that represent the encrypted message<br />

<strong>in</strong> to a matrix<br />

−1<br />

2. Multiply the encoded matrix X with the decoder D = E (The <strong>in</strong>verse <strong>of</strong> E) to<br />

get back the message matrix M<br />

3. Convert this message matrix <strong>in</strong> to a stream <strong>of</strong> numbers with the help <strong>of</strong> the<br />

orig<strong>in</strong>ally used scheme.<br />

4. Convert this stream <strong>of</strong> numerals <strong>in</strong> to the text <strong>of</strong> the orig<strong>in</strong>al message.<br />

4. Results and Discussions<br />

Consider the message to be sent: BEST WISHES<br />

We take the standard codes as follows:<br />

A →1 ; B → 2 ; ........; Z → 26 and Space → 0<br />

1. We convert the above message <strong>in</strong> to a stream <strong>of</strong> numerical values as<br />

follows:<br />

BEST WISHES 2 5 19 20 0 23 9 19 8 5 19 (Here we admit a s<strong>in</strong>gle<br />

spac<strong>in</strong>g for the purpose better understand<strong>in</strong>g)<br />

2. We construct the message matrix M with this stream <strong>of</strong> numerals as<br />

⎛ 2 5 19⎞<br />

⎜ ⎟<br />

⎜20<br />

0 23⎟<br />

M = ⎜ ⎟ which is <strong>of</strong> order 4x 3.<br />

(Us<strong>in</strong>g Theorem)<br />

9 19 8<br />

⎜ ⎟<br />

⎝ 5 19 0 ⎠<br />

3. Based on this, We take the 3 rd order Diagonal matrix (The<br />

diagonalized matrix <strong>of</strong> the matrix <strong>of</strong> a QF <strong>of</strong> suitable variables<br />

otherwise called the matrix <strong>of</strong> the canonical form) with Diag ( )).<br />

2 2 2<br />

For e:g if the QF is 2x1 + x2<br />

+ x3<br />

+ 2x1x2<br />

− 2x1x3<br />

− 4x2<br />

x3<br />

then the<br />

matrix <strong>of</strong> the QF is<br />

⎛ 2 1 −1⎞<br />

⎜<br />

⎟<br />

2 2 2<br />

⎜ 1 1 − 2⎟<br />

.Also the canonical form is − y<br />

1<br />

+ y2<br />

+ 4y3<br />

whose<br />

⎜<br />

⎟<br />

⎝−1<br />

− 2 1 ⎠<br />

⎛−1<br />

0 0⎞<br />

⎜ ⎟<br />

matrix is given by D ( −1,1,<br />

4 ) = ⎜ 0 1 0⎟<br />

⎜ ⎟<br />

⎝ 0 0 4⎠<br />

⎛−1<br />

0 0⎞<br />

⎜ ⎟<br />

4. Then we have the Encoder as E = ⎜ 0 1 0⎟<br />

.<br />

⎜ ⎟<br />

⎝ 0 0 4⎠<br />

5. Then the encoded matrix is given by<br />

82


B.Vellaikannan,Dr.V.Mohan,V.Gnanaraj.,Int. J. Comp.Tech. Appl,Vol 1 (1), 78-87<br />

⎛ 2 5 19⎞<br />

⎛ − 2 5 76⎞<br />

⎜ ⎟ ⎛−1<br />

0 0⎞<br />

⎜<br />

⎟<br />

⎜20<br />

0 23⎟<br />

⎜ ⎟ ⎜−<br />

20 0 92⎟<br />

X = ME = ⎜ ⎟ ⎜ 0 1 0⎟<br />

= ⎜ − ⎟ .<br />

9 19 8<br />

⎜ ⎟ ⎜ ⎟ 9 19 32<br />

⎝ ⎠<br />

⎜<br />

⎟<br />

0 0 4<br />

⎝ 5 19 0 ⎠<br />

⎝ − 5 19 0 ⎠<br />

Hence the encoded numeric message is given by<br />

-2 5 76 -20 0 92 -9 19 32 -5 19 0<br />

⎛ ⎞<br />

⎜ = 1 0 0 ⎟<br />

−1<br />

−1<br />

6. Clearly the Decoder E is the given by E =<br />

⎜<br />

0 1 0<br />

⎟<br />

.<br />

⎜ 1 ⎟<br />

⎜ 0 0 ⎟<br />

⎝ 4 ⎠<br />

7. The encoded numeric message is to be decoded by first writ<strong>in</strong>g the<br />

encoded matrix X from the received message as<br />

⎛ − 2 5 76⎞<br />

⎛ ⎞ ⎛ 2 5 19⎞<br />

⎜<br />

⎟ ⎜ = 1 0 0 ⎟ ⎜ ⎟<br />

−1<br />

⎜−<br />

20 0 92⎟<br />

⎜ ⎟ ⎜20<br />

0 23⎟<br />

M = XE = ⎜<br />

⎟<br />

0 1 0 =<br />

−<br />

⎜ ⎟ ⎜ 9 19 8 ⎟ .<br />

9 19 32<br />

⎜<br />

⎟<br />

1<br />

⎜ ⎟ ⎜ ⎟<br />

0 0<br />

⎝ − 5 19 0 ⎠ ⎝ 4 ⎠ ⎝ 5 19 0 ⎠<br />

8. This matrix M is converted <strong>in</strong> to numeric message as<br />

2 5 19 20 0 23 9 19 8 5 19<br />

9. This stream <strong>of</strong> numerals is converted <strong>in</strong> to the text message as<br />

2 5 19 20 0 23 9 19 8 5 19: BEST WISHES<br />

4. 1 A word on Security:<br />

In case <strong>of</strong> us<strong>in</strong>g the standard codes one could recognize <strong>in</strong>tuitively<br />

or by any way the codes <strong>of</strong> use from the codes allotted for the alphabets. So the use <strong>of</strong><br />

codes <strong>in</strong> a random or chaotic way or by us<strong>in</strong>g some process , <strong>in</strong>creases the security level.<br />

4.1.1 Example<br />

Instead <strong>of</strong> us<strong>in</strong>g the standard codes A-1, B-2…….Z-26 and 0 for space<br />

If we use the codes assigned as<br />

A-7 , B-6 , C- 5 , D-4 , E-3 ,F-2 ,G-1 , H-8 , I-9 , J-10 , K-11 , L-12 , M-13 . N- 15 , O-<br />

16, P-17 , Q- 18 , R- 19, S-14 , T-20 , U-26 , V-25 , W-24 , X- 23 , Y -22 ,Z- 21. and 0<br />

for space.(In a random way or by us<strong>in</strong>g some generator us<strong>in</strong>g Number theory or<br />

comb<strong>in</strong>atorics)<br />

Then the message BEST WISHES is given by the matrix<br />

⎛ 6 3 14 ⎞<br />

⎜<br />

⎟<br />

⎜20<br />

0 24⎟<br />

M = ⎜<br />

⎟ Instead <strong>of</strong><br />

9 14 8<br />

⎜<br />

⎟<br />

⎝ 3 114 0 ⎠<br />

M<br />

⎛ 2<br />

⎜<br />

⎜20<br />

= ⎜ 9<br />

⎜<br />

⎝ 5<br />

5<br />

0<br />

19<br />

19<br />

19⎞<br />

⎟<br />

23⎟<br />

8 ⎟<br />

⎟<br />

0<br />

⎠<br />

83


B.Vellaikannan,Dr.V.Mohan,V.Gnanaraj.,Int. J. Comp.Tech. Appl,Vol 1 (1), 78-87<br />

Any one who <strong>in</strong>tervene the communication uses the standard codes for this<br />

message matrix will get a confus<strong>in</strong>g message like FENT XINHCN.<br />

So the messengers are advised to make use <strong>of</strong> their convenient system <strong>of</strong> codes <strong>in</strong> order<br />

to have higher security level.<br />

5. Operation on Str<strong>in</strong>gs:<br />

We def<strong>in</strong>e the operator * (The str<strong>in</strong>g addition) as usual <strong>in</strong> the case<br />

<strong>of</strong> addition <strong>of</strong> str<strong>in</strong>gs.<br />

Example: Best*wishes = Best wishes.<br />

6. Generalization<br />

Us<strong>in</strong>g this operation we decompose the messages <strong>of</strong> larger length <strong>in</strong> to<br />

messages <strong>of</strong> shorter lengths and f<strong>in</strong>ally these are co<strong>in</strong>ed to get the message <strong>of</strong> larger<br />

length.<br />

6.1 Results and Discussion<br />

Consider the Message M: MEPCO WISHES YOU ALL THE BEST.<br />

This message is decomposed <strong>in</strong> to two messages as follows,<br />

M = M1 + M2 Where M1 = MEPCO WISHES & M2 = YOU ALL THE BEST.<br />

Now for M1:<br />

1) M E P C O W I S H E S:<br />

13 5 16 3 15 0 23 9 19 8 5 19<br />

⎛13<br />

5 16⎞<br />

⎜ ⎟<br />

⎜ 3 15 0 ⎟<br />

2) T<br />

1<br />

= ⎜ ⎟ .<br />

23 9 19<br />

⎜ ⎟<br />

⎝ 8 5 19⎠<br />

3)<br />

⎛= 1 0 0⎞<br />

⎜ ⎟<br />

E = ⎜ 0 1 0⎟<br />

Such that<br />

⎜ ⎟<br />

⎝ 0 0 4⎠<br />

4) = T E =<br />

X1<br />

1<br />

T<br />

1<br />

⎛ −13<br />

⎜<br />

⎜ − 3<br />

= ⎜−<br />

23<br />

⎜<br />

⎝ − 8<br />

5<br />

15<br />

9<br />

5<br />

64⎞<br />

⎟<br />

0 ⎟<br />

76⎟<br />

⎟<br />

76<br />

⎠<br />

E<br />

−1<br />

⎛<br />

⎜ = 1<br />

=<br />

⎜<br />

0<br />

⎜<br />

⎜ 0<br />

⎝<br />

0<br />

1<br />

0<br />

⎞<br />

0 ⎟<br />

0<br />

⎟<br />

1<br />

⎟<br />

⎟<br />

4 ⎠<br />

84


B.Vellaikannan,Dr.V.Mohan,V.Gnanaraj.,Int. J. Comp.Tech. Appl,Vol 1 (1), 78-87<br />

−1<br />

5) M = X =<br />

1 1E<br />

⎛13<br />

⎜<br />

⎜ 3<br />

⎜23<br />

⎜<br />

⎝ 8<br />

5<br />

15<br />

9<br />

5<br />

16⎞<br />

⎟<br />

0 ⎟<br />

19⎟<br />

⎟<br />

19<br />

⎠<br />

6) Message 1 = 13 5 16 3 15 0 23 9 19 8 5 19<br />

M E P C O W I S H E S<br />

Now for M2:<br />

1) Y O U A L L T H E B E S T.<br />

25 15 21 0 1 12 12 0 24 8 5 0 2 5 19 20<br />

2)<br />

3)<br />

⎛25<br />

15 21⎞<br />

⎜ ⎟<br />

⎜ 0 1 12⎟<br />

⎜12<br />

0 21⎟<br />

T = ⎜ ⎟<br />

2<br />

.<br />

⎜ 8 5 0 ⎟<br />

⎜ ⎟<br />

⎜<br />

2 5 19<br />

⎟<br />

⎝20<br />

0 0 ⎠<br />

⎛= 1 0 0⎞<br />

⎜ ⎟<br />

E = ⎜ 0 1 0⎟<br />

Such that<br />

⎜ ⎟<br />

⎝ 0 0 4⎠<br />

⎛−<br />

25<br />

⎜<br />

⎜ 0<br />

⎜ −12<br />

4) X<br />

2<br />

= T2<br />

E = ⎜<br />

⎜ − 8<br />

⎜<br />

⎜<br />

− 2<br />

⎝−<br />

20<br />

15<br />

1<br />

0<br />

5<br />

5<br />

0<br />

84⎞<br />

⎟<br />

48⎟<br />

84⎟<br />

⎟ ,<br />

0 ⎟<br />

76<br />

⎟<br />

⎟<br />

0<br />

⎠<br />

E<br />

−1<br />

⎛<br />

⎜ = 1<br />

=<br />

⎜<br />

0<br />

⎜<br />

⎜ 0<br />

⎝<br />

0<br />

1<br />

0<br />

⎞<br />

0 ⎟<br />

0<br />

⎟<br />

1<br />

⎟<br />

⎟<br />

4 ⎠<br />

−1<br />

5) M = X =<br />

2 2<br />

E<br />

⎛25<br />

⎜<br />

⎜ 0<br />

⎜12<br />

⎜<br />

⎜ 8<br />

⎜<br />

⎜<br />

2<br />

⎝20<br />

15<br />

1<br />

0<br />

5<br />

5<br />

0<br />

21⎞<br />

⎟<br />

12⎟<br />

21⎟<br />

⎟<br />

0 ⎟<br />

19<br />

⎟<br />

⎟<br />

0<br />

⎠<br />

6) Message 2 = 25 15 21 0 1 12 12 0 24 8 5 0 2 5 19 20<br />

85


B.Vellaikannan,Dr.V.Mohan,V.Gnanaraj.,Int. J. Comp.Tech. Appl,Vol 1 (1), 78-87<br />

Y O U A L L T H E B E S T.<br />

Therefore the message M = M1 * M2<br />

= M E P C O W I S H E S YOU A L L T H E B E S T.<br />

6. Results Used from matrix theory<br />

The follow<strong>in</strong>g are the results used <strong>in</strong> our paper from the theory <strong>of</strong><br />

matrices available <strong>in</strong> [3]<br />

1. To any Quadratic there exists a matrix called the <strong>Matrix</strong> <strong>of</strong> quadratic<br />

form.<br />

2. The matrix <strong>of</strong> any Quadratic form is a Real Symmetric matrix.<br />

3. The Eigen values <strong>of</strong> a real symmetric matrix are always real.<br />

4. Any Quadratic form can be reduced to canonical form by means <strong>of</strong><br />

orthogonal reduction.<br />

5 The matrix <strong>of</strong> the canonical form <strong>of</strong> a Quadratic form is a diagonal<br />

matrix.<br />

6. The <strong>in</strong>verse <strong>of</strong> a diagonal matrix with a<br />

ii<br />

as entries is noth<strong>in</strong>g but the<br />

7. Conclusion<br />

scalar diagonal matrix with<br />

1 as entries.<br />

a ii<br />

1. Diagonal matrices <strong>in</strong>duced from Quadratic forms are preferred for<br />

encod<strong>in</strong>g as their <strong>in</strong>verses can be easily obta<strong>in</strong>ed.<br />

2. This provides a transaction <strong>of</strong> least amount <strong>of</strong> messag<strong>in</strong>g between the<br />

sender and the receiver. (It is sufficient to know the codes <strong>of</strong> use and the<br />

Quadratic form).Here the security is assured as only those know about the<br />

Quadratic Forms can understand the process.<br />

3. Higher order Diagonal matrices are preferred as their <strong>in</strong>verses are easily<br />

found.<br />

4. When the size <strong>of</strong> the message is too large new str<strong>in</strong>g operations may be<br />

def<strong>in</strong>ed and the message can be splitted and suitable such process<strong>in</strong>g may<br />

be carried over.<br />

5. Higher level <strong>of</strong> security can be achieved by us<strong>in</strong>g own conventional<br />

codes or codes (As <strong>in</strong> the word on Security) processed by some structure.<br />

8. Scope <strong>in</strong> further work<br />

1. Texts with all types <strong>of</strong> characters may be utilized <strong>in</strong> the study.<br />

2. Higher level <strong>of</strong> security can be enhanced by us<strong>in</strong>g structured system <strong>of</strong><br />

codes.<br />

3. Search <strong>of</strong> Diagonal matrices <strong>in</strong>duced from any other field may be done.<br />

4. Efforts can be taken for the use <strong>of</strong> any non s<strong>in</strong>gular matrix as an Encoder.<br />

86


9. Acknowledgements<br />

The authors are very grateful to Major D.Stephen Jeyapaul , Former Head , Dept<br />

<strong>of</strong> Mathematics , Thiagarajar College <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g , Pr<strong>of</strong>.K.P.Radhakrishnan Former<br />

Head , Dept <strong>of</strong> Mathematics , Thiagarajar College <strong>of</strong> Arts Madurai , for their constant<br />

encouragement. The author s<strong>in</strong>cerely thanks Dr.P.S.Boopathi Manickam, Dept <strong>of</strong><br />

Humanities and Mr.S.Rajaram, Dept <strong>of</strong> English for their scholarly suggestions and timely<br />

help. Above all the author dedicates this work to his ever lov<strong>in</strong>g family members<br />

particularly to his parents without whom he can’t succeed up to this level.<br />

10. References<br />

B.Vellaikannan,Dr.V.Mohan,V.Gnanaraj.,Int. J. Comp.Tech. Appl,Vol 1 (1), 78-87<br />

[1]. http://www. richland.edu / james /lecture /.../matrices/applications.html<br />

[2]. http:// aix1.uottawa.ca/~jkhoury/cryptography.htm<br />

[3]. Vasta B.S., Vasta Suchi..,Theory <strong>of</strong> Matrices.,Third edition., New Age<br />

<strong>International</strong> , India., 2010.<br />

87

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!