24.01.2014 Views

Topological States of Matter - International Institute of Physics

Topological States of Matter - International Institute of Physics

Topological States of Matter - International Institute of Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Natal 2012<br />

<strong>Topological</strong> <strong>States</strong> <strong>of</strong> <strong>Matter</strong><br />

Cristiane Morais Smith<br />

<strong>Institute</strong> for Theoretical <strong>Physics</strong><br />

Utrecht University<br />

The Netherlands


Introduction<br />

19 th century physics:<br />

thermodynamics, hydrodynamics, elasticity<br />

Classical states <strong>of</strong> matter (solid, gas, liquid)<br />

20 th century physics:<br />

Exotic states <strong>of</strong> matter<br />

Superconductivity, superfluidity<br />

Bose-Einstein condensates<br />

Quantum Hall fluids<br />

Graphene, topological insulators<br />

2D or coupled 2D planes<br />

Atoms or electrons


Integer Quantum Hall Effect (IQHE)


IQHE: Single-particle picture


Fractional Quantum Hall Effect


Cold atoms in optical lattices<br />

Quantum simulators <strong>of</strong> cond-mat systems:<br />

● Full control <strong>of</strong> lattice parameters<br />

● Select the lattice geometry<br />

● Load with bosons, fermions, or mixtures<br />

● Control <strong>of</strong> interactions (Feshbach resonances)<br />

● No disorder (or include it under control)


Until now: quantum phase transition from<br />

Superfluid to Mott insulator<br />

Holly grail: reach the quantum Hall regime with<br />

cold atoms<br />

Difficulty: rotate fast enough<br />

Recent developments: synthetic gauge fields<br />

(Raman excitations)<br />

New discovery: topological insulators


<strong>Topological</strong> states <strong>of</strong> matter<br />

Insulating bulk and conducting edges<br />

Quantum Hall effect:<br />

Magnetic field - Charge current<br />

[von Klitzing 1980]<br />

Quantum spin Hall effect:<br />

Spin-orbit coupling - Spin current<br />

[Theory: Kane and Mele 2005]<br />

[Expt: Molenkamp & Hassan]


Motivation: <strong>Topological</strong> states <strong>of</strong> matter<br />

Quantum Hall effect:<br />

Magnetic field - Charge current<br />

Break TRS (chiral)<br />

Quantum spin Hall effect:<br />

Spin-orbit coupling - Spin current<br />

TR invariant (helical)


Question:<br />

What happens when we have a<br />

Magnetic field and spin-orbit coupling?<br />

Trivial answer: destroy QSHE (break TRS)<br />

Non-trivial answer: look at the problem from the<br />

QHE perspective!!!!!


Outline<br />

I. Honeycomb lattice + mag field + spin orbit<br />

1. Introduction:<br />

QHE in a honeycomb lattice<br />

2. <strong>Topological</strong> phases and phase transitions<br />

Zeeman effect<br />

Intrinsic spin-orbit coupling<br />

Rashba spin-orbit coupling<br />

Combinations<br />

3. Experimental realizations<br />

II. Shaken honeycomb optical lattice


Introduction – QHE in a honeycomb lattice


Spectrum


Spectrum


Edge state analysis


Model – Zeeman effect and SO interaction<br />

W. Beugeling, N. Goldman, and C. M.S., PRB 86, 075118 (2012)


Model – Zeeman effect and SO interaction


Model – Zeeman effect and SO interaction


Different effects <strong>of</strong> ISO and Rashba<br />

ISO: opens a gap<br />

Van Gelderen and CMS, PRB 2010<br />

Rashba: lifts spin degeneracy


Q: Does the QSHE at E = 0 survive<br />

when we apply a magnetic field?<br />

A: Yes!!! The gap remains robust<br />

and the Chern number also.<br />

However, because TRS is broken,<br />

helical edge states may scatter.<br />

We call this state “weak” QSHE


Intrinsic SO + B: weak QSHE


Zeeman effect: weak QSHE


Combined effects: ISO + Zeeman<br />

weak QSHE


<strong>Topological</strong> phases – Zeeman effect


<strong>Topological</strong> phases – Zeeman effect


<strong>Topological</strong> phases – Zeeman effect


<strong>Topological</strong> phases – Zeeman effect


<strong>Topological</strong> phases – Intrinsic SO


<strong>Topological</strong> phases


<strong>Topological</strong> phases


<strong>Topological</strong> phases – Rashba SO


Rashba SO + B: trivial gap


Rashba: spin-textures


<strong>Topological</strong> phases


Q: Do we really need a uniform<br />

magnetic field to get QHE?<br />

A: Haldane (1989): No, it is enough<br />

to break TRS (staggered flux)<br />

Q: Is this all???? Do I really need to<br />

break TRS?


Yes: Rashba + exchange (B = 0):<br />

QHE


Experimental realizations


Experimental realizations: condensed matter


Experimental realizations: quantum dots<br />

A. Singha et al (Pellegrini's group), Science 332, 1176 (2011)<br />

Manoharan: Nature 483, 306 (2012)


Synthetic graphene<br />

●<br />

●<br />

●<br />

●<br />

CO molecules on<br />

Cu(111)<br />

2DES<br />

Move CO with<br />

STM<br />

Electrons form a<br />

honeycomb<br />

lattice<br />

Manoharan: Nature<br />

483, 306 (2012)


Experimental realizations: ultracold atoms


Experimental realizations: SO with<br />

ultracold atoms<br />

Lin, Gimenez-Garcia, Spielman, Nature 471, 83 (2011)<br />

Only a part <strong>of</strong> the Rashba term (actually, Rashba + Dresselhaus)


Ultracold atoms: shaken, not stirred!


Manipulating Dirac points<br />

Cheol-Hwan Park et al., Nature <strong>Physics</strong> 4, 213 (2008)<br />

P. Dietl, F. Piechon, and G. Montambaux, PRL 100, 236405 (2008)<br />

Lih-King Lim, CMS, and A. Hemmerich, PRL 100, 130402 (2008)


Merging <strong>of</strong> Dirac points in a shaken<br />

honeycomb lattice<br />

Static honeycomb lattice:<br />

3 lasers with 120 degrees<br />

to create optical lattice *<br />

Ultracold atoms at minima<br />

Shaking: moving along<br />

directions 1 or 2 **<br />

S. Koghee et al., PRA 85, 023637 (2012)<br />

* Sengstock group, Hamburg, 2010<br />

** Arimondo group, Pisa, 2009


Shaken in 1D: Theory<br />

Hollthaus, Eckardt, Hemmerich


Shaken in 1D: Arimondo group (Pisa)


Theory<br />

Graphene Hamiltonian:<br />

Shaking:<br />

Effective Hamiltonian:<br />

Renormalized NN hopping<br />

NNN also changes


Experimental observation<br />

Nature 483, 302 (2012)<br />

See also theory by<br />

Lim et al, PRL 108, 175303 (2012)


Shaken optical lattice: merging and alignment <strong>of</strong> Dirac points


Utrecht group members (graphene)<br />

Wouter Beugeling Ralph van Gelderen Selma Koghee<br />

External collaborators: Brussels and Orsay (Paris)<br />

Nathan Goldman<br />

Mark Goerbig<br />

Lih-King Lim


Experimental collaborators<br />

HAMBURG<br />

UNIVERSITY<br />

Andreas Hemmerich<br />

Ian Spielman<br />

NIST

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!