23.01.2014 Views

An example of development of singularity in a solution to the force ...

An example of development of singularity in a solution to the force ...

An example of development of singularity in a solution to the force ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>An</strong> <strong>example</strong> <strong>of</strong> <strong>development</strong> <strong>of</strong> <strong>s<strong>in</strong>gularity</strong><br />

<strong>in</strong> a <strong>solution</strong> <strong>to</strong> <strong>the</strong> <strong>force</strong>-free Euler equation<br />

Olga Podvig<strong>in</strong>a<br />

olgap@mitp.ru<br />

Vladislav Zheligovsky<br />

vlad@mitp.ru<br />

International Institute <strong>of</strong> Earthquake Prediction Theory<br />

and Ma<strong>the</strong>matical Geophysics,<br />

79 bldg. 2, Warshavskoe ave., 113556 Moscow, Russian Federation<br />

Labora<strong>to</strong>ry <strong>of</strong> general aerodynamics, Institute <strong>of</strong> Mechanics,<br />

Lomonosov Moscow State University,<br />

1, Michur<strong>in</strong>sky ave., 119899 Moscow, Russian Federation<br />

A mixed Euler-Lagrangian description <strong>of</strong> vortex l<strong>in</strong>e transport by a <strong>force</strong>-free<br />

non-viscous fluid flow was recently proposed by Kuznetsov & Ruban [1]. The motion<br />

<strong>of</strong> Lagrangian markers R(a, t) satisfies<br />

∂R<br />

∂t<br />

= v(R, t) −<br />

Ω(R, t) · v(R, t)<br />

|Ω(R, t)| 2 Ω(R, t). (1)<br />

Here a is <strong>the</strong> <strong>in</strong>itial position <strong>of</strong> a marker: R(a, 0) = a, t is time, v is <strong>the</strong> flow<br />

velocity, and<br />

Ω(R, t) ≡ curl R v(R, t) (2)<br />

is vorticity. Equations (1) and (2) are closed by <strong>the</strong> relation<br />

Ω(R(a, t), t) =<br />

(<br />

det ‖ ∂R<br />

∂a ‖ ) −1<br />

(Ω 0 · ∇ a )R(a, t), (3)<br />

where Ω(a, 0) = Ω 0 (a) is <strong>the</strong> <strong>in</strong>itial vorticity.<br />

We have developed a code for numerical <strong>solution</strong> <strong>of</strong> <strong>the</strong> system (1)-(3). 2π-periodicity<br />

<strong>in</strong> space is assumed, so that Fast Fourier Transforms can be used for <strong>the</strong><br />

<strong>in</strong>version <strong>of</strong> curl <strong>in</strong> (2). A second-order Adams-Bashforth f<strong>in</strong>ite-difference scheme is<br />

used for numeric <strong>in</strong>tegration <strong>of</strong> (1). To test <strong>the</strong> code, we have checked that an ABC<br />

flow, which is a steady <strong>solution</strong> <strong>to</strong> <strong>the</strong> <strong>force</strong>-free Euler equation, <strong>in</strong> computations<br />

rema<strong>in</strong>s unaltered. We have also verified that <strong>the</strong> numerical error <strong>in</strong> conservation<br />

<strong>of</strong> <strong>the</strong> <strong>to</strong>tal k<strong>in</strong>etic energy <strong>of</strong> <strong>the</strong> flow is O(h 2 ) (here h is <strong>the</strong> size <strong>of</strong> <strong>the</strong> a-mesh,<br />

where Ω 0 is set); this is consistent with <strong>the</strong> order <strong>of</strong> methods applied for spatial<br />

discretization <strong>of</strong> <strong>the</strong> problem (2) and with f<strong>in</strong>ite-difference schemes used <strong>to</strong> evaluate<br />

gradients <strong>in</strong> (3).<br />

1


Computations have been performed with a uniform mesh <strong>of</strong> 128 3 po<strong>in</strong>ts. Collapse<br />

is found <strong>to</strong> develop <strong>in</strong> a flow, which is <strong>in</strong>itially chosen <strong>to</strong> have random Fourier<br />

harmonics and an exponentially decay<strong>in</strong>g energy spectrum. The flow does not possess<br />

any symmetry. Accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> Kuznetsov & Ruban [2], <strong>in</strong> <strong>the</strong><br />

region <strong>of</strong> collapse vorticity behaves as (t 0 − t) −1 , which is <strong>in</strong>deed found <strong>in</strong> computations<br />

(see Fig.1). Their ano<strong>the</strong>r prediction is confirmed: eigenvalues <strong>of</strong> <strong>the</strong> Hessian<br />

‖<br />

∂ 2<br />

∂a i ∂a j<br />

|Ω| −1 ‖ at <strong>the</strong> po<strong>in</strong>t <strong>of</strong> <strong>s<strong>in</strong>gularity</strong> are non-s<strong>in</strong>gular and slightly depend on<br />

time.<br />

Figure 1: |Ω| −1 (vertical axis) as a function <strong>of</strong> time (horizontal axis).<br />

References<br />

[1] Kuznetsov E.A. & Ruban V.P. (2000). Hamil<strong>to</strong>nian dynamics <strong>of</strong> vortex and<br />

magnetic l<strong>in</strong>es <strong>in</strong> hydrodynamic type systems. Phys. Rev. E, 61, 831–841.<br />

[2] Kuznetsov E.A. & Ruban V.P. (2001). Break<strong>in</strong>g <strong>of</strong> vortex l<strong>in</strong>es – a new mechanism<br />

<strong>of</strong> collapse <strong>in</strong> hydrodynamics. Submitted.<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!