23.01.2014 Views

A similarity solution for viscous source flow on a vertical plane

A similarity solution for viscous source flow on a vertical plane

A similarity solution for viscous source flow on a vertical plane

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

46 B. R. Duffy and H. K. Moffatt<br />

The natural scaling <str<strong>on</strong>g>for</str<strong>on</strong>g> the problem follows from the definiti<strong>on</strong> of the volume flux, and<br />

from the assumpti<strong>on</strong>s that there is a <str<strong>on</strong>g>viscous</str<strong>on</strong>g>-gravitati<strong>on</strong>al balance in the downstream<br />

directi<strong>on</strong>, and that the pressure variati<strong>on</strong>s in the transverse directi<strong>on</strong> scale with surface<br />

tensi<strong>on</strong>:<br />

where<br />

(x, y, z) X s<br />

(x , δy , εδz), (u, , w) U s<br />

(u , δ , εδw ), p Π s<br />

p , h εδX s<br />

h ,<br />

δ <br />

µQγ<br />

(ρg sin α) X s<br />

/ ,<br />

(ρg sin α) µ Q<br />

ε γX s<br />

/ ,<br />

(ρg sin α) Q<br />

U s<br />

µγX s<br />

/ (ρg sin α) µ Q γ<br />

, Π s<br />

X s<br />

/ .<br />

Here u, and w denote the Cartesian velocity comp<strong>on</strong>ents, p denotes the fluid pressure<br />

relative to atmospheric pressure, and X s<br />

is a measure of distance downstream from the<br />

<str<strong>on</strong>g>source</str<strong>on</strong>g>. X s<br />

need not be defined too precisely, since any length scale selected will be artificial<br />

in the sense that it will not appear in the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> (cf. Smith, 1973, p. 276).<br />

The c<strong>on</strong>tinuity and Navier–Stokes equati<strong>on</strong>s then lead to<br />

u x<br />

y<br />

w z<br />

0,<br />

R(uu x<br />

u y<br />

wu z<br />

) δ p x<br />

1δ ε u xx<br />

ε u yy<br />

u zz<br />

,<br />

R(u x<br />

y<br />

w z<br />

) p y<br />

δ ε xx<br />

ε yy<br />

zz<br />

,<br />

Rε(uw x<br />

w y<br />

ww z<br />

) p z<br />

δ ε w xx<br />

ε w yy<br />

ε w zz<br />

(ρg cos αγ) δ X s<br />

,<br />

overbars having dropped <str<strong>on</strong>g>for</str<strong>on</strong>g> clarity; here<br />

R ρU s X ε δ<br />

s<br />

µ<br />

<br />

ρ gQ<br />

µ γ X s<br />

/ .<br />

We now take δ 1, ε 1 and R 1 (all of which should be valid <str<strong>on</strong>g>for</str<strong>on</strong>g> sufficiently large X s<br />

).<br />

Then <str<strong>on</strong>g>for</str<strong>on</strong>g> sufficiently small α <br />

π we have, at leading order,<br />

u zz<br />

1, zz<br />

p y<br />

, 0p z<br />

.<br />

This system is to be integrated subject to the boundary c<strong>on</strong>diti<strong>on</strong>s<br />

and, at leading order,<br />

u 0 <strong>on</strong> z0,<br />

u z<br />

z<br />

0 and p h yy<br />

<strong>on</strong> z h.<br />

We thus find<br />

p h yy<br />

, u hz <br />

z, h yyy<br />

(hz <br />

z).<br />

Then, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, integrati<strong>on</strong> of the c<strong>on</strong>tinuity equati<strong>on</strong> and use of the c<strong>on</strong>diti<strong>on</strong>s<br />

w 0 <strong>on</strong> z0, w uh x<br />

h y<br />

<strong>on</strong> z h<br />

leads to 3h h x<br />

(h h yyy<br />

) y<br />

,<br />

which is (2.2) is n<strong>on</strong>-dimensi<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>m.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!