23.01.2014 Views

Comparison of stability of centralized and decentralized ... - IFToMM

Comparison of stability of centralized and decentralized ... - IFToMM

Comparison of stability of centralized and decentralized ... - IFToMM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

12th <strong>IFToMM</strong> World Congress, Besanc¸on, June 18-21, 2007<br />

CK-xxx<br />

<strong>Comparison</strong> <strong>of</strong> <strong>stability</strong> <strong>of</strong> <strong>centralized</strong> <strong>and</strong> de<strong>centralized</strong> nonlinear control systems<br />

for electromagnetic suspension<br />

N.G. Kodochigov 1 V.S. Vostokov 2 V.S. Gorbunov 3 S.V. Lebedeva 4 I.V. Drumov 5<br />

OKBM ОКBМ ОКBМ VGАVТ ОКBМ<br />

Nizny Novgorod,<br />

Russia<br />

Nizny Novgorod,<br />

Russia<br />

Nizny Novgorod,<br />

Russia<br />

Nizny Novgorod,<br />

Russia<br />

Nizny Novgorod,<br />

Russia<br />

Abstract - The paper presents the results <strong>of</strong> performed<br />

comprehensive analyses <strong>of</strong> full electromagnetic suspension<br />

<strong>stability</strong> using Lyapunov method. Analyses proved that the<br />

dynamic mechatronic system “rotor + electromagnetic<br />

bearings control system (EMB CS)” is stable without any<br />

additional measures needed to linearize the magnetic force<br />

in systems with <strong>centralized</strong> control. In case <strong>of</strong><br />

de<strong>centralized</strong> control, overall <strong>stability</strong> cannot be proven.<br />

However, <strong>stability</strong> <strong>of</strong> a specific mode <strong>of</strong> motion is shown.<br />

Keyword: <strong>stability</strong>, <strong>centralized</strong>, de<strong>centralized</strong>, control, electromagnet<br />

I. Introduction<br />

Mode <strong>of</strong> rotor motion in EMBs is studied in a large<br />

number <strong>of</strong> papers. Suffice it to say that international<br />

conferences on rotor dynamics are held at regular<br />

intervals. The majority <strong>of</strong> publications are devoted to<br />

various methods <strong>of</strong> linearizing the magnetic force<br />

(introduction <strong>of</strong> displacement currents [1,2] or special<br />

nonlinearities [3], use <strong>of</strong> nonlinearity compensators, etc.)<br />

<strong>and</strong> control techniques (use <strong>of</strong> filters [4]). Some papers<br />

concentrate on proving dynamic system <strong>stability</strong> using the<br />

Lyapunov method [3].<br />

The electromagnetic suspension system has several<br />

nonlinearities:<br />

- quadratic dependence <strong>of</strong> magnetic force on control<br />

current;<br />

- hyperbolic dependence <strong>of</strong> magnetic force on the air<br />

gap;<br />

- saturation <strong>of</strong> radial electromagnet iron;<br />

- supply <strong>of</strong> increased voltage to electromagnets until<br />

the control current reaches the preset value.<br />

1 E-mail: kodochigov@okbm.nnov.ru<br />

2 E-mail: gorbunov@okbm.nnov.ru<br />

3 E-mail: gorbunov@okbm.nnov.ru<br />

4 E-mail: vip@aqua.sci-nnov.ru<br />

5 E-mail gorbunov@okbm.nnov.ru<br />

From the viewpoint <strong>of</strong> zero equilibrium<br />

<strong>stability</strong>, the most important factor is nonlinear<br />

dependence <strong>of</strong> magnetic force on the control<br />

current because at the zero point the control current<br />

is zero, <strong>and</strong> the derivative from the quadratic<br />

function <strong>of</strong> magnetic force dependence on the<br />

control current is also zero.<br />

Lately, Lyapunov method has been used in a<br />

number <strong>of</strong> publications [5] to prove <strong>stability</strong> <strong>of</strong> zero<br />

equilibrium state with account <strong>of</strong> some<br />

nonlinearities (quadratic dependence <strong>of</strong> magnetic<br />

force on control current, <strong>and</strong> saturation <strong>of</strong> radial<br />

electromagnet iron) <strong>and</strong> gyroscopic crosscouplings.<br />

However, analytical investigations are<br />

performed using a one-mass rotor model with one<br />

EMB.<br />

It is proven that the zero equilibrium state <strong>of</strong><br />

the one-mass EMB model [6] is asymptotically<br />

stable in nonlinear approximation under <strong>centralized</strong><br />

control.<br />

The statement is proven using Lyapunov<br />

method.<br />

In this paper we shall prove asymptotic<br />

<strong>stability</strong> <strong>of</strong> the zero equilibrium state <strong>of</strong> full (3-<br />

dimensional) electromagnetic suspension <strong>of</strong><br />

turbomachine vertical rotor under <strong>centralized</strong><br />

control, i.e. when two independent control signals<br />

(based on rotor inclination <strong>and</strong> mass center<br />

position) are generated along each EMB coordinate.<br />

It is proven that <strong>stability</strong> <strong>of</strong> the zero<br />

equilibrium state <strong>of</strong> an EMB CS, which functions<br />

based on signals <strong>of</strong> rotor-stator gap variation in the<br />

EMB area, is possible only for a certain type <strong>of</strong><br />

rotor motion (e.g. when rotor lateral misalignment<br />

prevails). For other motion types, <strong>stability</strong> is not<br />

proven.<br />

This work can be considered a first step in<br />

validation <strong>of</strong> the possibility to create a CS without<br />

“pre-loading" the rotor, which helps to reduce EMB<br />

working temperatures.


II.<br />

Stability <strong>of</strong> zero equilibrium state in a full<br />

electromagnetic suspension with <strong>centralized</strong><br />

control<br />

A. Mathematical model <strong>of</strong> rotor electromagnetic<br />

suspension<br />

The object <strong>of</strong> the study is a vertical rotor in two EMBs.<br />

Displacement current is not used; therefore only<br />

electromagnet windings opposite to rotor displacement<br />

direction are in use. Control <strong>of</strong> rotor axial motion is<br />

organized conventionally <strong>and</strong> is not considered in this<br />

paper. It is assumed that influence <strong>of</strong> vertical forces on the<br />

horizontal constituent is weak.<br />

The complete mathematical model <strong>of</strong> the rotor with<br />

gyroscopic cross couplings is further considered.<br />

The mathematical model <strong>of</strong> rotor uses dynamic<br />

equations in coordinates <strong>of</strong> mass center <strong>and</strong> rotation<br />

angles. The initial model <strong>of</strong> full electromagnetic<br />

suspension with account <strong>of</strong> equations for translational <strong>and</strong><br />

oscillatory motion has the form [2]:<br />

A && α + & βСΩ<br />

= Mα<br />

m && x = F x<br />

(1.1)<br />

A && β − & αСΩ<br />

= M<br />

m && y = F y<br />

,<br />

where α is angle <strong>of</strong> rotor displacement in yz plane<br />

(Figure 1); β is angle <strong>of</strong> rotor displacement in xz plane; x<br />

<strong>and</strong> y are mass center coordinates; А is moment <strong>of</strong> rotor<br />

inertia relatively to each axis lying in the rotor equatorial<br />

plane; m is rotor mass; С is moment <strong>of</strong> rotor inertia<br />

relatively to central rotation axis; Ω is absolute angular<br />

speed <strong>of</strong> rotation around the central axis; F , F are<br />

forces from the radial EMB acting along axes x <strong>and</strong> y;<br />

M M α<br />

,<br />

β<br />

are moments from the radial EMB acting at<br />

angles α <strong>and</strong> β .<br />

B. Control system structure<br />

β<br />

Mathematical model <strong>of</strong> the control system does not<br />

account for sensor response time or current in<br />

electromagnet windings. Centralized control is considered;<br />

that is when mass center based control does not lead to<br />

occurrence <strong>of</strong> the moment <strong>of</strong> force, <strong>and</strong> angle based<br />

control does not lead to displacement <strong>of</strong> the mass center.<br />

Thus it appears that there are no coordinate cross<br />

couplings between equations (1.1). Equations for a<br />

proportional-differential controller are considered. For a<br />

rigid rotor with <strong>centralized</strong> control, position <strong>of</strong> mass center<br />

x<br />

y<br />

<strong>and</strong> rotation angles are calculated based on the<br />

measured rotor displacement in EMBs relative to<br />

the stator central axis. It follows that:<br />

x aα<br />

α вu<br />

= x bα<br />

α l<br />

= −<br />

where u st<strong>and</strong>s for “upper”, l st<strong>and</strong>s for “lower”, а<br />

is the distance between the upper bearing <strong>and</strong> the<br />

rotor mass center; b is the distance between the<br />

lower bearing <strong>and</strong> the rotor mass center; x αu is<br />

calculated rotor displacement (relative to stator<br />

central axis) in the upper bearing, with the fixed<br />

mass center; x αl s calculated rotor displacement<br />

(relative to stator central axis) in the lower bearing,<br />

with the fixed mass center.<br />

Equations for y β <strong>and</strong> β are <strong>of</strong> a similar form.<br />

Equations for forces <strong>and</strong> moments from<br />

electromagnets will be <strong>of</strong> the form:<br />

F<br />

x<br />

= −2k1I<br />

m.<br />

c.<br />

x<br />

I<br />

m.<br />

c.<br />

x<br />

М = −k1(<br />

Iα<br />

u<br />

Iα<br />

u<br />

a − Iα<br />

l<br />

Iα<br />

b)<br />

, (1.2)<br />

α<br />

l<br />

where m.c. st<strong>and</strong>s for “mass center”; k 1 =L 0 /2x 0 ; L 0<br />

is inductivity <strong>of</strong> electromagnet winding with the<br />

rotor in central position; I m.c.x is mass center based<br />

control current; I αl , I αu is angle based control<br />

current; x 0 is nominal air gap in the electromagnet.<br />

Equation (1.2) is written in the assumption that<br />

2 2<br />

( x0 ± ∆x)<br />

≈ x0<br />

(this assumption holds because<br />

out <strong>of</strong> two electromagnets the one that is active is<br />

the one with the air gap larger than x 0<br />

). Here ∆x is<br />

displacement <strong>of</strong> the bearing rotor part relative to the<br />

stator central axis<br />

Equations for F у <strong>and</strong> М β are <strong>of</strong> a similar form.<br />

Let us pass on from equations (1.1) in variables<br />

α,β to new equations in variables x αu , y βu according<br />

to correlations α= x αu /а; β= y βu /а:<br />

& x<br />

y<br />

αв<br />

βв<br />

A + &<br />

СΩ = −k<br />

а a<br />

& y<br />

βв<br />

xα<br />

в<br />

A − & СΩ = −k<br />

I<br />

а a<br />

&&<br />

1<br />

( Iα<br />

в<br />

Iα<br />

в<br />

а − Iα<br />

н<br />

Iα<br />

н<br />

b)<br />

I<br />

а<br />

1<br />

(<br />

βв<br />

βв<br />

−<br />

βн<br />

βн<br />

)<br />

m x = −2k1I m . c.<br />

x<br />

I<br />

m . c.<br />

x<br />

I<br />

I<br />

= k<br />

x + k<br />

x&<br />

I<br />

I<br />

3 3<br />

a + b<br />

= −k1<br />

I<br />

2<br />

a<br />

3 3<br />

a + b<br />

b = −k1<br />

I<br />

2<br />

a<br />

m . c.<br />

x рx dx<br />

(1.3)<br />

α u<br />

I<br />

β u<br />

= k<br />

= k<br />

рα<br />

рβ<br />

x<br />

αu<br />

y<br />

βu<br />

+ k<br />

+ k<br />

dα<br />

dβ<br />

x&<br />

αu<br />

y&<br />

βu<br />

I<br />

αв<br />

αв<br />

I<br />

βв<br />

βв


where k px is proportional coefficient <strong>of</strong> mass center based<br />

controller; k dx is differential coefficient <strong>of</strong> mass center<br />

based controller; k pα, k pβ is proportional coefficient <strong>of</strong> α<br />

<strong>and</strong> β angle based controller; k dα, k dβ is differential<br />

coefficient <strong>of</strong> α <strong>and</strong> β angle based controller.<br />

All coefficients k p <strong>and</strong> k d (with indices) are positive.<br />

Equations for y,I m.c.y are <strong>of</strong> a similar form.<br />

Thus, in assumption <strong>of</strong> <strong>centralized</strong> control, the<br />

equations become independent, which permits us to use<br />

earlier obtained results to write one second-degree<br />

equation [6].<br />

C. System <strong>stability</strong><br />

Control is independent <strong>of</strong> rotor inclination angle <strong>and</strong><br />

mass center deviation from the central axis. It can be easily<br />

shown that system (1.3) can be transformed into two<br />

equations for control current:<br />

2k1<br />

d<br />

2<br />

m I&<br />

m. c.<br />

xI<br />

&<br />

m.<br />

c.<br />

x<br />

+ k<br />

px<br />

( I<br />

m.<br />

c.<br />

x<br />

I<br />

m.<br />

c.<br />

xI<br />

m.<br />

c.<br />

x<br />

) = −4k1kdx<br />

⋅ I<br />

m.<br />

c.<br />

x<br />

( I&<br />

m.<br />

c.<br />

x<br />

)<br />

3 dt<br />

<strong>and</strong><br />

3 3<br />

A<br />

a b<br />

2<br />

[ I&&<br />

u<br />

I&<br />

u<br />

I&&<br />

uI<br />

& +<br />

⋅<br />

α α<br />

+<br />

β βu<br />

] = − k1<br />

⋅{[<br />

k ( ) 2 ( ) ]<br />

2<br />

p<br />

I<br />

u<br />

I<br />

uI<br />

&<br />

α α α αu<br />

+ kd<br />

α<br />

Iα<br />

u<br />

I&<br />

αu<br />

+<br />

a<br />

a<br />

2<br />

+ [ k ( I I I&<br />

) + 2k<br />

I ( I&<br />

) ]}.<br />

pβ<br />

βв<br />

βв<br />

βв<br />

dβ<br />

βв<br />

βв<br />

So, the sought variables are control currents I m.c.x,<br />

I m.c.y, I αu, I βu.<br />

The Lyapunov function has the form (1.4):<br />

2<br />

2<br />

I&<br />

I&<br />

m.<br />

c.<br />

x m.<br />

c.<br />

y 2k1<br />

2<br />

2<br />

v = m + m + ⋅{<br />

kpx<br />

Im . c.<br />

x<br />

Im . c.<br />

x<br />

+ kpy<br />

Im . c.<br />

y<br />

Im . c.<br />

y}<br />

+<br />

2 2 3<br />

(1.4)<br />

2 2 3 3<br />

I&<br />

I&<br />

αu<br />

βu<br />

k1<br />

a + b<br />

2<br />

2<br />

A + A + ⋅{<br />

k + } > 0<br />

2 pα<br />

Iαu<br />

Iαu<br />

kpβ<br />

Iβu<br />

Iβu<br />

2а<br />

2а<br />

3 a<br />

<strong>and</strong> accordingly, its derivative taken with account <strong>of</strong><br />

original equations is:<br />

3 3<br />

2<br />

2 a + b<br />

2<br />

2<br />

− 4k1 ⋅{<br />

kdx<br />

Im.<br />

c.<br />

x<br />

I&<br />

m.<br />

c.<br />

x<br />

+ kdy<br />

Im.<br />

c.<br />

y<br />

I&<br />

m.<br />

c.<br />

y<br />

} − 2k1<br />

⋅{<br />

k + } < 0<br />

2 d<br />

I<br />

u<br />

I&<br />

α α αu<br />

kdβ<br />

I<br />

βu<br />

I&<br />

βu<br />

a<br />

At the same time,<br />

d<br />

dt<br />

( I I)<br />

= 2 I I&<br />

.<br />

d<br />

dt<br />

( I II)<br />

= 3 I II&<br />

, <strong>and</strong><br />

Based on the above, we can conclude that equilibrium<br />

state<br />

= = = = = =<br />

x<br />

y<br />

I<br />

I<br />

I<br />

=<br />

m. c.<br />

x m.<br />

c.<br />

у u βu<br />

αl<br />

βl<br />

=<br />

α<br />

is<br />

asymptotically stable. Thus, asymptotic <strong>stability</strong> <strong>of</strong> the<br />

nonlinear system <strong>of</strong> full electromagnetic suspension is<br />

proven.<br />

It should be noted that <strong>stability</strong> is proven in variables<br />

or:<br />

I<br />

I<br />

I<br />

0<br />

Im. c.<br />

x;<br />

Iα u;<br />

I βu<br />

; but it follows from<br />

I = k x + k x&<br />

that<br />

α u<br />

рα<br />

αu<br />

αu<br />

+ kdα<br />

xαu<br />

dα<br />

αu<br />

k<br />

р<br />

x &<br />

α → 0 . So it is evident that<br />

x α u<br />

→ 0 if t → ∞ . Thus, we can assert that<br />

<strong>stability</strong> in variables α , & α is also proven. The same<br />

holds for x , x& , y,<br />

y&<br />

,β.<br />

III.<br />

System <strong>stability</strong> with account <strong>of</strong> inertia<br />

<strong>of</strong> control current build-up in<br />

electromagnet winding<br />

In order to simplify things, we will consider the<br />

case <strong>of</strong> rotor holdup in one coordinate (e.g. along x<br />

axis).<br />

The equation for control current with account<br />

<strong>of</strong> current inertia in EMB winding is written as<br />

follows:<br />

k<br />

p<br />

x + kd<br />

x& = τ I&<br />

+ I, (2.1)<br />

where k p is controller proportional coefficient;<br />

k d is controller differential coefficient;<br />

τ is time constant <strong>of</strong> electromagnet winding<br />

L 0<br />

τ = ; R is EMB winding resistance.<br />

R<br />

If we introduce dimensionless quantity<br />

~ t<br />

t = ,<br />

τ<br />

equation (2.1) will be transformed into:<br />

dI kd dx<br />

I k<br />

px<br />

dt<br />

~ + = +<br />

τ dt<br />

~ . (2.2)<br />

Equations (1.1) are transformed in the same<br />

way:<br />

2<br />

m d x L0<br />

I I<br />

2 2<br />

dt<br />

~ = − .<br />

τ 2x0<br />

2<br />

2<br />

d x L0τ<br />

Substituting<br />

I I<br />

dt<br />

~ = −<br />

into (2.2),<br />

2x0m<br />

we receive:<br />

2<br />

d I dI kdτL0<br />

dx<br />

I I k<br />

p<br />

dt<br />

~ +<br />

dt<br />

~ = − +<br />

2<br />

2x<br />

m dt<br />

~ . (2.3)<br />

0<br />

If we define expressions to the left <strong>of</strong> I I <strong>and</strong><br />

( I I)<br />

dt<br />

~<br />

∫<br />

as c <strong>and</strong> h, we obtain:<br />

2<br />

d I dI<br />

( )<br />

~<br />

~ + ~ + c I I + h = 0<br />

2 ∫ I I dt<br />

,<br />

dt dt


2<br />

d I dI d<br />

h I I dt<br />

~<br />

h I I dt<br />

~<br />

~ + ~ + ~ ( ) ) ( ) ( c h)<br />

I I<br />

dt dt dt<br />

( + = − − .(2.4)<br />

2 ∫ ∫<br />

Multiplying the left <strong>and</strong> right sides <strong>of</strong> equation (2.4) by<br />

dI h I I)<br />

dt<br />

~<br />

dt<br />

~ + ∫ ( , we obtain:<br />

dI ~ 2<br />

( ~ + h∫<br />

( I I)<br />

dt )<br />

d<br />

( ) ~<br />

~ [ dt<br />

c − h c − h<br />

2<br />

+ I II + ( h ( ) ) ]<br />

2<br />

3 2<br />

∫ I I dt =<br />

dt<br />

h<br />

dI<br />

( ( )<br />

~ 2<br />

= − ~ + h∫<br />

I I dt ) ,<br />

dt<br />

or:<br />

dI<br />

2<br />

(<br />

~<br />

~ + h∫(<br />

I I)<br />

dt )<br />

c −h<br />

( c −h)<br />

~ 2<br />

v =<br />

dt<br />

+ I II + ( h ( ) )<br />

2 3 2<br />

∫ I I dt<br />

, (2.5)<br />

b<br />

d dI<br />

( )<br />

~<br />

~ ν = −(<br />

~ + h∫ I I dt<br />

)<br />

2 < 0 .<br />

dt dt<br />

2<br />

kdτL<br />

k<br />

0<br />

pτ<br />

L0<br />

If c = <strong>and</strong> h = , <strong>stability</strong> condition<br />

2x0m<br />

2x0m<br />

c>h transforms into inequality k d<br />

> k p<br />

τ .<br />

The obtained result can be used in studies <strong>of</strong> <strong>stability</strong><br />

<strong>of</strong> full rotor suspension described above. Thus, as there are<br />

no cross-couplings between the equations, <strong>stability</strong> <strong>of</strong> full<br />

electromagnetic suspension with <strong>centralized</strong> CS <strong>and</strong> with<br />

account <strong>of</strong> current inertia in EMB winding can be<br />

considered proven<br />

.<br />

IV. Stability <strong>of</strong> full electromagnetic suspension <strong>of</strong><br />

vertical rotor with a de<strong>centralized</strong> CS<br />

Let us consider one coordinate, neglecting gyroscopic<br />

forces, since it was shown above that they do not affect the<br />

result but only make calculations bulkier.<br />

Original equations have the form<br />

mX<br />

1"<br />

= −F(<br />

X<br />

1)<br />

+ F(<br />

X<br />

2<br />

)<br />

,<br />

mX<br />

2"<br />

= −F(<br />

X<br />

2<br />

) + F(<br />

X<br />

1)<br />

where Х 1 <strong>and</strong> Х 2 are coordinates <strong>of</strong> the upper <strong>and</strong> lower<br />

bearings.<br />

After transformations similar to those described in<br />

Section 1, we receive cross terms I I 1 2<br />

' <strong>and</strong> I I ' 2 1<br />

that do<br />

not permit to conclude whether the Lyapunov function or<br />

its derivative are sign-constant.<br />

Next, we replace control currents I1 <strong>and</strong> I2 <strong>and</strong> their<br />

derivatives with angle <strong>and</strong> mass center based control<br />

currents (analogous to replacement <strong>of</strong> variables). After<br />

addition <strong>of</strong> the cross terms we receive only eigenproducts<br />

I I α α<br />

' <strong>and</strong> I ' c. m.<br />

I<br />

c.<br />

m.<br />

, but <strong>of</strong> different signs.<br />

If we introduce them under the derivative sign,<br />

we receive additional terms in the Lyapunov’s<br />

2 2<br />

−<br />

function that have the form <strong>of</strong><br />

I + I α m . c . <strong>and</strong><br />

are identically equal to zero. Thus, on the one h<strong>and</strong>,<br />

<strong>stability</strong> cannot be concluded as the resulting<br />

function is not sign-constant; but we can assume<br />

that if one component is always greater than the<br />

other (e.g. if parallel rotor motion prevails), then<br />

<strong>stability</strong> will be ensured. Numerical calculations on<br />

more detailed nonlinear models <strong>and</strong> experiments<br />

with vertical rotors confirm that such assumption<br />

can be true.<br />

V. Conclusions<br />

A. Analyses <strong>of</strong> full electromagnetic suspension<br />

<strong>stability</strong> performed using Lyapunov method<br />

proved that the dynamic mechatronic system<br />

“rotor + CS” is stable without any additional<br />

measures to linearize the magnetic force.<br />

B. Preference should be given to <strong>centralized</strong><br />

control systems.<br />

C. The demonstrated result <strong>of</strong> performed analyses<br />

is <strong>of</strong> practical value as it permits to ab<strong>and</strong>on use<br />

<strong>of</strong> displacement currents that linearize the<br />

system but lead to overheat <strong>of</strong> electromagnet<br />

windings.<br />

References.<br />

[1] Yu.N. Zhuravlev. Active magnetic bearings. Theory,<br />

calculation <strong>and</strong> application // Saint Petersburg.<br />

Polytechnnics, 2003.<br />

[2] Schweitzer G., Bleuler H., Traxler A. Active<br />

Magnetic Bearings. Zurich: Vdf Hochschulverlag AG<br />

an der ETH, 1994.<br />

[3] Ariga Y., Nonami K., Sakai K. Nonlinear control <strong>of</strong><br />

zero power magnetic bearing using Lyapunov’s direct<br />

method // Proc. 7-th Int. Symp. on EВ, Zurich: ETH,<br />

2000. P. 23-25.<br />

[4] Fujiwara H., Matsushita O., Okubo H. Stability<br />

evaluation <strong>of</strong> high frequency eigen modes for active<br />

magnetic bearing rotors // Proc.7-th Int. Symp. on<br />

EВ,Zurich:ETH,2000.P.85-88.<br />

[5] Yu.G. Martynenko. Motion <strong>of</strong> hard bodies in<br />

electromagnetic fields // M.: Nauka, 1988.<br />

[6] F.M. Mitenkov, N.G. Kodochigov, V.S. Vostokov<br />

etc. Complex <strong>of</strong> analytical, methodic experimental<br />

investigations <strong>of</strong> rotor motion in electromagnetic<br />

suspension // Nuclear Energy, 2005. Vol.99, Iss. 1,<br />

pp. 26-33.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!