23.01.2014 Views

P12 Tornow

P12 Tornow

P12 Tornow

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Recent Few-Body Activities<br />

at TUNL and HIγS<br />

Werner <strong>Tornow</strong><br />

Duke University & Triangle Universities Nuclear Laboratory


Content<br />

A. TUNL: Polarized Neutrons<br />

1. n-p A y<br />

(θ) at E n<br />

=12 MeV<br />

2. n-d A y<br />

(θ) between E n<br />

=19 and 22.5 MeV<br />

3. n- 3 He A y<br />

(θ) between E n<br />

=2.26 and 5.54 MeV<br />

B. HIγS: Linearly Polarized Gamma-rays<br />

1. γ-d breakup photon analyzing power Σ L<br />

(θ) from 2.4 to 10 MeV<br />

2. γ- 3 He three-body breakup photon analyzing power Σ L<br />

(θ) at 15 and 12.8 MeV


Nijm PWA<br />

n-p


2<br />

R. Machleidt: πNN coupling constant g / π<br />

π<br />

4<br />

≥14.0<br />

to correctly reproduce<br />

the quadrupole moment Q of the deuteron [0.276(2) fm 2 ].<br />

Nijmegen:<br />

VPI:<br />

2<br />

2<br />

g / π 0 =13.47+-0.11 / π<br />

π<br />

4<br />

g =13.54+-0.05<br />

π 4<br />

2<br />

π / 4<br />

2<br />

g / π ≈13.3 π<br />

4<br />

π 0<br />

g ≈ 13.9<br />

g<br />

2<br />

π<br />

/ 4π<br />

≥14.0<br />

creates problems for the 3 P 0<br />

NN phase shifts (too large!) at low<br />

energies.<br />

2<br />

Assume charge splitting of πNN: /4π<br />

13. 6<br />

3<br />

P 0<br />

and Q are o.k.<br />

2<br />

g and g π<br />

+ − / 4π<br />

= 14. 4<br />

π<br />

0 =


Nijm PWA<br />

CD Bonn<br />

2<br />

2<br />

g / 4π g / 4π<br />

π /<br />

0<br />

π +−<br />

13.6 / 13.6<br />

13.6 / 14.0<br />

13.6 / 14.4<br />

2<br />

All low-energy n-p A Y<br />

(θ) data require g π<br />

+ − / 4π<br />

≥14.<br />

0


n-d<br />

Witala<br />

n-d<br />

n-d


.… Fit<br />

AV18 Witala<br />

A y<br />

θ c.m.


AV18 Witala<br />

…. Fit


TUNL data<br />

Pisa calc.<br />

p- 3 He p- 3 He


TUNL data<br />

Pisa calc.<br />

p- 3 He p- 3 He


NN Interactions in 3N and 4N Systems<br />

d<br />

d<br />

3N:<br />

p +<br />

n<br />

p<br />

1 pn + 1pp<br />

n +<br />

n<br />

p<br />

1 pn + 1 nn<br />

3<br />

He<br />

3<br />

He<br />

p +<br />

p<br />

p<br />

n<br />

1 pn + 2 pp n +<br />

p<br />

p<br />

n<br />

2 pn + 1 nn<br />

4N:<br />

3<br />

H<br />

3<br />

H<br />

n +<br />

n<br />

n<br />

p<br />

1 pn + 2 nn p +<br />

n<br />

n<br />

p<br />

2 pn + 1 pp


Fonseca<br />

…. Hale RM<br />

A y<br />

θ c.m.<br />

180


HIγS (High-Intensity Gammaray<br />

Source) at Duke/TUNL<br />

early Mono-energetic γ-rays<br />

unable Energies<br />

nergy resolution selected by collimator size<br />

inearly and Circularly Polarized γ-rays<br />

igh Beam Intensities


Upgraded Facility<br />

(3a) Building extension<br />

+ booster radiation shielding<br />

(2) 1.2-GeV Booster Injector<br />

(3b) LTB Transfer Line<br />

(3c) BTR Transfer Line<br />

(1) RF System with HOM Damping<br />

(3e) Radiation shielding<br />

over SR east arc<br />

3(d) Modifications to SR NSS


pgrade Schedule<br />

Commissioning of Booster July-August 2006<br />

Commissioning of Booster and Ring with OK-4—September-November<br />

Nuclear Physics Program begins-December, 2006<br />

Dec. 06 May 07 Linear Pol.- Below 65 MeV, >2x10 8 γ/s<br />

Sept. 07 Circ. Pol. Up to 110 MeV, >10 8 γ/s<br />

These are TOTAL intensities. Beam on target is:<br />

TOTAL x 1.5 x % resolution (ex. 5% res. at 100 MeV: 7.5 x 10 6 γ/s)<br />

Expect to have energies up to 160 MeV by Spring 09


Few-Body Physics @ ΗΙγS<br />

esolve long standing cross section<br />

problems.<br />

erform Precision tests of few-body theory<br />

including EFTs and 3-body force models<br />

using polarized beams and targets.<br />

easure fundamental properties such as the<br />

electric polarizabilities for 3 He and 4 He via


Two-Body System<br />

• Gamma-Deuteron Breakup at Low Energies


Detector Geometry<br />

: 3 He scintillator<br />

: neutron detector<br />

o<br />

θ = 90<br />

(lab)<br />

2<br />

1<br />

ε (θ )<br />

: Asymmetry<br />

N<br />

H<br />

− NV<br />

( θ ) = = p Σ ( θ )<br />

N + N<br />

ε<br />

γ L<br />

H<br />

p : γ-ray linear polarization<br />

y<br />

Σ<br />

L<br />

( ) θ<br />

V<br />

: Analyzing power<br />

3<br />

4


W. <strong>Tornow</strong>, C. Howell, V. Litvinenko, J. Kelley, et al.


The cross section and the linear analyzing power


Blowfish Detector Array<br />

Norum/Weller


The Gerasimov-Drell-Hearn (GDH) Sum Rule for Deuteron<br />

σ P/A<br />

(E) are the total cross sections for the absorption of circularly polarized<br />

photons on a target with spin Parallel/Antiparallel to the spin of the photon;<br />

κ = anomalous magnetic moment (of the deuteron).<br />

κ d<br />

= -0.143 μ m<br />

I GDH Predicted = 0.65 μb


THE GDH INTEGRAND FOR THE DEUTERON NEAR<br />

PHOTODISINTEGRATION THRESHOLD<br />

Contributions are expected from s-waves and p-waves (notation 2S+1 L J<br />

)<br />

M1 terms: 1 S 0<br />

and 3 S 1<br />

E1 terms: 1 P 1<br />

, 3 P 0<br />

, 3 P 1<br />

, and 3 P 2<br />

Expect the “spin-flip” E1 term 1 P 1<br />

~ 0.<br />

Then σ P<br />

- σ A<br />

= π/2k 2 { - 1 S 02<br />

–3/2 3 S 12<br />

- 3 P 02<br />

–3/2 3 P 12<br />

+ 5/2 3 P 22<br />

}<br />

Expect 3 P 0<br />

~ 3 P 1<br />

~ 3 P 2<br />

, and 3 S 1<br />

~ 0.<br />

So that σ P<br />

- σ A<br />

= π/2k 2 { - 1 S 02<br />

}<br />

Also, with 3 S 1<br />

~ 0 we have:<br />

σ(M1) = π/6k 2 { 1 S<br />

2<br />

0<br />

}<br />

Which gives the result:<br />

σ P<br />

- σ A<br />

= -3 σ(M1)


<strong>Tornow</strong>’s Group<br />

Norum/Weller’s Group


Three-Body Photodisintegration<br />

of 3 He<br />

• Reaction: γ + 3 He p+ p + n<br />

Q<br />

= −7.72<br />

MeV<br />

• E γ =15 MeV<br />

• <strong>Tornow</strong>’s Group


Detector Geometry<br />

: 3 He scintillator<br />

: neutron detector<br />

o<br />

θ = 90<br />

(lab)<br />

2<br />

1<br />

ε (θ )<br />

: Asymmetry<br />

N<br />

H<br />

− NV<br />

( θ ) = = p Σ ( θ )<br />

N + N<br />

ε<br />

γ L<br />

H<br />

p : γ-ray linear polarization<br />

y<br />

Σ<br />

L<br />

( ) θ<br />

V<br />

: Analyzing power<br />

3<br />

4


Deltuva et al.<br />

γ+ 3 He n+p+p


Photon Analyzing Power for<br />

3<br />

He(γ,pp)n


Time-of-Flight vs. ΣE p Spectra<br />

γ<br />

n<br />

γ<br />

n


Time-of-Flight Spectra


Photon Analyzing Power for<br />

3<br />

He(γ,pp)n<br />

• For neutrons in the energy range 1.23 to<br />

4.80 MeV, σ-weighted average of the<br />

photon analyzing power:<br />

– Theoretical prediction: Σ L (θ n =90°) = 0.949<br />

– Experimental result: Σ L (θ n =90°) = 0.95 ± 0.01


Three-Body Photodisintegration<br />

of 3 He<br />

• Target: 3 He-Xe gas scintillator<br />

– 47 atm 3 He, 3 atm Xe<br />

• Not enough stopping power for highenergy<br />

protons: they don’t deposit all of<br />

their energy: Edge effects:<br />

Scintillator housing<br />

γ-ray beam


Three-Body Photodisintegration<br />

of 3 He<br />

• Reaction: γ + 3 He p+ p + n<br />

Q<br />

= −7.72<br />

MeV<br />

• E γ =12.8 MeV<br />

• Weller’s Group


The upgraded BLOWFISH array and a 6.5 cm gas cell<br />

containing 2500 psi of 3 He was used to measure the<br />

3<br />

He(γ,n)pp reaction with 12.8 MeV linearly polarized γ<br />

rays.


Two-Body Photodisintegration<br />

of 3 He<br />

• Reaction: γ + 3 He p + d<br />

– Q = -5.49 MeV<br />

• Observable: Total cross section<br />

– Measured at E γ = 8.0, 9.0, 9.5, 10.0, 10.5,<br />

11.0, 11.5, 12.0, 12.5, 13.0, 14.0, 15.0, and<br />

16.0 MeV (13 energies)<br />

– Previously measured using a variety of<br />

techniques (bremsstrahlung photons, virtual<br />

photons from e- 3 He scattering, pd capture via<br />

detailed balance); results in disagreement


Cross Section for 3 He(γ,p)d


Cross Section for 3 He(γ,p)d<br />

Deltuva et al.<br />

with Coulomb<br />

Naito et al.


Three- and Two-Body Signal<br />

Distinction


Two-Body Photodisintegration<br />

of 3 He<br />

• Target: 3 He-Xe gas scintillator<br />

– 34 atm 3 He, 14 atm Xe<br />

• Increased Xe content to increase stopping<br />

power for protons:<br />

– Edge effects:<br />

Scintillator housing<br />

γ-ray beam


Setup for Flux Determination


γ-ray Production at HIγS<br />

W<br />

N<br />

S<br />

E<br />

Electron beam for FEL<br />

LINAC<br />

Optical Klystron<br />

γ-rays<br />

Collimato<br />

Electron beam for<br />

Compton scattering<br />

Optical beam reflected from<br />

downstream cavity mirror<br />

wo modes of operation:<br />

o electron loss (E γ < 20 MeV)<br />

lectron loss (E γ > 20 MeV)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!