23.01.2014 Views

Adiabatic perturbation theory: a new tool in quantum mechanics

Adiabatic perturbation theory: a new tool in quantum mechanics

Adiabatic perturbation theory: a new tool in quantum mechanics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Adiabatic</strong> <strong>perturbation</strong> <strong>theory</strong>: a <strong>new</strong> <strong>tool</strong> <strong>in</strong><br />

<strong>quantum</strong> <strong>mechanics</strong><br />

Gustavo Garcia Rigol<strong>in</strong>


Structure of the talk<br />

●<br />

●<br />

●<br />

●<br />

The adiabatic approximation (non degenerate);<br />

The adiabatic approximation (degenerate);<br />

Standard strategies to correct the adiabatic<br />

approximation (<strong>in</strong> a nutshell);<br />

The adiabatic <strong>perturbation</strong> <strong>theory</strong> (APT);<br />

– Exactly solvable model justify<strong>in</strong>g APT;<br />

– Numerical examples (<strong>in</strong> a nutshell);<br />

●<br />

The degenerate adiabatic <strong>perturbation</strong> <strong>theory</strong> (DAPT);<br />

– Exactly solvable model justify<strong>in</strong>g DAPT;<br />

●<br />

Corrections to Berry phase and Wilczek-Zee phases.


References<br />

Beyond the Quantum <strong>Adiabatic</strong> Approximation:<br />

<strong>Adiabatic</strong> Perturbation Theory<br />

G.R., Gerardo Ortiz, Victor Hugo Ponce<br />

Physical Review A 78, 052508 (2008);<br />

(Arxiv: 0807.1363v1 [quant-ph]).<br />

<strong>Adiabatic</strong> Perturbation Theory and Geometric Phases for<br />

Degenerate Systems<br />

G.R., Gerardo Ortiz<br />

Physical Review Letters 104, 170406 (2010);<br />

(Arxiv: 1001.5255v2 [quant-ph]).


The adiabatic approximation<br />

If a system's Hamiltonian H(t) slowly changes<br />

slowly changes with time,<br />

say, from t=0 to t = T, and the system starts <strong>in</strong> one of the<br />

eigenvectors of H(t), then dur<strong>in</strong>g the whole evolution it will<br />

stay <strong>in</strong> the correspond<strong>in</strong>g snapshot/<strong>in</strong>stantaneous<br />

eigenvector of H(t). In particular, for a cyclic evolution<br />

of H(t),


The adiabatic approximation


The adiabatic approximation for<br />

degenerate systems<br />

If a system's Hamiltonian H(t) slowly changes<br />

slowly changes with time,<br />

say, from t=0 to t = T, and the system starts <strong>in</strong> one of the<br />

eigenvectors of H(t), then dur<strong>in</strong>g the whole evolution it will<br />

stay <strong>in</strong> the correspond<strong>in</strong>g snapshot/<strong>in</strong>stantaneous<br />

eigenspace of H(t).


Formaliz<strong>in</strong>g the Adiab. Approx.:<br />

Rescaled Schröd<strong>in</strong>ger Equation<br />

where


The “ Berry ansatz”: no-degeneracies<br />

where<br />

snapshot<br />

eigenvector<br />

and


Geometric and dynamical phases


No degeneracies<br />

Eigen-energies<br />

Eigen-energies<br />

time<br />

time


Degeneracies<br />

Eigen-energies<br />

time


What are the b n<br />

(s) coefficients?<br />

Coupled Eqs.<br />

Comes from<br />

Schroed<strong>in</strong>ger Equation


The “strong” adiabaticity condition


Start<strong>in</strong>g at the ground state


Another way of express<strong>in</strong>g the strong<br />

adiabaticity condition


Usual ways of correct<strong>in</strong>g the adiabatic<br />

approximation: standard approach<br />

●<br />

1) We formally <strong>in</strong>tegrate the Schroed<strong>in</strong>ger Equation<br />

●<br />

●<br />

●<br />

●<br />

wich results <strong>in</strong>


Standard approach<br />

●<br />

2) We use the follow<strong>in</strong>g identity (cha<strong>in</strong> rule)


Standard approach<br />

● Which gives (up to first order)<br />

Time dependence at the r.h.s


Standard approach<br />

● 3) Solve it iteratively up to order 1:


The wave function to order one


The wave function to order one: start<strong>in</strong>g<br />

at the ground state |0(0)><br />

No term with n=0


Other methods<br />

●<br />

“Iterative rotat<strong>in</strong>g-basis method”


Problems with this method<br />

●<br />

●<br />

It is not a perturbative method <strong>in</strong> the the small<br />

parameter v=1/T.<br />

Only “asymptotically convergent”; After a few<br />

iterations the corrections get worse and worse.


Dyson series<br />

Good perturbative corrections if H(t) = H(0) + λV(t),<br />

with λ


Dyson series: drawbacks to correct the<br />

adiabatic approximation<br />

●<br />

●<br />

Not a perturbative expansion about the adiabatic<br />

approximation. Snapshot eigenstates not used as the<br />

basis for the perturbative correction;<br />

Not suitable as a <strong>perturbation</strong> series if H(t) cannot<br />

be put as H(0) + λV(t).<br />

Example:


Dyson series: drawbacks to correct the<br />

adiabatic approximation


Dyson series: drawbacks to correct the<br />

adiabatic approximation<br />

For w


<strong>Adiabatic</strong> <strong>perturbation</strong> <strong>theory</strong><br />

●<br />

Relevant properties:<br />

– “Easily” generalizable to degenerate Hamiltonians;<br />

– It has physical appeal; it is <strong>in</strong>tuitive; true perturbative<br />

expansion <strong>in</strong> v=1/T;<br />

– No differential equations; all correct<strong>in</strong>g terms come from<br />

algebraic recursive relations;<br />

– It is operational; can be applied to real problems; not<br />

only a mathematical “beauty” (or “beast”); it is<br />

numerically stable;<br />

– Transforms the time dependent Schröd<strong>in</strong>ger equation<br />

<strong>in</strong>to a set of eigenvalue/eigenvector problems.


Insights lead<strong>in</strong>g to APT<br />

● Come up with the right ansatz for ;<br />

●<br />

What sort of properties should the ansatz have?<br />

– It should make it explicit the dependence of<br />

with respect to terms of order<br />

and lower ;<br />

and lower


The Ansatz


The Ansatz


Initial conditions


<strong>Adiabatic</strong> approximation must be the<br />

zeroth order


Insert<strong>in</strong>g the ansatz <strong>in</strong>to the<br />

Schroed<strong>in</strong>ger Equation<br />

Problem for v → 0? No!


The recursive relations


The order 1 correction<br />

History (<strong>in</strong>tegration) of<br />

evolution is important


Order 1 correction start<strong>in</strong>g at |0(0)>


The wave function up to order 1


Sufficient conditions to the validity of<br />

the adiabatic approximation


The example justify<strong>in</strong>g the APT<br />

z<br />

B<br />

θ<br />

φ<br />

y<br />

x


The model's time dependent<br />

Hamiltonian


Snapshot eigenvectors and eigenvalues


Exact solution with <strong>in</strong>itial state |0(0)>


Expand<strong>in</strong>g the exact solution<br />

where


Expand<strong>in</strong>g the exact solution


Expand<strong>in</strong>g the exact solution


Corrections up to order 2 via APT


Corrections up to order 2 via APT


Corrections up to order 2 via APT


Corrections up to order 2 via APT


Corrections up to order 2 via APT<br />

Putt<strong>in</strong>g everyth<strong>in</strong>g together and compar<strong>in</strong>g with the expansions com<strong>in</strong>g<br />

from the exact result we realize that we get the same expressions!


Numerical examples<br />

●<br />

Three cases whose Hamiltonian looks like<br />

● All three cases we start at the ground state |0(0)>


Infidelity between the exact solution<br />

and what we get from APT<br />

Exact solution<br />

Normalized state com<strong>in</strong>g from APT


Numerical results<br />

t t²<br />

order 0<br />

order 1<br />

t³<br />

order 2


Numerical results: only order 2<br />

t¹<br />

t²<br />


Degenerate adiabatic <strong>perturbation</strong><br />

<strong>theory</strong>: a bit of notation<br />

The “vector of vectors” notation:


The degenerate adiabatic approximation<br />

<strong>in</strong> this notation


The DAPT ansatz


The DAPT ansatz


Properties of the ansatz<br />

Initial conditions:<br />

Start<strong>in</strong>g at the ground state :


Schröd<strong>in</strong>ger equation <strong>in</strong> matrix form<br />

and the recursive relation<br />

Insert the ansatz <strong>in</strong>to SE and<br />

get recursive relations by left<br />

multiply<strong>in</strong>g to


What comes out of the recursive<br />

relations?<br />

●<br />

For p = 0 and n=m we get the Wilczek-Zee phase<br />

and the zeroth order as the adiabatic approximation


What comes out of the recursive<br />

relations?<br />

●<br />

For p = 0 and n m and p=1 with n=m we get the<br />

first order correction:


What comes out of the recursive<br />

relations?


Dirac matrices<br />

Exactly solvable problem


Pictorial view of the exactly solvable<br />

model<br />

Eigen-energy<br />

Time


Eigenvectors and eigenvalues


Exact solution start<strong>in</strong>g at |0 0 (0)>


Expansion of the exact solution up to<br />

first order<br />

Matches exactly what comes from DAPT.


Expansion of the exact solution up to<br />

first order<br />

Matches exactly what comes from DAPT!


Corrections to the Berry phase<br />

●<br />

Key concept: Aharonov-Anandan phase (state<br />

returns to itself)


Corrections to the Berry phase


Berry phase corrected up to order 1


How to measure the correction<br />

B 2<br />

is such that the upper<br />

beam acquires the proper<br />

dynamical phase<br />

B 1<br />

is rotated back and<br />

forth not too slowly


Corrections to the Wilczek-Zee phase<br />

S<strong>in</strong>ce we have the corrected state up to first order we can get<br />

the corrected WZ phase too. To first order we have,<br />

<strong>Adiabatic</strong> state<br />

What is actually seen


Corrections to the Wilczek-Zee phase<br />

To order zero we had,


Corrections to the Wilczek-Zee phase<br />

Keep<strong>in</strong>g terms up to first order,<br />

Giv<strong>in</strong>g the follow<strong>in</strong>g non-abelian phase,


F<strong>in</strong>al considerations<br />

●<br />

●<br />

We are look<strong>in</strong>g for <strong>quantum</strong> phenomena thought to<br />

be adiabatic, but whose experimental results do not<br />

agree with theoretical predictions rely<strong>in</strong>g solely on<br />

this assumption;<br />

We are look<strong>in</strong>g forward generalizations of APT to<br />

the degenerate case (done: DAPT); mixed states;<br />

open systems; relativistic <strong>quantum</strong> <strong>mechanics</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!