SYMMETRIES in PHYSICS

SYMMETRIES in PHYSICS SYMMETRIES in PHYSICS

23.01.2014 Views

SYMMETRIES in PHYSICS Jerzy DUDEK Institute for Subatomic Research University of Strasbourg I 2nd October 2007 Jerzy DUDEK SYMMETRIES in PHYSICS

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong><br />

Jerzy DUDEK<br />

Institute for Subatomic Research<br />

University of Strasbourg I<br />

2nd October 2007<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Part I<br />

Symmetry and Groups: Historical Aspects<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Orig<strong>in</strong> and the Mean<strong>in</strong>g of Word: Symmetry<br />

The word symmetry (συµµɛτρια) orig<strong>in</strong>ates from the Greek<br />

language: συµ (’together’) and µɛτρων (’measure’)<br />

The implied mean<strong>in</strong>g: ’measured together’, well proportioned<br />

The mean<strong>in</strong>g has evolved <strong>in</strong> time <strong>in</strong>to: beauty, unity, harmony<br />

In sciences the first mean<strong>in</strong>g of the word symmetry was that<br />

related to proportions<br />

Todays mean<strong>in</strong>g as the equality of elements under geometrical<br />

transformations (translations, rotations, reflexions) arrived only<br />

towards the end of the Renaissance<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Orig<strong>in</strong> and the Mean<strong>in</strong>g of Word: Symmetry<br />

The word symmetry (συµµɛτρια) orig<strong>in</strong>ates from the Greek<br />

language: συµ (’together’) and µɛτρων (’measure’)<br />

The implied mean<strong>in</strong>g: ’measured together’, well proportioned<br />

The mean<strong>in</strong>g has evolved <strong>in</strong> time <strong>in</strong>to: beauty, unity, harmony<br />

In sciences the first mean<strong>in</strong>g of the word symmetry was that<br />

related to proportions<br />

Todays mean<strong>in</strong>g as the equality of elements under geometrical<br />

transformations (translations, rotations, reflexions) arrived only<br />

towards the end of the Renaissance<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Orig<strong>in</strong> and the Mean<strong>in</strong>g of Word: Symmetry<br />

The word symmetry (συµµɛτρια) orig<strong>in</strong>ates from the Greek<br />

language: συµ (’together’) and µɛτρων (’measure’)<br />

The implied mean<strong>in</strong>g:<br />

’measured together’, well proportioned<br />

The mean<strong>in</strong>g has evolved <strong>in</strong> time <strong>in</strong>to: beauty, unity, harmony<br />

In sciences the first mean<strong>in</strong>g of the word symmetry was that<br />

related to proportions<br />

Todays mean<strong>in</strong>g as the equality of elements under geometrical<br />

transformations (translations, rotations, reflexions) arrived only<br />

towards the end of the Renaissance<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Orig<strong>in</strong> and the Mean<strong>in</strong>g of Word: Symmetry<br />

The word symmetry (συµµɛτρια) orig<strong>in</strong>ates from the Greek<br />

language: συµ (’together’) and µɛτρων (’measure’)<br />

The implied mean<strong>in</strong>g:<br />

’measured together’, well proportioned<br />

The mean<strong>in</strong>g has evolved <strong>in</strong> time <strong>in</strong>to: beauty, unity, harmony<br />

In sciences the first mean<strong>in</strong>g of the word symmetry was that<br />

related to proportions<br />

Todays mean<strong>in</strong>g as the equality of elements under geometrical<br />

transformations (translations, rotations, reflexions) arrived only<br />

towards the end of the Renaissance<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Orig<strong>in</strong> and the Mean<strong>in</strong>g of Word: Symmetry<br />

The word symmetry (συµµɛτρια) orig<strong>in</strong>ates from the Greek<br />

language: συµ (’together’) and µɛτρων (’measure’)<br />

The implied mean<strong>in</strong>g:<br />

’measured together’, well proportioned<br />

The mean<strong>in</strong>g has evolved <strong>in</strong> time <strong>in</strong>to: beauty, unity, harmony<br />

In sciences the first mean<strong>in</strong>g of the word symmetry was that<br />

related to proportions<br />

Todays mean<strong>in</strong>g as the equality of elements under geometrical<br />

transformations (translations, rotations, reflexions) arrived only<br />

towards the end of the Renaissance<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: Plato (428 - 347 BC) and even earlier ...<br />

The symbol of ’beauty <strong>in</strong> symmetry’ are five Platonic Figures<br />

Platonic Figures: Three-dimensional polyhedra whose faces are<br />

identical planar regular convex polygons<br />

The allowed polygons are either equilateral triangles, or squares<br />

or regular pentagons<br />

There exist only five regular convex (=platonic) polyhedra:<br />

tetrahedron, cube, octahedron, icosahedron & dodecahedron<br />

As it seems, neolithic people from Scotland have developed the<br />

five Platonic solids about 1000-3000 years before Plato (stone<br />

models <strong>in</strong> Ashmolean Museum, Oxford)<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: Plato (428 - 347 BC) and even earlier ...<br />

The symbol of ’beauty <strong>in</strong> symmetry’ are five Platonic Figures<br />

Platonic Figures: Three-dimensional polyhedra whose faces are<br />

identical planar regular convex polygons<br />

The allowed polygons are either equilateral triangles, or squares<br />

or regular pentagons<br />

There exist only five regular convex (=platonic) polyhedra:<br />

tetrahedron, cube, octahedron, icosahedron & dodecahedron<br />

As it seems, neolithic people from Scotland have developed the<br />

five Platonic solids about 1000-3000 years before Plato (stone<br />

models <strong>in</strong> Ashmolean Museum, Oxford)<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: Plato (428 - 347 BC) and even earlier ...<br />

The symbol of ’beauty <strong>in</strong> symmetry’ are five Platonic Figures<br />

Platonic Figures: Three-dimensional polyhedra whose faces are<br />

identical planar regular convex polygons<br />

The allowed polygons are either equilateral triangles, or squares<br />

or regular pentagons<br />

There exist only five regular convex (=platonic) polyhedra:<br />

tetrahedron, cube, octahedron, icosahedron & dodecahedron<br />

As it seems, neolithic people from Scotland have developed the<br />

five Platonic solids about 1000-3000 years before Plato (stone<br />

models <strong>in</strong> Ashmolean Museum, Oxford)<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: Plato (428 - 347 BC) and even earlier ...<br />

The symbol of ’beauty <strong>in</strong> symmetry’ are five Platonic Figures<br />

Platonic Figures: Three-dimensional polyhedra whose faces are<br />

identical planar regular convex polygons<br />

The allowed polygons are either equilateral triangles, or squares<br />

or regular pentagons<br />

There exist only five regular convex (=platonic) polyhedra:<br />

tetrahedron, cube, octahedron, icosahedron & dodecahedron<br />

As it seems, neolithic people from Scotland have developed the<br />

five Platonic solids about 1000-3000 years before Plato (stone<br />

models <strong>in</strong> Ashmolean Museum, Oxford)<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: Plato (428 - 347 BC) and even earlier ...<br />

The symbol of ’beauty <strong>in</strong> symmetry’ are five Platonic Figures<br />

Platonic Figures: Three-dimensional polyhedra whose faces are<br />

identical planar regular convex polygons<br />

The allowed polygons are either equilateral triangles, or squares<br />

or regular pentagons<br />

There exist only five regular convex (=platonic) polyhedra:<br />

tetrahedron, cube, octahedron, icosahedron & dodecahedron<br />

As it seems, neolithic people from Scotland have developed the<br />

five Platonic solids about 1000-3000 years before Plato (stone<br />

models <strong>in</strong> Ashmolean Museum, Oxford)<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Models of Platonic Figures<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Recall: Platonic Figures = Polyhedra whose<br />

faces are identical regular convex polygons<br />

Allowed polygons are equilateral triangles, or<br />

squares or regular pentagons<br />

Plato<br />

Tetrahedron, Cube, Octahedron, Icosahedron, Dodecahedron<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Models of Platonic Figures<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Recall: Platonic Figures = Polyhedra whose<br />

faces are identical regular convex polygons<br />

Allowed polygons are equilateral triangles, or<br />

squares or regular pentagons<br />

Plato<br />

Tetrahedron, Cube, Octahedron, Icosahedron, Dodecahedron<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Models of Platonic Figures<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Recall: Platonic Figures = Polyhedra whose<br />

faces are identical regular convex polygons<br />

Allowed polygons are equilateral triangles, or<br />

squares or regular pentagons<br />

Plato<br />

Tetrahedron, Cube, Octahedron, Icosahedron, Dodecahedron<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Models of Platonic Figures<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Recall: Platonic Figures = Polyhedra whose<br />

faces are identical regular convex polygons<br />

Allowed polygons are equilateral triangles, or<br />

squares or regular pentagons<br />

Plato<br />

Tetrahedron, Cube, Octahedron, Icosahedron, Dodecahedron<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Fasc<strong>in</strong>ation by Symmetry of Platonic Figures: Kepler<br />

A. Many natural scientists and philosophers were<br />

fasc<strong>in</strong>ated by symmetry of Platonic figures<br />

B. One of the first ones <strong>in</strong> the modern times was<br />

Johannes Kepler<br />

Kepler’s Planetary System<br />

Johannes Kepler<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Fasc<strong>in</strong>ation by Symmetry of Platonic Figures: Kepler<br />

A. Many natural scientists and philosophers were<br />

fasc<strong>in</strong>ated by symmetry of Platonic figures<br />

B. One of the first ones <strong>in</strong> the modern times was<br />

Johannes Kepler<br />

Kepler’s Planetary System<br />

Johannes Kepler<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Fasc<strong>in</strong>ation by Symmetry of Platonic Figures: Kepler<br />

A. Many natural scientists and philosophers were<br />

fasc<strong>in</strong>ated by symmetry of Platonic figures<br />

B. One of the first ones <strong>in</strong> the modern times was<br />

Johannes Kepler<br />

Kepler’s Planetary System<br />

Johannes Kepler<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Paper on Snow-Crystal Symmetry (N o 1 <strong>in</strong> History)<br />

In the w<strong>in</strong>ter of 1609 Kepler got caught by the snow-storm on<br />

one of the bridges <strong>in</strong> Prague<br />

In 1611 he published an article ’Strena seu de nive sexangula’<br />

exam<strong>in</strong><strong>in</strong>g the planar hexagonal symmetry 1<br />

Examples of Hexagonal Symmetry 2<br />

1 ’Strena seu de nive sexangula’ - ’On the Six-Cornered Snowflakes’;<br />

2 From Kenneth K. Librecht, Caltech<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Paper on Snow-Crystal Symmetry (N o 1 <strong>in</strong> History)<br />

In the w<strong>in</strong>ter of 1609 Kepler got caught by the snow-storm on<br />

one of the bridges <strong>in</strong> Prague<br />

In 1611 he published an article ’Strena seu de nive sexangula’<br />

exam<strong>in</strong><strong>in</strong>g the planar hexagonal symmetry 1<br />

Examples of Hexagonal Symmetry 2<br />

1 ’Strena seu de nive sexangula’ - ’On the Six-Cornered Snowflakes’;<br />

2 From Kenneth K. Librecht, Caltech<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Paper on Snow-Crystal Symmetry (N o 1 <strong>in</strong> History)<br />

In the w<strong>in</strong>ter of 1609 Kepler got caught by the snow-storm on<br />

one of the bridges <strong>in</strong> Prague<br />

In 1611 he published an article ’Strena seu de nive sexangula’<br />

exam<strong>in</strong><strong>in</strong>g the planar hexagonal symmetry 1<br />

Examples of Hexagonal Symmetry 2<br />

1 ’Strena seu de nive sexangula’ - ’On the Six-Cornered Snowflakes’;<br />

2 From Kenneth K. Librecht, Caltech<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Multiple Examples of the Hexagonal Symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

What Kepler Could Not Know ... [1]<br />

The Secret of Hexagonal Symmetry of Snow Crystals?<br />

Figure: The water molecules <strong>in</strong> an ice crystal form a hexagonal lattice.<br />

Each red ball represents an oxygen atom, the grey sticks represent two<br />

hydrogen atoms.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

What Kepler Could Not Know ... [2]<br />

Other Forms of Symmetry: 12-Fold and Cyl<strong>in</strong>drical<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

What Kepler Could Not Know ... [3]<br />

Empirical Systematics of Nakaya<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

What Kepler Could Not Know ... [4]<br />

Crystal Grow<strong>in</strong>g, Humidity and Temperature<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Observations from a Certa<strong>in</strong> Time-Perspective:<br />

Despite all (human) efforts the understand<strong>in</strong>g of nature is a<br />

long process<br />

There were many hypotheses and scientific quarrels about this<br />

particular and many other puzzles of nature <strong>in</strong> the past ...<br />

It is a good advice to remeber the question:<br />

Are we sure?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Observations from a Certa<strong>in</strong> Time-Perspective:<br />

Despite all (human) efforts the understand<strong>in</strong>g of nature is a<br />

long process<br />

There were many hypotheses and scientific quarrels about this<br />

particular and many other puzzles of nature <strong>in</strong> the past ...<br />

It is a good advice to remeber the question:<br />

Are we sure?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Observations from a Certa<strong>in</strong> Time-Perspective:<br />

Despite all (human) efforts the understand<strong>in</strong>g of nature is a<br />

long process<br />

There were many hypotheses and scientific quarrels about this<br />

particular and many other puzzles of nature <strong>in</strong> the past ...<br />

It is a good advice to remeber the question:<br />

Are we sure?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Idea and Some Properties of Permutations<br />

Joseph-Louis Lagrange (1736-1813)<br />

J. L. Lagrange<br />

A. Lagrange studied (among many other th<strong>in</strong>gs)<br />

algebraic equations<br />

B. He <strong>in</strong>troduced the notion of permutations <strong>in</strong><br />

relation to solutions of these equations ...<br />

C. ... however, he did not develop it further - this<br />

will come only later ...<br />

Dur<strong>in</strong>g the years 1772-1785 Lagrange created a series of memoirs about<br />

’Differential Equations’, he developed calculus of variations; <strong>in</strong> 1788 he<br />

published his ’Mécanique analytique’ <strong>in</strong>clud<strong>in</strong>g the ’Multiplier method’<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Idea and Some Properties of Permutations<br />

Joseph-Louis Lagrange (1736-1813)<br />

J. L. Lagrange<br />

A. Lagrange studied (among many other th<strong>in</strong>gs)<br />

algebraic equations<br />

B. He <strong>in</strong>troduced the notion of permutations <strong>in</strong><br />

relation to solutions of these equations ...<br />

C. ... however, he did not develop it further - this<br />

will come only later ...<br />

Dur<strong>in</strong>g the years 1772-1785 Lagrange created a series of memoirs about<br />

’Differential Equations’, he developed calculus of variations; <strong>in</strong> 1788 he<br />

published his ’Mécanique analytique’ <strong>in</strong>clud<strong>in</strong>g the ’Multiplier method’<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Idea and Some Properties of Permutations<br />

Joseph-Louis Lagrange (1736-1813)<br />

J. L. Lagrange<br />

A. Lagrange studied (among many other th<strong>in</strong>gs)<br />

algebraic equations<br />

B. He <strong>in</strong>troduced the notion of permutations <strong>in</strong><br />

relation to solutions of these equations ...<br />

C. ... however, he did not develop it further - this<br />

will come only later ...<br />

Dur<strong>in</strong>g the years 1772-1785 Lagrange created a series of memoirs about<br />

’Differential Equations’, he developed calculus of variations; <strong>in</strong> 1788 he<br />

published his ’Mécanique analytique’ <strong>in</strong>clud<strong>in</strong>g the ’Multiplier method’<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Idea and Some Properties of Permutations<br />

Joseph-Louis Lagrange (1736-1813)<br />

J. L. Lagrange<br />

A. Lagrange studied (among many other th<strong>in</strong>gs)<br />

algebraic equations<br />

B. He <strong>in</strong>troduced the notion of permutations <strong>in</strong><br />

relation to solutions of these equations ...<br />

C. ... however, he did not develop it further - this<br />

will come only later ...<br />

Dur<strong>in</strong>g the years 1772-1785 Lagrange created a series of memoirs about<br />

’Differential Equations’, he developed calculus of variations; <strong>in</strong> 1788 he<br />

published his ’Mécanique analytique’ <strong>in</strong>clud<strong>in</strong>g the ’Multiplier method’<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

The Concept of Permutation Group<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Evariste Galois (1811-1832)<br />

E. Galois<br />

A. One of the most adventurous figures <strong>in</strong> the<br />

world of mathematics of XIX century<br />

B. His works were judged <strong>in</strong>comprehensible by the<br />

contemporary - among others by Poisson ...<br />

C. ... they were correctly <strong>in</strong>terpreted by Liouville,<br />

published <strong>in</strong> 1846, 24 years after his death ...<br />

Figure: A fragment of the orig<strong>in</strong>al text written the night before the duel<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

The Concept of Permutation Group<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Evariste Galois (1811-1832)<br />

E. Galois<br />

A. One of the most adventurous figures <strong>in</strong> the<br />

world of mathematics of XIX century<br />

B. His works were judged <strong>in</strong>comprehensible by the<br />

contemporary - among others by Poisson ...<br />

C. ... they were correctly <strong>in</strong>terpreted by Liouville,<br />

published <strong>in</strong> 1846, 24 years after his death ...<br />

Figure: A fragment of the orig<strong>in</strong>al text written the night before the duel<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

The Concept of Permutation Group<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Evariste Galois (1811-1832)<br />

E. Galois<br />

A. One of the most adventurous figures <strong>in</strong> the<br />

world of mathematics of XIX century<br />

B. His works were judged <strong>in</strong>comprehensible by the<br />

contemporary - among others by Poisson ...<br />

C. ... they were correctly <strong>in</strong>terpreted by Liouville,<br />

published <strong>in</strong> 1846, 24 years after his death ...<br />

Figure: A fragment of the orig<strong>in</strong>al text written the night before the duel<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

The Concept of Permutation Group<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Evariste Galois (1811-1832)<br />

E. Galois<br />

A. One of the most adventurous figures <strong>in</strong> the<br />

world of mathematics of XIX century<br />

B. His works were judged <strong>in</strong>comprehensible by the<br />

contemporary - among others by Poisson ...<br />

C. ... they were correctly <strong>in</strong>terpreted by Liouville,<br />

published <strong>in</strong> 1846, 24 years after his death ...<br />

Figure: A fragment of the orig<strong>in</strong>al text written the night before the duel<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Another Young Genius<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Niels Abel (1802-1829)<br />

A. Another tragic figure; he left beh<strong>in</strong>d important<br />

mathematical ideas despite his very short life<br />

B. Today we f<strong>in</strong>d <strong>in</strong> literature Abel’s <strong>in</strong>tegral<br />

equations, Abelian functions, Abel theorem<br />

about convergence; commutative groups are<br />

called Abelian<br />

N. Abel<br />

Abel died <strong>in</strong> the age of 26 of tuberculosis and malnutrition; only two<br />

days after his death the letter offer<strong>in</strong>g him a teach<strong>in</strong>g position <strong>in</strong> Berl<strong>in</strong><br />

arrived <strong>in</strong> Norway ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Another Young Genius<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Niels Abel (1802-1829)<br />

A. Another tragic figure; he left beh<strong>in</strong>d important<br />

mathematical ideas despite his very short life<br />

B. Today we f<strong>in</strong>d <strong>in</strong> literature Abel’s <strong>in</strong>tegral<br />

equations, Abelian functions, Abel theorem<br />

about convergence; commutative groups are<br />

called Abelian<br />

N. Abel<br />

Abel died <strong>in</strong> the age of 26 of tuberculosis and malnutrition; only two<br />

days after his death the letter offer<strong>in</strong>g him a teach<strong>in</strong>g position <strong>in</strong> Berl<strong>in</strong><br />

arrived <strong>in</strong> Norway ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Another Young Genius<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Niels Abel (1802-1829)<br />

A. Another tragic figure; he left beh<strong>in</strong>d important<br />

mathematical ideas despite his very short life<br />

B. Today we f<strong>in</strong>d <strong>in</strong> literature Abel’s <strong>in</strong>tegral<br />

equations, Abelian functions, Abel theorem<br />

about convergence; commutative groups are<br />

called Abelian<br />

N. Abel<br />

Abel died <strong>in</strong> the age of 26 of tuberculosis and malnutrition; only two<br />

days after his death the letter offer<strong>in</strong>g him a teach<strong>in</strong>g position <strong>in</strong> Berl<strong>in</strong><br />

arrived <strong>in</strong> Norway ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Another Young Genius<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Niels Abel (1802-1829)<br />

A. Another tragic figure; he left beh<strong>in</strong>d important<br />

mathematical ideas despite his very short life<br />

B. Today we f<strong>in</strong>d <strong>in</strong> literature Abel’s <strong>in</strong>tegral<br />

equations, Abelian functions, Abel theorem<br />

about convergence; commutative groups are<br />

called Abelian<br />

N. Abel<br />

Abel died <strong>in</strong> the age of 26 of tuberculosis and malnutrition; only two<br />

days after his death the letter offer<strong>in</strong>g him a teach<strong>in</strong>g position <strong>in</strong> Berl<strong>in</strong><br />

arrived <strong>in</strong> Norway ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Further Development <strong>in</strong> Studies of Permutations<br />

August<strong>in</strong> Louis CAUCHY (1789-1857)<br />

A. L. Cauchy<br />

A. One of the most successful mathematicians of<br />

his times, pioneered studies of <strong>in</strong>f<strong>in</strong>ite series,<br />

differential equations, probability ...<br />

B. He undertook the studies of the properties of<br />

permutations essential for the development of<br />

group theory<br />

It was Arthur CAYLEY who, after CAUCHY, follows the study of groups<br />

of permutations - the only groups known at that time ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Further Development <strong>in</strong> Studies of Permutations<br />

August<strong>in</strong> Louis CAUCHY (1789-1857)<br />

A. L. Cauchy<br />

A. One of the most successful mathematicians of<br />

his times, pioneered studies of <strong>in</strong>f<strong>in</strong>ite series,<br />

differential equations, probability ...<br />

B. He undertook the studies of the properties of<br />

permutations essential for the development of<br />

group theory<br />

It was Arthur CAYLEY who, after CAUCHY, follows the study of groups<br />

of permutations - the only groups known at that time ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Further Development <strong>in</strong> Studies of Permutations<br />

August<strong>in</strong> Louis CAUCHY (1789-1857)<br />

A. L. Cauchy<br />

A. One of the most successful mathematicians of<br />

his times, pioneered studies of <strong>in</strong>f<strong>in</strong>ite series,<br />

differential equations, probability ...<br />

B. He undertook the studies of the properties of<br />

permutations essential for the development of<br />

group theory<br />

It was Arthur CAYLEY who, after CAUCHY, follows the study of groups<br />

of permutations - the only groups known at that time ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Further Development <strong>in</strong> Studies of Permutations<br />

August<strong>in</strong> Louis CAUCHY (1789-1857)<br />

A. L. Cauchy<br />

A. One of the most successful mathematicians of<br />

his times, pioneered studies of <strong>in</strong>f<strong>in</strong>ite series,<br />

differential equations, probability ...<br />

B. He undertook the studies of the properties of<br />

permutations essential for the development of<br />

group theory<br />

It was Arthur CAYLEY who, after CAUCHY, follows the study of groups<br />

of permutations - the only groups known at that time ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Arrival of the Def<strong>in</strong>ition of Abstract Groups<br />

Arthur CAYLEY (1821-1895)<br />

A. Def<strong>in</strong>es for the first time the concept of an<br />

abstract group<br />

B. Introduces the idea of Group Multiplication<br />

Table<br />

C. Observes that matrices (and quaternions)<br />

form groupes<br />

A. Cayley<br />

A. CAYLEY, graduated from Cambridge, spent several year as lawyer,<br />

later became professor of pure mathematics at Cambridge. With over<br />

900 publications one of the most active mathematicians of his times.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Arrival of the Def<strong>in</strong>ition of Abstract Groups<br />

Arthur CAYLEY (1821-1895)<br />

A. Def<strong>in</strong>es for the first time the concept of an<br />

abstract group<br />

B. Introduces the idea of Group Multiplication<br />

Table<br />

C. Observes that matrices (and quaternions)<br />

form groupes<br />

A. Cayley<br />

A. CAYLEY, graduated from Cambridge, spent several year as lawyer,<br />

later became professor of pure mathematics at Cambridge. With over<br />

900 publications one of the most active mathematicians of his times.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Arrival of the Def<strong>in</strong>ition of Abstract Groups<br />

Arthur CAYLEY (1821-1895)<br />

A. Def<strong>in</strong>es for the first time the concept of an<br />

abstract group<br />

B. Introduces the idea of Group Multiplication<br />

Table<br />

C. Observes that matrices (and quaternions)<br />

form groupes<br />

A. Cayley<br />

A. CAYLEY, graduated from Cambridge, spent several year as lawyer,<br />

later became professor of pure mathematics at Cambridge. With over<br />

900 publications one of the most active mathematicians of his times.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Arrival of the Def<strong>in</strong>ition of Abstract Groups<br />

Arthur CAYLEY (1821-1895)<br />

A. Def<strong>in</strong>es for the first time the concept of an<br />

abstract group<br />

B. Introduces the idea of Group Multiplication<br />

Table<br />

C. Observes that matrices (and quaternions)<br />

form groupes<br />

A. Cayley<br />

A. CAYLEY, graduated from Cambridge, spent several year as lawyer,<br />

later became professor of pure mathematics at Cambridge. With over<br />

900 publications one of the most active mathematicians of his times.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Arrival of the Def<strong>in</strong>ition of Abstract Groups<br />

Arthur CAYLEY (1821-1895)<br />

A. Def<strong>in</strong>es for the first time the concept of an<br />

abstract group<br />

B. Introduces the idea of Group Multiplication<br />

Table<br />

C. Observes that matrices (and quaternions)<br />

form groupes<br />

A. Cayley<br />

A. CAYLEY, graduated from Cambridge, spent several year as lawyer,<br />

later became professor of pure mathematics at Cambridge. With over<br />

900 publications one of the most active mathematicians of his times.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Very Special Role of the Group of Permutations<br />

One of the most powerful tools to study f<strong>in</strong>ite group properties is<br />

the Theorem of Cayley.<br />

Theorem (CAYLEY)<br />

Every group G composed of n elements is necessarily isomorphic<br />

with an n-element sub-group of the group S n<br />

Conclusion:<br />

It is sufficient to exam<strong>in</strong>e the group structure of the permutation<br />

group - the structure of all other ones is the same !!!<br />

Example: Group S 3<br />

j„<br />

df . 1, 2, 3<br />

S 3 =<br />

1, 2, 3<br />

« „<br />

1, 2, 3<br />

,<br />

2, 1, 3<br />

« „<br />

1, 2, 3<br />

,<br />

1, 3, 2<br />

« „<br />

1, 2, 3<br />

,<br />

3, 2, 1<br />

« „<br />

1, 2, 3<br />

,<br />

2, 3, 1<br />

« „<br />

1, 2, 3<br />

,<br />

3, 1, 2<br />

«ff<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Very Special Role of the Group of Permutations<br />

One of the most powerful tools to study f<strong>in</strong>ite group properties is<br />

the Theorem of Cayley.<br />

Theorem (CAYLEY)<br />

Every group G composed of n elements is necessarily isomorphic<br />

with an n-element sub-group of the group S n<br />

Conclusion:<br />

It is sufficient to exam<strong>in</strong>e the group structure of the permutation<br />

group - the structure of all other ones is the same !!!<br />

Example: Group S 3<br />

j„<br />

df . 1, 2, 3<br />

S 3 =<br />

1, 2, 3<br />

« „<br />

1, 2, 3<br />

,<br />

2, 1, 3<br />

« „<br />

1, 2, 3<br />

,<br />

1, 3, 2<br />

« „<br />

1, 2, 3<br />

,<br />

3, 2, 1<br />

« „<br />

1, 2, 3<br />

,<br />

2, 3, 1<br />

« „<br />

1, 2, 3<br />

,<br />

3, 1, 2<br />

«ff<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Very Special Role of the Group of Permutations<br />

One of the most powerful tools to study f<strong>in</strong>ite group properties is<br />

the Theorem of Cayley.<br />

Theorem (CAYLEY)<br />

Every group G composed of n elements is necessarily isomorphic<br />

with an n-element sub-group of the group S n<br />

Conclusion:<br />

It is sufficient to exam<strong>in</strong>e the group structure of the permutation<br />

group - the structure of all other ones is the same !!!<br />

Example: Group S 3<br />

j„<br />

df . 1, 2, 3<br />

S 3 =<br />

1, 2, 3<br />

« „<br />

1, 2, 3<br />

,<br />

2, 1, 3<br />

« „<br />

1, 2, 3<br />

,<br />

1, 3, 2<br />

« „<br />

1, 2, 3<br />

,<br />

3, 2, 1<br />

« „<br />

1, 2, 3<br />

,<br />

2, 3, 1<br />

« „<br />

1, 2, 3<br />

,<br />

3, 1, 2<br />

«ff<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Very Special Role of the Group of Permutations<br />

One of the most powerful tools to study f<strong>in</strong>ite group properties is<br />

the Theorem of Cayley.<br />

Theorem (CAYLEY)<br />

Every group G composed of n elements is necessarily isomorphic<br />

with an n-element sub-group of the group S n<br />

Conclusion:<br />

It is sufficient to exam<strong>in</strong>e the group structure of the permutation<br />

group - the structure of all other ones is the same !!!<br />

Example: Group S 3<br />

j„<br />

df . 1, 2, 3<br />

S 3 =<br />

1, 2, 3<br />

« „<br />

1, 2, 3<br />

,<br />

2, 1, 3<br />

« „<br />

1, 2, 3<br />

,<br />

1, 3, 2<br />

« „<br />

1, 2, 3<br />

,<br />

3, 2, 1<br />

« „<br />

1, 2, 3<br />

,<br />

2, 3, 1<br />

« „<br />

1, 2, 3<br />

,<br />

3, 1, 2<br />

«ff<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Part II<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Arrival of the Theory of Cont<strong>in</strong>uous (Lie) Groups<br />

Sophus LIE (1842-1899)<br />

A. Introduces new type of groups whose elements<br />

are cont<strong>in</strong>uous functions of some parameter(s)<br />

S. LIE<br />

B. Most important for physics applications are<br />

groups of matrices<br />

C. Examples: GL n , SL n , U n , SU n , O n , Sp 2n ...<br />

Dist<strong>in</strong>guished role <strong>in</strong> physics play the space-time Lie groups: Rotation,<br />

Lorentz and Po<strong>in</strong>caré, dimensions 3, 6 and 10, respectively, as well as<br />

the unitary and special unitary groups together with all their sub-groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Arrival of the Theory of Cont<strong>in</strong>uous (Lie) Groups<br />

Sophus LIE (1842-1899)<br />

S. LIE<br />

A. Introduces new type of groups whose elements<br />

are cont<strong>in</strong>uous functions of some parameter(s)<br />

B. Most important for physics applications are<br />

groups of matrices<br />

C. Examples: GL n , SL n , U n , SU n , O n , Sp 2n ...<br />

Dist<strong>in</strong>guished role <strong>in</strong> physics play the space-time Lie groups: Rotation,<br />

Lorentz and Po<strong>in</strong>caré, dimensions 3, 6 and 10, respectively, as well as<br />

the unitary and special unitary groups together with all their sub-groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Arrival of the Theory of Cont<strong>in</strong>uous (Lie) Groups<br />

Sophus LIE (1842-1899)<br />

S. LIE<br />

A. Introduces new type of groups whose elements<br />

are cont<strong>in</strong>uous functions of some parameter(s)<br />

B. Most important for physics applications are<br />

groups of matrices<br />

C. Examples: GL n , SL n , U n , SU n , O n , Sp 2n ...<br />

Dist<strong>in</strong>guished role <strong>in</strong> physics play the space-time Lie groups: Rotation,<br />

Lorentz and Po<strong>in</strong>caré, dimensions 3, 6 and 10, respectively, as well as<br />

the unitary and special unitary groups together with all their sub-groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Arrival of the Theory of Cont<strong>in</strong>uous (Lie) Groups<br />

Sophus LIE (1842-1899)<br />

S. LIE<br />

A. Introduces new type of groups whose elements<br />

are cont<strong>in</strong>uous functions of some parameter(s)<br />

B. Most important for physics applications are<br />

groups of matrices<br />

C. Examples: GL n , SL n , U n , SU n , O n , Sp 2n ...<br />

Dist<strong>in</strong>guished role <strong>in</strong> physics play the space-time Lie groups: Rotation,<br />

Lorentz and Po<strong>in</strong>caré, dimensions 3, 6 and 10, respectively, as well as<br />

the unitary and special unitary groups together with all their sub-groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

About Special Unitary Groups: SU n<br />

Groups SU n ↔ n × n unitary matrices U ↔ [det(U) = 1]<br />

It turns out that these matrices can be expressed as<br />

U = exp [ ∑ ]<br />

p αβ ĝ αβ , pαβ ↔ real parameters<br />

αβ<br />

Constant operators (generators) ĝ αβ satisfy<br />

[ ĝ αβ , ĝ γδ ] = δ βγ ĝ αδ − δ αδ ĝ γβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

About Special Unitary Groups: SU n<br />

Groups SU n ↔ n × n unitary matrices U ↔ [det(U) = 1]<br />

It turns out that these matrices can be expressed as<br />

U = exp [ ∑ ]<br />

p αβ ĝ αβ , pαβ ↔ real parameters<br />

αβ<br />

Constant operators (generators) ĝ αβ satisfy<br />

[ ĝ αβ , ĝ γδ ] = δ βγ ĝ αδ − δ αδ ĝ γβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

About Special Unitary Groups: SU n<br />

Groups SU n ↔ n × n unitary matrices U ↔ [det(U) = 1]<br />

It turns out that these matrices can be expressed as<br />

U = exp [ ∑ ]<br />

p αβ ĝ αβ , pαβ ↔ real parameters<br />

αβ<br />

Constant operators (generators) ĝ αβ satisfy<br />

[ ĝ αβ , ĝ γδ ] = δ βγ ĝ αδ − δ αδ ĝ γβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Systems with Two-Body Interactions<br />

Consider an N-particle system with a two-body Hamiltonian<br />

Ĥ = ∑ αβ<br />

h αβ c α + c β + 1 ∑ ∑<br />

v αβ;γδ c α + c +<br />

2<br />

β c δ c γ<br />

αβ<br />

γδ<br />

Introduce operators<br />

ˆN αβ<br />

df .<br />

= c + α c β<br />

It is easy to verify that<br />

[ ˆN αβ , ˆN γδ ] = δ βγ ˆN αδ − δ αδ ˆN γβ thus ˆN αβ ↔ ĝ αβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Systems with Two-Body Interactions<br />

Consider an N-particle system with a two-body Hamiltonian<br />

Ĥ = ∑ αβ<br />

h αβ c α + c β + 1 ∑ ∑<br />

v αβ;γδ c α + c +<br />

2<br />

β c δ c γ<br />

αβ<br />

γδ<br />

Introduce operators<br />

ˆN αβ<br />

df .<br />

= c + α c β<br />

It is easy to verify that<br />

[ ˆN αβ , ˆN γδ ] = δ βγ ˆN αδ − δ αδ ˆN γβ thus ˆN αβ ↔ ĝ αβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Systems with Two-Body Interactions<br />

Consider an N-particle system with a two-body Hamiltonian<br />

Ĥ = ∑ αβ<br />

h αβ c α + c β + 1 ∑ ∑<br />

v αβ;γδ c α + c +<br />

2<br />

β c δ c γ<br />

αβ<br />

γδ<br />

Introduce operators<br />

ˆN αβ<br />

df .<br />

= c + α c β<br />

It is easy to verify that<br />

[ ˆN αβ , ˆN γδ ] = δ βγ ˆN αδ − δ αδ ˆN γβ thus ˆN αβ ↔ ĝ αβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and the SU n -Generators<br />

N-Body Hamiltonians are functions of SU n -group generators<br />

Two-body <strong>in</strong>teractions lead to quadratic forms of ˆN αβ = c + α c β<br />

,<br />

three-body <strong>in</strong>teractions to the cubic forms of ˆN αβ , etc.<br />

Hamiltonians of the N-body systems can be diagonalised with<strong>in</strong><br />

bases of the irreducible representations<br />

Solutions can be constructed that transform as the SU n -group<br />

representations thus establish<strong>in</strong>g a l<strong>in</strong>k H ↔ SU n<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and the SU n -Generators<br />

N-Body Hamiltonians are functions of SU n -group generators<br />

Two-body <strong>in</strong>teractions lead to quadratic forms of ˆN αβ = c + α c β<br />

,<br />

three-body <strong>in</strong>teractions to the cubic forms of ˆN αβ , etc.<br />

Hamiltonians of the N-body systems can be diagonalised with<strong>in</strong><br />

bases of the irreducible representations<br />

Solutions can be constructed that transform as the SU n -group<br />

representations thus establish<strong>in</strong>g a l<strong>in</strong>k H ↔ SU n<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and the SU n -Generators<br />

N-Body Hamiltonians are functions of SU n -group generators<br />

Two-body <strong>in</strong>teractions lead to quadratic forms of ˆN αβ = c + α c β<br />

,<br />

three-body <strong>in</strong>teractions to the cubic forms of ˆN αβ , etc.<br />

Hamiltonians of the N-body systems can be diagonalised with<strong>in</strong><br />

bases of the irreducible representations<br />

Solutions can be constructed that transform as the SU n -group<br />

representations thus establish<strong>in</strong>g a l<strong>in</strong>k H ↔ SU n<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and the SU n -Generators<br />

N-Body Hamiltonians are functions of SU n -group generators<br />

Two-body <strong>in</strong>teractions lead to quadratic forms of ˆN αβ = c + α c β<br />

,<br />

three-body <strong>in</strong>teractions to the cubic forms of ˆN αβ , etc.<br />

Hamiltonians of the N-body systems can be diagonalised with<strong>in</strong><br />

bases of the irreducible representations<br />

Solutions can be constructed that transform as the SU n -group<br />

representations thus establish<strong>in</strong>g a l<strong>in</strong>k H ↔ SU n<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and More General Observations<br />

Consequences <strong>in</strong> Terms of Cha<strong>in</strong>s of Sub-Groups<br />

Group SU n has numerous sub-groups: U m and SU m with m < n,<br />

similarly O m , SO m and <strong>in</strong> particular R(3) and all the po<strong>in</strong>t groups<br />

More Generall Intellectual Challenges<br />

If a group is a symmetry group of a physical system - so are its<br />

sub-groups! Do we know their physical mean<strong>in</strong>g? ...<br />

Consequences?... Interpretation?<br />

... but even if not ...<br />

The group theory offers a guaranteed guidance through the jungle<br />

of possibilities!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and More General Observations<br />

Consequences <strong>in</strong> Terms of Cha<strong>in</strong>s of Sub-Groups<br />

Group SU n has numerous sub-groups: U m and SU m with m < n,<br />

similarly O m , SO m and <strong>in</strong> particular R(3) and all the po<strong>in</strong>t groups<br />

More Generall Intellectual Challenges<br />

If a group is a symmetry group of a physical system - so are its<br />

sub-groups! Do we know their physical mean<strong>in</strong>g? ...<br />

Consequences?... Interpretation?<br />

... but even if not ...<br />

The group theory offers a guaranteed guidance through the jungle<br />

of possibilities!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and More General Observations<br />

Consequences <strong>in</strong> Terms of Cha<strong>in</strong>s of Sub-Groups<br />

Group SU n has numerous sub-groups: U m and SU m with m < n,<br />

similarly O m , SO m and <strong>in</strong> particular R(3) and all the po<strong>in</strong>t groups<br />

More Generall Intellectual Challenges<br />

If a group is a symmetry group of a physical system - so are its<br />

sub-groups! Do we know their physical mean<strong>in</strong>g? ...<br />

Consequences?... Interpretation?<br />

... but even if not ...<br />

The group theory offers a guaranteed guidance through the jungle<br />

of possibilities!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Subgroup Structure Can Be Very, Very Rich ...<br />

32 Po<strong>in</strong>t Groups: Subgroups<br />

.<br />

D 4h<br />

T h<br />

O T d<br />

D 6h<br />

C 4h<br />

D 4<br />

D 2d<br />

C 4v<br />

D 2h<br />

T D 6<br />

C 6h<br />

C 6v<br />

D 3d<br />

D<br />

3h<br />

S 4<br />

C 4<br />

D 2<br />

C 2h<br />

C 2v<br />

C 6<br />

C 3i<br />

D 3<br />

C 3v<br />

C 3h<br />

O h<br />

C C C C<br />

i 2 s 3<br />

Figure: Richness of the sub-group<br />

structures at the end of cha<strong>in</strong>...<br />

C<br />

1<br />

.<br />

Dashed l<strong>in</strong>es <strong>in</strong>dicate that the<br />

subgroup marked is not <strong>in</strong>variant<br />

Trivial groups are denoted here<br />

C 1 ≡ {1I}, C s ≡ {1I, ˆσ},<br />

C i ≡ {1I, ˆπ}<br />

Here we show the structure only<br />

at the very end of the SU n cha<strong>in</strong><br />

- it helps imag<strong>in</strong><strong>in</strong>g how rich the<br />

full group structure is ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups - Examples from Molecular Physics<br />

Group C 3v - Molecule: [NH 3 ] Group C 3h - Molecule: [B(OH) 3 ]<br />

Group D 3d - Molecule: [C 2 H 6 ] Group D 3h - Molecule: [C 2 H 6 ]<br />

From J. Goss, University of Newcastle<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

The Highest Symmetries <strong>in</strong> Molecular Physics<br />

Group T d - Molecule: [CH 4 ] Group O h - Molecule: [SF 6 ]<br />

Group D 6d - Mol.: [Cr(C 6 H 6 ) 2 ] Group I h - Molecule: [C 60 ]<br />

From J. Goss, University of Newcastle<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [2]<br />

Caricature - A Classical (Macro) Example: Buridan’s Ass<br />

Figure: Buridan’s ass, hav<strong>in</strong>g two strictly identical bundles of carrots on<br />

both sides has no reason to select one of the two - and dies of starvation<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [3]<br />

... already Aristotle (384-322 BC)<br />

In his ’De Caelo’ Aristotle asks how a dog faced with the choice<br />

of two equally tempt<strong>in</strong>g meals could rationally choose one ...<br />

French philosopher Jean BURIDAN, XIV century: an ass faces<br />

starvation when it is unable to choose between two equally<br />

appetis<strong>in</strong>g piles of hay ...<br />

Remarks:<br />

The ideas of Leibniz and Curie do not necessarily correspond to the<br />

present day view - today the spontaneous symmetry break<strong>in</strong>g effects<br />

are given much more attention<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [3]<br />

... already Aristotle (384-322 BC)<br />

In his ’De Caelo’ Aristotle asks how a dog faced with the choice<br />

of two equally tempt<strong>in</strong>g meals could rationally choose one ...<br />

French philosopher Jean BURIDAN, XIV century: an ass faces<br />

starvation when it is unable to choose between two equally<br />

appetis<strong>in</strong>g piles of hay ...<br />

Remarks:<br />

The ideas of Leibniz and Curie do not necessarily correspond to the<br />

present day view - today the spontaneous symmetry break<strong>in</strong>g effects<br />

are given much more attention<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

An Alternative: Spontaneous Symmetry Break<strong>in</strong>g<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 There exist phenomena not <strong>in</strong>volv<strong>in</strong>g any obvious symmetry<br />

2 There exist transitions from less symmetric to more symmetric<br />

situations<br />

3 Let us turn to a somewhat mislead<strong>in</strong>g picture of s. symmetry<br />

break<strong>in</strong>g<br />

We<strong>in</strong>berg’s Caricature of the Spontaneous Symmetry Break<strong>in</strong>g<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

An Alternative: Spontaneous Symmetry Break<strong>in</strong>g<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 There exist phenomena not <strong>in</strong>volv<strong>in</strong>g any obvious symmetry<br />

2 There exist transitions from less symmetric to more symmetric<br />

situations<br />

3 Let us turn to a somewhat mislead<strong>in</strong>g picture of s. symmetry<br />

break<strong>in</strong>g<br />

We<strong>in</strong>berg’s Caricature of the Spontaneous Symmetry Break<strong>in</strong>g<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

An Alternative: Spontaneous Symmetry Break<strong>in</strong>g<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 There exist phenomena not <strong>in</strong>volv<strong>in</strong>g any obvious symmetry<br />

2 There exist transitions from less symmetric to more symmetric<br />

situations<br />

3 Let us turn to a somewhat mislead<strong>in</strong>g picture of s. symmetry<br />

break<strong>in</strong>g<br />

We<strong>in</strong>berg’s Caricature of the Spontaneous Symmetry Break<strong>in</strong>g<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

An Alternative: Spontaneous Symmetry Break<strong>in</strong>g<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 There exist phenomena not <strong>in</strong>volv<strong>in</strong>g any obvious symmetry<br />

2 There exist transitions from less symmetric to more symmetric<br />

situations<br />

3 Let us turn to a somewhat mislead<strong>in</strong>g picture of s. symmetry<br />

break<strong>in</strong>g<br />

We<strong>in</strong>berg’s Caricature of the Spontaneous Symmetry Break<strong>in</strong>g<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry: Exact, Approximate, Spontaneously Broken<br />

Consider an exact symmetry def<strong>in</strong>ed by transformations ĝ ∈ {G}:<br />

ĝ H ĝ −1 = H ↔ Hψ = Eψ → ĝHĝ −1 (ĝψ) = E(ĝψ)<br />

Conclusion: ψ and ĝψ are solutions. There are two possibilities:<br />

1 o An n-fold degenerate spectrum: ĝψ p α = ∑ k≤n ψk α D α kp (ĝ)<br />

Matrices Dkp α (ĝ) form an n-dimensional representation of {G}<br />

2 o Non-degenerate spectrum: ĝψ p α = D α (ĝ) ψ k q<br />

Numbers D α (ĝ) form one-dimensional representations of {G}<br />

In both cases the <strong>in</strong>dex α enumerat<strong>in</strong>g irreducible representations<br />

plays a role of the label (quantum number) characteris<strong>in</strong>g symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry: Exact, Approximate, Spontaneously Broken<br />

Consider an exact symmetry def<strong>in</strong>ed by transformations ĝ ∈ {G}:<br />

ĝ H ĝ −1 = H ↔ Hψ = Eψ → ĝHĝ −1 (ĝψ) = E(ĝψ)<br />

Conclusion: ψ and ĝψ are solutions. There are two possibilities:<br />

1 o An n-fold degenerate spectrum: ĝψ p α = ∑ k≤n ψk α D α kp (ĝ)<br />

Matrices Dkp α (ĝ) form an n-dimensional representation of {G}<br />

2 o Non-degenerate spectrum: ĝψ p α = D α (ĝ) ψ k q<br />

Numbers D α (ĝ) form one-dimensional representations of {G}<br />

In both cases the <strong>in</strong>dex α enumerat<strong>in</strong>g irreducible representations<br />

plays a role of the label (quantum number) characteris<strong>in</strong>g symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry: Exact, Approximate, Spontaneously Broken<br />

Consider an exact symmetry def<strong>in</strong>ed by transformations ĝ ∈ {G}:<br />

ĝ H ĝ −1 = H ↔ Hψ = Eψ → ĝHĝ −1 (ĝψ) = E(ĝψ)<br />

Conclusion: ψ and ĝψ are solutions. There are two possibilities:<br />

1 o An n-fold degenerate spectrum: ĝψ p α = ∑ k≤n ψk α D α kp (ĝ)<br />

Matrices Dkp α (ĝ) form an n-dimensional representation of {G}<br />

2 o Non-degenerate spectrum: ĝψ p α = D α (ĝ) ψ k q<br />

Numbers D α (ĝ) form one-dimensional representations of {G}<br />

In both cases the <strong>in</strong>dex α enumerat<strong>in</strong>g irreducible representations<br />

plays a role of the label (quantum number) characteris<strong>in</strong>g symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry: Exact, Approximate, Spontaneously Broken<br />

Consider an exact symmetry def<strong>in</strong>ed by transformations ĝ ∈ {G}:<br />

ĝ H ĝ −1 = H ↔ Hψ = Eψ → ĝHĝ −1 (ĝψ) = E(ĝψ)<br />

Conclusion: ψ and ĝψ are solutions. There are two possibilities:<br />

1 o An n-fold degenerate spectrum: ĝψ p α = ∑ k≤n ψk α D α kp (ĝ)<br />

Matrices Dkp α (ĝ) form an n-dimensional representation of {G}<br />

2 o Non-degenerate spectrum: ĝψ p α = D α (ĝ) ψ k q<br />

Numbers D α (ĝ) form one-dimensional representations of {G}<br />

In both cases the <strong>in</strong>dex α enumerat<strong>in</strong>g irreducible representations<br />

plays a role of the label (quantum number) characteris<strong>in</strong>g symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry: Exact, Approximate, Spontaneously Broken<br />

Consider an exact symmetry def<strong>in</strong>ed by transformations ĝ ∈ {G}:<br />

ĝ H ĝ −1 = H ↔ Hψ = Eψ → ĝHĝ −1 (ĝψ) = E(ĝψ)<br />

Conclusion: ψ and ĝψ are solutions. There are two possibilities:<br />

1 o An n-fold degenerate spectrum: ĝψ p α = ∑ k≤n ψk α D α kp (ĝ)<br />

Matrices Dkp α (ĝ) form an n-dimensional representation of {G}<br />

2 o Non-degenerate spectrum: ĝψ p α = D α (ĝ) ψ k q<br />

Numbers D α (ĝ) form one-dimensional representations of {G}<br />

In both cases the <strong>in</strong>dex α enumerat<strong>in</strong>g irreducible representations<br />

plays a role of the label (quantum number) characteris<strong>in</strong>g symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Example: An Exactly Spherically-Symmetric Nucleus<br />

Consider 132 Sn nucleus with 50 protons and 82 neutrons<br />

Are the wave-functions obey<strong>in</strong>g the spherical symmetry?<br />

How the Pauli pr<strong>in</strong>ciple can be seen from the 3D perspective?<br />

H<strong>in</strong>t:<br />

To answer these questions we solve the correspond<strong>in</strong>g realistsic problem<br />

of motion and obta<strong>in</strong> the energies and wave functions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Example: An Exactly Spherically-Symmetric Nucleus<br />

Consider 132 Sn nucleus with 50 protons and 82 neutrons<br />

Are the wave-functions obey<strong>in</strong>g the spherical symmetry?<br />

How the Pauli pr<strong>in</strong>ciple can be seen from the 3D perspective?<br />

H<strong>in</strong>t:<br />

To answer these questions we solve the correspond<strong>in</strong>g realistsic problem<br />

of motion and obta<strong>in</strong> the energies and wave functions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Example: An Exactly Spherically-Symmetric Nucleus<br />

Consider 132 Sn nucleus with 50 protons and 82 neutrons<br />

Are the wave-functions obey<strong>in</strong>g the spherical symmetry?<br />

How the Pauli pr<strong>in</strong>ciple can be seen from the 3D perspective?<br />

H<strong>in</strong>t:<br />

To answer these questions we solve the correspond<strong>in</strong>g realistsic problem<br />

of motion and obta<strong>in</strong> the energies and wave functions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Example: An Exactly Spherically-Symmetric Nucleus<br />

Consider 132 Sn nucleus with 50 protons and 82 neutrons<br />

Are the wave-functions obey<strong>in</strong>g the spherical symmetry?<br />

How the Pauli pr<strong>in</strong>ciple can be seen from the 3D perspective?<br />

H<strong>in</strong>t:<br />

To answer these questions we solve the correspond<strong>in</strong>g realistsic problem<br />

of motion and obta<strong>in</strong> the energies and wave functions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit ??% Limit ??% Limit ??% Limit ??%<br />

Density distribution |ψ π (⃗r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit ??% Limit ??% Limit ??%<br />

Density distribution |ψ π (⃗r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit ??% Limit ??%<br />

Density distribution |ψ π (⃗r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit ??%<br />

Density distribution |ψ π (⃗r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Density distribution |ψ π (⃗r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Limit 20% Limit ??% Limit ??% Limit ??% Limit ??%<br />

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Limit 20% Limit 15% Limit ??% Limit ??% Limit ??%<br />

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Limit 20% Limit 15% Limit 12% Limit ??% Limit ??%<br />

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Limit 20% Limit 15% Limit 12% Limit 10% Limit ??%<br />

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Limit 20% Limit 15% Limit 12% Limit 10% Limit 9%<br />

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of N=3 Spherical Shell (|ψ ν (⃗r )| 2 )<br />

132 Sn: Distributions |ψ ν (⃗r )| 2 for s<strong>in</strong>gle proton orbitals. Top O xz ,<br />

bottom O yz . Proton e ν ↔ [ν=30, 32, ... 38] for spherical shell<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of N=3 Spherical Shell (|ψ ν (⃗r )| 2 )<br />

132 Sn: Distributions |ψ ν (⃗r )| 2 for s<strong>in</strong>gle proton orbitals. Top O xz ,<br />

bottom O yz . Proton e ν ↔ [ν=40, 42, ... 48] for spherical shell<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of N=3 Spherical Shell (|ψ ν (⃗r )| 2 )<br />

132 Sn: distributions |ψ ν (⃗r )| 2 for consecutive pairs of orbitals. Top<br />

O xz , bottom O yz . Proton e ν ↔ [n=30:32, ... 38:40], spherical shell<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of N=3 Spherical Shell (|ψ ν (⃗r )| 2 )<br />

132 Sn: distributions |ψ ν (⃗r )| 2 for consecutive pairs of orbitals. Top<br />

O xz , bottom O yz . Proton e ν ↔ [n=40:42, ... 48:50], spherical shell<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Fundamental Symmetries of Nuclear Forces [1]<br />

Denote ˆx df . = {⃗r,⃗p,⃗s,⃗t}. Nuclear <strong>in</strong>teractions have the form<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

where: C-central, T -tensor, LS-sp<strong>in</strong>-orbit and LL 2 -quadratic LS<br />

Central Interaction (r 12 ≡ |⃗r 1 −⃗r 2 |)<br />

̂V C (ˆx 1 , ˆx 2 ) = V 0 (r 12 ) + V s (r 12 ) [⃗s (1) · ⃗s (2) ]<br />

+ V t (r 12 ) [⃗t (1) ·⃗t (2) ]<br />

+ V s−t (r 12 ) [⃗s (1) · ⃗s (2) ] [⃗t (1) ·⃗t (2) ]<br />

Invariant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Fundamental Symmetries of Nuclear Forces [1]<br />

Denote ˆx df . = {⃗r,⃗p,⃗s,⃗t}. Nuclear <strong>in</strong>teractions have the form<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

where: C-central, T -tensor, LS-sp<strong>in</strong>-orbit and LL 2 -quadratic LS<br />

Central Interaction (r 12 ≡ |⃗r 1 −⃗r 2 |)<br />

̂V C (ˆx 1 , ˆx 2 ) = V 0 (r 12 ) + V s (r 12 ) [⃗s (1) · ⃗s (2) ]<br />

+ V t (r 12 ) [⃗t (1) ·⃗t (2) ]<br />

+ V s−t (r 12 ) [⃗s (1) · ⃗s (2) ] [⃗t (1) ·⃗t (2) ]<br />

Invariant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Fundamental Symmetries of Nuclear Forces [2]<br />

Denote ˆx df . = {⃗r,⃗p,⃗s,⃗t}. Nuclear <strong>in</strong>teractions have the form<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

where: C-central, T -tensor, LS-sp<strong>in</strong>-orbit and LL 2 -quadratic LS<br />

Tensor Interaction [Non-Central]<br />

⃗ S<br />

(12) df .<br />

= 3 (⃗s 1 ·⃗r 12 )(⃗s 2 ·⃗r 12 ) − (⃗s 1 · ⃗s 2 ) r12<br />

2<br />

r12<br />

2<br />

and r 12<br />

df .<br />

= |⃗r 1 −⃗r 2 |<br />

̂V T (ˆx 1 , ˆx 2 ) = [V t0 (r 12 ) + V t1 (r 12 )⃗t 1 ·⃗t 2 ] ⃗ S (12)<br />

Invariant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Fundamental Symmetries of Nuclear Forces [3]<br />

Denote ˆx df . = {⃗r,⃗p,⃗s,⃗t}. Nuclear <strong>in</strong>teractions have the form<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

where: C-central, T -tensor, LS-sp<strong>in</strong>-orbit and LL 2 -quadratic LS<br />

Sp<strong>in</strong>-Orbit Interaction [Non-Local]<br />

⃗ L<br />

df .<br />

= 1 2 (⃗r 1 −⃗r 2 ) ∧ (⃗p 1 − ⃗p 2 ), r 12<br />

df .<br />

= |⃗r 1 −⃗r 2 | and ⃗ S df . = ⃗s 1 + ⃗s 2<br />

̂V LS (ˆx 1 , ˆx 2 ) = V LS (r 12 ) ⃗ L · ⃗S<br />

Invariant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Fundamental Symmetries of Nuclear Forces [4]<br />

Denote ˆx df . = {⃗r,⃗p,⃗s,⃗t}. Nuclear <strong>in</strong>teractions have the form<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

where: C-central, T -tensor, LS-sp<strong>in</strong>-orbit and LL 2 -quadratic LS<br />

Quadratic Sp<strong>in</strong>-Orbit Interaction [Non-Local]<br />

⃗ L<br />

df .<br />

= 1 2 (⃗r 1 −⃗r 2 ) ∧ (⃗p 1 − ⃗p 2 ) and r 12<br />

df .<br />

= |⃗r 1 −⃗r 2 |<br />

̂V LL (ˆx 1 , ˆx 2 ) = V LL (r 12 ){(⃗s 1 · ⃗s 2 ) ⃗ L 2 − 1 2 [(⃗s 1 · ⃗L)(⃗s 2 · ⃗L) + (⃗s 2 · ⃗L)(⃗s 1 · ⃗L)]}<br />

Invariant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Forces and the Mean Field Theory<br />

1 o From the above discussion it follows that the N-N <strong>in</strong>teraction<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

is <strong>in</strong>variant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Forces and the Mean Field Theory<br />

1 o From the above discussion it follows that the N-N <strong>in</strong>teraction<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

is <strong>in</strong>variant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Spont. Sym. Break<strong>in</strong>g<br />

Z=fixed<br />

E<br />

N N ’ N"<br />

The Nuclear Mean Field Theory ...<br />

... is usually very successful. It is based on<br />

∫<br />

̂V mf (ˆx) = ψ ∗ (x ′ ) ̂V (ˆx, ˆx ′ )ψ(x ′ ) dx ′<br />

spherical<br />

deformed<br />

Def.<br />

Some or all of the above symmetries will be<br />

broken by the mean-field Hamiltonian<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - An Example<br />

Given a system with symmetry {G} i.e. [H(β), G] = 0. Here β is a<br />

parameter. Often a critical value, β crit. , exists such that:<br />

1 For β < β crit. symmetry of solution is compatible with {G}<br />

2 For β > β crit. symmetry of solution is not compatible with {G}<br />

A Classical (Macro) Example<br />

Orig<strong>in</strong>al system ↔ axial symmetry<br />

For F > F crit. we f<strong>in</strong>d <strong>in</strong>f<strong>in</strong>itely<br />

many solutions at the same energy<br />

Yet: The orig<strong>in</strong>al axial symmetry<br />

will be spontaneously broken and<br />

only one among many directions -<br />

privileged !!!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - An Example<br />

Given a system with symmetry {G} i.e. [H(β), G] = 0. Here β is a<br />

parameter. Often a critical value, β crit. , exists such that:<br />

1 For β < β crit. symmetry of solution is compatible with {G}<br />

2 For β > β crit. symmetry of solution is not compatible with {G}<br />

A Classical (Macro) Example<br />

Orig<strong>in</strong>al system ↔ axial symmetry<br />

For F > F crit. we f<strong>in</strong>d <strong>in</strong>f<strong>in</strong>itely<br />

many solutions at the same energy<br />

Yet: The orig<strong>in</strong>al axial symmetry<br />

will be spontaneously broken and<br />

only one among many directions -<br />

privileged !!!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - An Example<br />

Given a system with symmetry {G} i.e. [H(β), G] = 0. Here β is a<br />

parameter. Often a critical value, β crit. , exists such that:<br />

1 For β < β crit. symmetry of solution is compatible with {G}<br />

2 For β > β crit. symmetry of solution is not compatible with {G}<br />

A Classical (Macro) Example<br />

Orig<strong>in</strong>al system ↔ axial symmetry<br />

For F > F crit. we f<strong>in</strong>d <strong>in</strong>f<strong>in</strong>itely<br />

many solutions at the same energy<br />

Yet: The orig<strong>in</strong>al axial symmetry<br />

will be spontaneously broken and<br />

only one among many directions -<br />

privileged !!!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - An Example<br />

Given a system with symmetry {G} i.e. [H(β), G] = 0. Here β is a<br />

parameter. Often a critical value, β crit. , exists such that:<br />

1 For β < β crit. symmetry of solution is compatible with {G}<br />

2 For β > β crit. symmetry of solution is not compatible with {G}<br />

A Classical (Macro) Example<br />

Orig<strong>in</strong>al system ↔ axial symmetry<br />

For F > F crit. we f<strong>in</strong>d <strong>in</strong>f<strong>in</strong>itely<br />

many solutions at the same energy<br />

Yet: The orig<strong>in</strong>al axial symmetry<br />

will be spontaneously broken and<br />

only one among many directions -<br />

privileged !!!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - An Example<br />

Given a system with symmetry {G} i.e. [H(β), G] = 0. Here β is a<br />

parameter. Often a critical value, β crit. , exists such that:<br />

1 For β < β crit. symmetry of solution is compatible with {G}<br />

2 For β > β crit. symmetry of solution is not compatible with {G}<br />

A Classical (Macro) Example<br />

Orig<strong>in</strong>al system ↔ axial symmetry<br />

For F > F crit. we f<strong>in</strong>d <strong>in</strong>f<strong>in</strong>itely<br />

many solutions at the same energy<br />

Yet: The orig<strong>in</strong>al axial symmetry<br />

will be spontaneously broken and<br />

only one among many directions -<br />

privileged !!!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Classical Physics<br />

A small bead of mass m threaded on a rotat<strong>in</strong>g circle of radius r;<br />

constant frequency ω. We use the Lagrangian formalism:<br />

1 L = 1 2 m˙⃗r 2 −V (⃗r ) = 1 2 mr 2 ˙ϑ 2 + 1 2 mω2 r 2 s<strong>in</strong> 2 ϑ−mgr(1−cos ϑ)<br />

df .<br />

2 L = T ϑ − U ϑ ↔ U ϑ = mgr[ (1 − cos ϑ) − 1<br />

} {{ }<br />

2 (mω2 /g) s<strong>in</strong> 2 ϑ ]<br />

} {{ }<br />

Potential Centrifugal<br />

Bead on a Circle<br />

z<br />

ω<br />

π _ υ<br />

y<br />

r<br />

m<br />

x<br />

f = −mg<br />

U=mgr(1−cos υ)<br />

The lowest energy solutions ↔ ˙ϑ = 0 ↔ dU<br />

dϑ = 0<br />

Result: s<strong>in</strong> ϑ s = 0 and cos ϑ o = 1/β; β df . = rω 2 /g<br />

Conclusion. Two types of lowest-energy solutions:<br />

1. ϑ s = 0 - with the axial symmetry of the problem<br />

2. ϑ o ≠ 0 - break<strong>in</strong>g the orig<strong>in</strong>al axial symmetry !!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Classical Physics<br />

A small bead of mass m threaded on a rotat<strong>in</strong>g circle of radius r;<br />

constant frequency ω. We use the Lagrangian formalism:<br />

1 L = 1 2 m˙⃗r 2 −V (⃗r ) = 1 2 mr 2 ˙ϑ 2 + 1 2 mω2 r 2 s<strong>in</strong> 2 ϑ−mgr(1−cos ϑ)<br />

df .<br />

2 L = T ϑ − U ϑ ↔ U ϑ = mgr[ (1 − cos ϑ) − 1<br />

} {{ }<br />

2 (mω2 /g) s<strong>in</strong> 2 ϑ ]<br />

} {{ }<br />

Potential Centrifugal<br />

Bead on a Circle<br />

z<br />

ω<br />

π _ υ<br />

y<br />

r<br />

m<br />

x<br />

f = −mg<br />

U=mgr(1−cos υ)<br />

The lowest energy solutions ↔ ˙ϑ = 0 ↔ dU<br />

dϑ = 0<br />

Result: s<strong>in</strong> ϑ s = 0 and cos ϑ o = 1/β; β df . = rω 2 /g<br />

Conclusion. Two types of lowest-energy solutions:<br />

1. ϑ s = 0 - with the axial symmetry of the problem<br />

2. ϑ o ≠ 0 - break<strong>in</strong>g the orig<strong>in</strong>al axial symmetry !!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Classical Physics<br />

A small bead of mass m threaded on a rotat<strong>in</strong>g circle of radius r;<br />

constant frequency ω. We use the Lagrangian formalism:<br />

1 L = 1 2 m˙⃗r 2 −V (⃗r ) = 1 2 mr 2 ˙ϑ 2 + 1 2 mω2 r 2 s<strong>in</strong> 2 ϑ−mgr(1−cos ϑ)<br />

df .<br />

2 L = T ϑ − U ϑ ↔ U ϑ = mgr[ (1 − cos ϑ) − 1<br />

} {{ }<br />

2 (mω2 /g) s<strong>in</strong> 2 ϑ ]<br />

} {{ }<br />

Potential Centrifugal<br />

Bead on a Circle<br />

z<br />

ω<br />

π _ υ<br />

y<br />

r<br />

m<br />

x<br />

f = −mg<br />

U=mgr(1−cos υ)<br />

The lowest energy solutions ↔ ˙ϑ = 0 ↔ dU<br />

dϑ = 0<br />

Result: s<strong>in</strong> ϑ s = 0 and cos ϑ o = 1/β; β df . = rω 2 /g<br />

Conclusion. Two types of lowest-energy solutions:<br />

1. ϑ s = 0 - with the axial symmetry of the problem<br />

2. ϑ o ≠ 0 - break<strong>in</strong>g the orig<strong>in</strong>al axial symmetry !!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Classical Physics<br />

A small bead of mass m threaded on a rotat<strong>in</strong>g circle of radius r;<br />

constant frequency ω. We use the Lagrangian formalism:<br />

1 L = 1 2 m˙⃗r 2 −V (⃗r ) = 1 2 mr 2 ˙ϑ 2 + 1 2 mω2 r 2 s<strong>in</strong> 2 ϑ−mgr(1−cos ϑ)<br />

df .<br />

2 L = T ϑ − U ϑ ↔ U ϑ = mgr[ (1 − cos ϑ) − 1<br />

} {{ }<br />

2 (mω2 /g) s<strong>in</strong> 2 ϑ ]<br />

} {{ }<br />

Potential Centrifugal<br />

Bead on a Circle<br />

z<br />

ω<br />

π _ υ<br />

y<br />

r<br />

m<br />

x<br />

f = −mg<br />

U=mgr(1−cos υ)<br />

The lowest energy solutions ↔ ˙ϑ = 0 ↔ dU<br />

dϑ = 0<br />

Result: s<strong>in</strong> ϑ s = 0 and cos ϑ o = 1/β; β df . = rω 2 /g<br />

Conclusion. Two types of lowest-energy solutions:<br />

1. ϑ s = 0 - with the axial symmetry of the problem<br />

2. ϑ o ≠ 0 - break<strong>in</strong>g the orig<strong>in</strong>al axial symmetry !!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Discussion<br />

1 o Under which conditions are the so obta<strong>in</strong>ed solutions stable?<br />

2 o Are the derivatives d2 U<br />

dϑ 2 ≡ U ′′ = mgr(cos ϑ − β cos 2ϑ) > 0?<br />

1 Solution ϑ s = 0 → U ′′ (ϑ s ) = 1 − β → ϑ s stable for β < 1<br />

2 Solution ϑ o ≠ 0 → U ′′ (ϑ o ) = β − 1/β → ϑ o stable for β > 1<br />

U is Symmetric when ϑ → −ϑ<br />

U ( υ)<br />

Def<strong>in</strong>e frequency: ω crit. ≡ √ g/r<br />

ω < ω crit. : bead rests at ϑ s = 0<br />

β1<br />

ω > ω crit. : climbs up ϑ o : 0 → π 2<br />

_ π /2<br />

β crit. = 1<br />

π /2<br />

υ<br />

ϑ s - sub-critical ϑ o - over-critical<br />

... but why should there be any<br />

spontaneous symmetry break<strong>in</strong>g?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Discussion<br />

1 o Under which conditions are the so obta<strong>in</strong>ed solutions stable?<br />

2 o Are the derivatives d2 U<br />

dϑ 2 ≡ U ′′ = mgr(cos ϑ − β cos 2ϑ) > 0?<br />

1 Solution ϑ s = 0 → U ′′ (ϑ s ) = 1 − β → ϑ s stable for β < 1<br />

2 Solution ϑ o ≠ 0 → U ′′ (ϑ o ) = β − 1/β → ϑ o stable for β > 1<br />

U is Symmetric when ϑ → −ϑ<br />

U ( υ)<br />

Def<strong>in</strong>e frequency: ω crit. ≡ √ g/r<br />

ω < ω crit. : bead rests at ϑ s = 0<br />

β1<br />

ω > ω crit. : climbs up ϑ o : 0 → π 2<br />

_ π /2<br />

β crit. = 1<br />

π /2<br />

υ<br />

ϑ s - sub-critical ϑ o - over-critical<br />

... but why should there be any<br />

spontaneous symmetry break<strong>in</strong>g?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Discussion<br />

1 o Under which conditions are the so obta<strong>in</strong>ed solutions stable?<br />

2 o Are the derivatives d2 U<br />

dϑ 2 ≡ U ′′ = mgr(cos ϑ − β cos 2ϑ) > 0?<br />

1 Solution ϑ s = 0 → U ′′ (ϑ s ) = 1 − β → ϑ s stable for β < 1<br />

2 Solution ϑ o ≠ 0 → U ′′ (ϑ o ) = β − 1/β → ϑ o stable for β > 1<br />

U is Symmetric when ϑ → −ϑ<br />

U ( υ)<br />

Def<strong>in</strong>e frequency: ω crit. ≡ √ g/r<br />

ω < ω crit. : bead rests at ϑ s = 0<br />

β1<br />

ω > ω crit. : climbs up ϑ o : 0 → π 2<br />

_ π /2<br />

β crit. = 1<br />

π /2<br />

υ<br />

ϑ s - sub-critical ϑ o - over-critical<br />

... but why should there be any<br />

spontaneous symmetry break<strong>in</strong>g?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Discussion<br />

1 o Under which conditions are the so obta<strong>in</strong>ed solutions stable?<br />

2 o Are the derivatives d2 U<br />

dϑ 2 ≡ U ′′ = mgr(cos ϑ − β cos 2ϑ) > 0?<br />

1 Solution ϑ s = 0 → U ′′ (ϑ s ) = 1 − β → ϑ s stable for β < 1<br />

2 Solution ϑ o ≠ 0 → U ′′ (ϑ o ) = β − 1/β → ϑ o stable for β > 1<br />

U is Symmetric when ϑ → −ϑ<br />

U ( υ)<br />

Def<strong>in</strong>e frequency: ω crit. ≡ √ g/r<br />

ω < ω crit. : bead rests at ϑ s = 0<br />

β1<br />

ω > ω crit. : climbs up ϑ o : 0 → π 2<br />

_ π /2<br />

β crit. = 1<br />

π /2<br />

υ<br />

ϑ s - sub-critical ϑ o - over-critical<br />

... but why should there be any<br />

spontaneous symmetry break<strong>in</strong>g?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

This transition is called spontaneous s<strong>in</strong>ce the ϑ o -sign chosen by the<br />

system depends on ’irrelevant details’: fluctuations, non-uniformities<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 We used no <strong>in</strong>formation about those ’irrelevant details’ yet ...<br />

2 We were able to predict the absolute value of ϑ o <strong>in</strong> experiment<br />

3 Is spontaneous symmetry break<strong>in</strong>g someth<strong>in</strong>g so very unusual?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

This transition is called spontaneous s<strong>in</strong>ce the ϑ o -sign chosen by the<br />

system depends on ’irrelevant details’: fluctuations, non-uniformities<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 We used no <strong>in</strong>formation about those ’irrelevant details’ yet ...<br />

2 We were able to predict the absolute value of ϑ o <strong>in</strong> experiment<br />

3 Is spontaneous symmetry break<strong>in</strong>g someth<strong>in</strong>g so very unusual?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

This transition is called spontaneous s<strong>in</strong>ce the ϑ o -sign chosen by the<br />

system depends on ’irrelevant details’: fluctuations, non-uniformities<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 We used no <strong>in</strong>formation about those ’irrelevant details’ yet ...<br />

2 We were able to predict the absolute value of ϑ o <strong>in</strong> experiment<br />

3 Is spontaneous symmetry break<strong>in</strong>g someth<strong>in</strong>g so very unusual?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups - ... and What We Need to Remember<br />

Consider a group of symmetry of an equilateral triangle (group C 3v )<br />

Two Types of Transformations - Observe Existence of a Fixed Po<strong>in</strong>t<br />

a<br />

120 o<br />

b<br />

c<br />

C^ 3<br />

240 o<br />

(C<br />

^ 2<br />

3)<br />

b<br />

a<br />

c<br />

Figure: This group conta<strong>in</strong>s rotations Ĉ3 and Ĉ 2 3 (120o and 240 o ), left,<br />

and three vertical reflections ˆσ va , ˆσ vb and ˆσ vc , right, <strong>in</strong> addition to 1I.<br />

Six Element Po<strong>in</strong>t Group: C 3v = {1I, Ĉ 3 , Ĉ 2 3 , ˆσ va , ˆσ vb , ˆσ vc }<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups - ... and What We Need to Remember<br />

Consider a group of symmetry of an equilateral triangle (group C 3v )<br />

Two Types of Transformations - Observe Existence of a Fixed Po<strong>in</strong>t<br />

a<br />

120 o<br />

b<br />

c<br />

C^ 3<br />

240 o<br />

(C<br />

^ 2<br />

3)<br />

b<br />

a<br />

c<br />

Figure: This group conta<strong>in</strong>s rotations Ĉ3 and Ĉ 2 3 (120o and 240 o ), left,<br />

and three vertical reflections ˆσ va , ˆσ vb and ˆσ vc , right, <strong>in</strong> addition to 1I.<br />

Six Element Po<strong>in</strong>t Group: C 3v = {1I, Ĉ 3 , Ĉ 2 3 , ˆσ va , ˆσ vb , ˆσ vc }<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Discrete Symmetries <strong>in</strong> Nuclei<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Let us recall one of the magic forms <strong>in</strong>troduced long time by Plato.<br />

The implied symmetry leads to the tetrahedral group denoted T d<br />

A tetrahedron has four equal walls.<br />

Its shape is <strong>in</strong>variant with respect to<br />

24 symmetry elements. Tetrahedron<br />

is not <strong>in</strong>variant with respect to the<br />

<strong>in</strong>version. Of course nuclei cannot be<br />

represented by a sharp-edge pyramid<br />

... but rather <strong>in</strong> a form of a regular spherical harmonic expansion:<br />

λ∑<br />

max λ∑<br />

R(ϑ, ϕ) = R 0 c({α})[1 + α λ,µ Y λ,µ (ϑ, ϕ)]<br />

λ<br />

µ=−λ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Discrete Symmetries <strong>in</strong> Nuclei<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Let us recall one of the magic forms <strong>in</strong>troduced long time by Plato.<br />

The implied symmetry leads to the tetrahedral group denoted T d<br />

A tetrahedron has four equal walls.<br />

Its shape is <strong>in</strong>variant with respect to<br />

24 symmetry elements. Tetrahedron<br />

is not <strong>in</strong>variant with respect to the<br />

<strong>in</strong>version. Of course nuclei cannot be<br />

represented by a sharp-edge pyramid<br />

... but rather <strong>in</strong> a form of a regular spherical harmonic expansion:<br />

λ∑<br />

max λ∑<br />

R(ϑ, ϕ) = R 0 c({α})[1 + α λ,µ Y λ,µ (ϑ, ϕ)]<br />

λ<br />

µ=−λ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Tetrahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with tetrahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 3 : α 3,±2 ≡ t 3<br />

λ = 7 : α 7,±2 ≡ t 7 ; α 7,±6 ≡ − q 11<br />

13 · t 7<br />

λ = 9 : α 9,±2 ≡ t 9 ; α 9,±6 ≡ + q 28<br />

198 · t 9<br />

1 Collaboration with Andrzej GÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Tetrahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with tetrahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 3 : α 3,±2 ≡ t 3<br />

λ = 7 : α 7,±2 ≡ t 7 ; α 7,±6 ≡ − q 11<br />

13 · t 7<br />

λ = 9 : α 9,±2 ≡ t 9 ; α 9,±6 ≡ + q 28<br />

198 · t 9<br />

1 Collaboration with Andrzej GÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Tetrahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with tetrahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 3 : α 3,±2 ≡ t 3<br />

λ = 7 : α 7,±2 ≡ t 7 ; α 7,±6 ≡ − q 11<br />

13 · t 7<br />

λ = 9 : α 9,±2 ≡ t 9 ; α 9,±6 ≡ + q 28<br />

198 · t 9<br />

1 Collaboration with Andrzej GÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Tetrahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with tetrahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 3 : α 3,±2 ≡ t 3<br />

λ = 7 : α 7,±2 ≡ t 7 ; α 7,±6 ≡ − q 11<br />

13 · t 7<br />

λ = 9 : α 9,±2 ≡ t 9 ; α 9,±6 ≡ + q 28<br />

198 · t 9<br />

1 Collaboration with Andrzej GÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral Shapes - 3D Examples (Part 1)<br />

Illustrations below show the tetrahedral-symmetric surfaces at three<br />

<strong>in</strong>creas<strong>in</strong>g values of rank λ = 3 deformations t 1 : 0.1, 0.2 and 0.3:<br />

Figure: t 3 = 0.1 Figure: t 3 = 0.2 Figure: t 3 = 0.3<br />

Observations:<br />

There are <strong>in</strong>f<strong>in</strong>itely many tetrahedral-symmetric surfaces<br />

Nuclear ’pyramids’ do not resemble pyramids!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral Shapes - Proton Spectra<br />

Double group Td<br />

D has two 2-dimensional - and one 4-dimensional<br />

irreducible representations → three dist<strong>in</strong>ct families of levels<br />

Proton Energies [MeV]<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

-10<br />

-11<br />

-12<br />

226<br />

90 Th 136<br />

{07}[5,4,1] 3/2<br />

{19}[5,1,4] 7/2<br />

{07}[5,0,5] 9/2<br />

{20}[5,0,5] 9/2<br />

{08}[5,2,3] 5/2<br />

{06}[6,1,5] 11/2<br />

{10}[6,2,4] 9/2<br />

{08}[5,0,3] 7/2<br />

{06}[6,3,3] 7/2<br />

{04}[4,4,0] 1/2<br />

{12}[5,1,4] 9/2<br />

{09}[5,2,3] 7/2<br />

{16}[5,0,5] 11/2<br />

{08}[5,2,1] 1/2<br />

{11}[5,0,5] 11/2<br />

{09}[4,0,0] 1/2<br />

{08}[4,4,0] 1/2<br />

{16}[4,0,2] 3/2<br />

{13}[4,1,3] 5/2<br />

{10}[4,0,4] 7/2<br />

{15}[4,0,4] 7/2<br />

{09}[4,2,2] 3/2<br />

{07}[4,3,1] 1/2<br />

{09}[5,1,4] 9/2<br />

100<br />

64<br />

82<br />

58<br />

100<br />

64<br />

90<br />

70<br />

94<br />

-.2 -.1 .0 .1 .2 .3 .4<br />

Tetrahedral Deformation<br />

{04}[4,1,1] 3/2<br />

{06}[4,2,0] 1/2<br />

{06}[5,0,5] 9/2<br />

{05}[6,1,5] 9/2<br />

{07}[4,1,3] 7/2<br />

{07}[4,2,2] 5/2<br />

{11}[5,0,5] 11/2<br />

{06}[5,4,1] 1/2<br />

{05}[4,0,0] 1/2<br />

{04}[3,0,1] 1/2<br />

{04}[4,1,3] 7/2<br />

{03}[4,1,3] 7/2<br />

{04}[5,0,3] 7/2<br />

{10}[3,1,2] 3/2<br />

{05}[6,1,5] 11/2<br />

{05}[4,3,1] 1/2<br />

{04}[5,0,5] 11/2<br />

{06}[4,0,4] 7/2<br />

{06}[4,0,4] 7/2<br />

{06}[3,0,1] 1/2<br />

{04}[3,1,0] 1/2<br />

{03}[3,1,0] 1/2<br />

{10}[3,1,2] 5/2<br />

{06}[3,1,2] 3/2<br />

Strasbourg, August 2002 Woods-Saxon Universal Params.<br />

α 32(m<strong>in</strong>)=-.200, α32(max)=.400<br />

Figure: Full l<strong>in</strong>es ↔ 4-dimensional irreducible representations - marked<br />

with double Nilsson labels. Observe huge gaps at N=64, 70, 90-94, 100.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral Shapes - Neutron Spectra<br />

Double group Td<br />

D has two 2-dimensional - and one 4-dimensional<br />

irreducible representations → three dist<strong>in</strong>ct families of levels<br />

Neutron Energies [MeV]<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

-10<br />

-11<br />

226<br />

90 Th 136<br />

{13}[6,2,4] 7/2<br />

{05}[6,5,1] 3/2<br />

{03}[6,6,0] 1/2<br />

{07}[6,0,2] 5/2<br />

{04}[6,4,0] 1/2<br />

{11}[6,0,6] 11/2<br />

{07}[6,0,6] 11/2<br />

{06}[6,0,4] 9/2<br />

{05}[7,2,5] 11/2<br />

{06}[7,2,5] 11/2<br />

{08}[6,0,4] 9/2<br />

{04}[7,3,4] 9/2<br />

{08}[6,1,5] 11/2<br />

{09}[6,2,4] 9/2<br />

{05}[6,1,5] 11/2<br />

{04}[6,1,5] 11/2<br />

{08}[6,3,1] 1/2<br />

{19}[6,0,6] 13/2<br />

{09}[6,0,6] 13/2<br />

{08}[5,0,1] 1/2<br />

{07}[5,5,0] 1/2<br />

{13}[5,0,3] 5/2<br />

{06}[5,1,2] 3/2<br />

{07}[4,1,1] 1/2<br />

{04}[5,5,0] 1/2<br />

148<br />

136 136<br />

126<br />

124<br />

142<br />

112<br />

-.2 -.1 .0 .1 .2 .3 .4<br />

Tetrahedral Deformation<br />

{04}[6,0,6] 11/2<br />

{02}[5,2,1] 3/2<br />

{03}[5,2,1] 3/2<br />

{04}[5,3,2] 5/2<br />

{06}[6,5,1] 1/2<br />

{10}[6,0,6] 13/2<br />

{06}[5,2,3] 7/2<br />

{04}[5,0,5] 9/2<br />

{05}[5,3,2] 5/2<br />

{08}[5,1,4] 9/2<br />

{03}[5,0,1] 3/2<br />

{03}[5,0,1] 3/2<br />

{06}[6,2,4] 9/2<br />

{04}[7,1,6] 13/2<br />

{04}[4,1,3] 5/2<br />

{04}[5,3,0] 1/2<br />

{05}[7,2,5] 11/2<br />

{04}[5,1,2] 5/2<br />

{03}[5,4,1] 1/2<br />

{02}[4,1,3] 5/2<br />

{02}[3,0,1] 3/2<br />

{06}[6,0,6] 13/2<br />

{03}[5,0,3] 5/2<br />

{03}[5,0,3] 5/2<br />

{05}[4,1,1] 3/2<br />

Strasbourg, August 2002 Woods-Saxon Universal Params.<br />

α 32(m<strong>in</strong>)=-.200, α32(max)=.400<br />

Figure: Full l<strong>in</strong>es ↔ 4-dimensional irreducible representations - marked<br />

with double Nilsson labels. Observe huge gaps at N=112, 136.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Introduc<strong>in</strong>g Nuclear Octahedral Symmetry<br />

Let us recall one of the magic forms <strong>in</strong>troduced long time by Plato.<br />

The implied symmetry leads to the octahedral group denoted O h<br />

An octahedron has 8 equal walls. Its<br />

shape is <strong>in</strong>variant with respect to 48<br />

symmetry elements that <strong>in</strong>clude <strong>in</strong>version.<br />

However, the nuclear surface<br />

cannot be represented <strong>in</strong> the form of<br />

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦<br />

§ § § § § § § § § § § § § § § § § § § § § § § § § § §<br />

<br />

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦<br />

§ § § § § § § § § § § § § § § § § § § § § § § § § § §<br />

<br />

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦<br />

§ § § § § § § § § § § § § § § § § § § § § § § § § § §<br />

<br />

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦<br />

§ § § § § § § § § § § § § § § § § § § § § § § § § § §<br />

<br />

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦<br />

§ § § § § § § § § § § § § § § § § § § § § § § § § § §<br />

£ £ £ £ £ ¢ ¢ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

¢ £ £ £ £ £ £<br />

¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ £ £ £ ¢ ¤ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¤ ¢ ¢ ¢ ¢ £ £ £ ¤ ¤ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ <br />

<br />

<br />

¡ ¡<br />

¡ ¡ ¡ ¡ ¡ ¡<br />

<br />

<br />

<br />

¡ ¡<br />

¡ ¡ ¡ £ ¡ £ ¡ £ ¡ £ £ £ £ £ £ £ £ ¢ ¢ ¢ ¢ ¢ ¢ ¡ ¤ ¡ ¤ ¡ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¥ ¥ <br />

¡ ¡ ¥ <br />

¡ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥<br />

¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¡ ¢ ¢ ¢ ¢ ¢ ¢<br />

¢ ¢ ¢ ¢ ¢ ¢ £ £ £ £ £ £ ¡ ¡ <br />

¡ ¡ ¡ ¡ ¡ ¡ ¡<br />

<br />

¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ £ £ £ £ £ £ £ £ £ ¥<br />

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ £ £ £ £ £ £ £ £ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¤<br />

¤ ¡ ¡ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¡<br />

¤ ¤ ¤ ¤ ¢ ¡ ¡ ¡ ¡ ¡<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡<br />

¨ ¨ ¨ ¨ ¡ ¨ ¨ © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

£ £ £ £ £ £ £ £ £ £ £ ¢ £ ¢ £ ¢ £ ¢ £ ¢ £ ¢ £ ¢ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

¡<br />

a diamond → → → ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡<br />

→ → → → → ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £<br />

¡<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £<br />

¡<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £<br />

¡<br />

£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £<br />

... but rather <strong>in</strong> a form of a regular spherical harmonic expansion:<br />

λ∑<br />

max λ∑<br />

R(ϑ, ϕ) = R 0 c({α})[1 + α λ,µ Y λ,µ (ϑ, ϕ)]<br />

λ<br />

µ=−λ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Octahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with octahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 4 : α 40 ≡ o 4 ; α 4,±4 ≡ ± q 5<br />

14 · o 4<br />

λ = 6 : α 60 ≡ o 6 ; α 6,±4 ≡ − q 7<br />

2 · o 6<br />

λ = 8 : α 80 ≡ o 8 ; α 8,±4 ≡ q 28<br />

198 · o 8; α 8,±8 ≡ q 65<br />

198 · o 8<br />

1 Collaboration with Andrzej G ÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Octahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with octahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 4 : α 40 ≡ o 4 ; α 4,±4 ≡ ± q 5<br />

14 · o 4<br />

λ = 6 : α 60 ≡ o 6 ; α 6,±4 ≡ − q 7<br />

2 · o 6<br />

λ = 8 : α 80 ≡ o 8 ; α 8,±4 ≡ q 28<br />

198 · o 8; α 8,±8 ≡ q 65<br />

198 · o 8<br />

1 Collaboration with Andrzej G ÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Octahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with octahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 4 : α 40 ≡ o 4 ; α 4,±4 ≡ ± q 5<br />

14 · o 4<br />

λ = 6 : α 60 ≡ o 6 ; α 6,±4 ≡ − q 7<br />

2 · o 6<br />

λ = 8 : α 80 ≡ o 8 ; α 8,±4 ≡ q 28<br />

198 · o 8; α 8,±8 ≡ q 65<br />

198 · o 8<br />

1 Collaboration with Andrzej G ÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Octahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with octahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 4 : α 40 ≡ o 4 ; α 4,±4 ≡ ± q 5<br />

14 · o 4<br />

λ = 6 : α 60 ≡ o 6 ; α 6,±4 ≡ − q 7<br />

2 · o 6<br />

λ = 8 : α 80 ≡ o 8 ; α 8,±4 ≡ q 28<br />

198 · o 8; α 8,±8 ≡ q 65<br />

198 · o 8<br />

1 Collaboration with Andrzej G ÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Octahedral Shapes - 3D Examples<br />

Illustrations below show the octahedral-symmetric surfaces at three<br />

<strong>in</strong>creas<strong>in</strong>g values of rank λ = 4 deformations o 4 : 0.1, 0.2 and 0.3:<br />

Figure: o 4 = 0.1 Figure: o 4 = 0.2 Figure: o 4 = 0.2<br />

Recall: α 40 ≡ o 4 ; α 4,±4 ≡ ± q 5<br />

14 · o 4<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Octahedral Shapes - Neutron Spectra<br />

Double group Oh<br />

D has four 2-dimensional and two 4-dimensional<br />

irreducible representations → six dist<strong>in</strong>ct families of levels<br />

Neutron Energies [MeV]<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

160<br />

70 Yb 90<br />

{17}[6,1,3] 7/2<br />

{09}[6,4,2] 5/2<br />

{08}[5,0,5] 9/2<br />

{18}[6,1,5] 11/2<br />

{21}[5,0,5] 9/2<br />

{10}[5,4,1] 3/2<br />

{19}[6,3,3] 7/2<br />

{20}[6,1,5] 11/2<br />

{07}[5,4,1] 3/2<br />

{16}[6,2,4] 9/2<br />

{11}[5,0,1] 3/2<br />

{16}[5,4,1] 1/2<br />

{09}[5,0,3] 7/2<br />

{10}[5,3,0] 1/2<br />

{07}[5,0,5] 11/2<br />

{13}[5,2,1] 1/2<br />

{12}[5,0,5] 11/2<br />

{13}[5,0,5] 11/2<br />

{21}[5,1,4] 7/2<br />

{10}[5,2,3] 5/2<br />

{12}[4,0,0] 1/2<br />

{22}[4,4,0] 1/2<br />

{21}[4,0,2] 3/2<br />

118<br />

114 116<br />

94 94<br />

88<br />

100<br />

-.35 -.25 -.15 -.05 .05 .15 .25 .35<br />

Octahedral Deformation<br />

82<br />

126<br />

110<br />

86<br />

88<br />

{08}[6,0,6] 11/2<br />

{07}[6,4,0] 1/2<br />

{06}[8,0,2] 5/2<br />

{10}[6,1,3] 7/2<br />

{11}[6,5,1] 3/2<br />

{17}[6,0,6] 13/2<br />

{07}[5,1,4] 7/2<br />

{12}[5,3,2] 3/2<br />

{11}[5,2,1] 3/2<br />

{11}[5,3,0] 1/2<br />

{07}[8,8,0] 1/2<br />

{08}[4,0,2] 5/2<br />

{09}[6,0,4] 9/2<br />

{08}[5,3,2] 5/2<br />

{21}[5,2,3] 7/2<br />

{14}[5,3,2] 5/2<br />

{16}[5,1,4] 9/2<br />

{08}[5,0,5] 9/2<br />

{21}[4,1,3] 5/2<br />

{13}[4,1,1] 1/2<br />

{23}[4,2,2] 3/2<br />

{08}[5,0,5] 11/2<br />

{08}[5,4,1] 1/2<br />

Strasbourg, August 2002 Dirac-Woods-Saxon<br />

α 40(m<strong>in</strong>)=-.350, α40(max)=.350<br />

α 44(m<strong>in</strong>)=-.209, α44(max)=.209<br />

Figure: Full l<strong>in</strong>es correspond to 4-dimensional irreducible representations -<br />

they are marked with double Nilsson labels. Observe huge gap at N=114.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Octahedral Shapes - Proton Spectra<br />

Double group Oh<br />

D has four 2-dimensional and two 4-dimensional<br />

irreducible representations → six dist<strong>in</strong>ct families of levels<br />

Proton Energies [MeV]<br />

0<br />

2<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

160<br />

70 Yb 90<br />

{10}[5,0,5] 11/2<br />

{08}[5,0,3] 7/2<br />

{10}[5,0,3] 7/2<br />

{10}[5,4,1] 3/2<br />

{13}[5,0,5] 11/2<br />

{19}[4,4,0] 1/2<br />

{18}[4,0,2] 3/2<br />

{11}[4,0,0] 1/2<br />

{15}[5,1,4] 7/2<br />

{07}[5,2,3] 5/2<br />

{11}[5,1,2] 5/2<br />

{10}[5,3,2] 5/2<br />

{23}[5,1,4] 9/2<br />

{13}[4,0,4] 7/2<br />

{08}[4,2,2] 3/2<br />

{08}[4,3,1] 1/2<br />

{17}[5,2,3] 7/2<br />

{15}[4,3,1] 1/2<br />

{12}[4,0,2] 5/2<br />

{11}[4,1,3] 5/2<br />

{09}[4,2,0] 1/2<br />

{13}[4,0,4] 9/2<br />

{09}[4,3,1] 3/2<br />

72<br />

58<br />

70<br />

88<br />

52<br />

64<br />

-.35 -.25 -.15 -.05 .05 .15 .25 .35<br />

Octahedral Deformation<br />

82<br />

94<br />

56<br />

88<br />

52<br />

{09}[4,0,2] 5/2<br />

{16}[5,3,2] 5/2<br />

{18}[5,1,4] 9/2<br />

{08}[5,0,5] 9/2<br />

{21}[4,1,3] 5/2<br />

{17}[4,1,3] 7/2<br />

{24}[4,2,2] 3/2<br />

{09}[5,1,2] 5/2<br />

{10}[5,0,5] 9/2<br />

{07}[5,1,0] 1/2<br />

{11}[5,4,1] 3/2<br />

{21}[4,2,0] 1/2<br />

{10}[5,0,5] 11/2<br />

{10}[4,3,1] 1/2<br />

{09}[4,2,2] 3/2<br />

{08}[3,3,0] 1/2<br />

{13}[3,0,1] 3/2<br />

{08}[5,0,3] 7/2<br />

{25}[4,2,2] 5/2<br />

{16}[4,1,3] 7/2<br />

{09}[4,3,1] 3/2<br />

{24}[3,1,2] 3/2<br />

{10}[4,3,1] 1/2<br />

Strasbourg, August 2002 Dirac-Woods-Saxon<br />

α 40(m<strong>in</strong>)=-.350, α40(max)=.350<br />

α 44(m<strong>in</strong>)=-.209, α44(max)=.209<br />

Figure: Full l<strong>in</strong>es correspond to 4-dimensional irreducible representations<br />

- they are marked with double Nilsson labels. Observe huge gap at Z=70.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear High-Rank Symmetries and Challenges<br />

There are several new-physics aspects related to the nuclear highrank<br />

symmetries - tetrahedral and octahedral ones!<br />

Properties High Symmetries ’Usual’ symmetries<br />

or features Tetrahedral Octahedral Ellipsoid<br />

No. Sym. Elemts. 48 96 4 + . . .<br />

Parity NO YES YES<br />

New Degeneracies 4, 2, 2 4, 2, 2<br />

} {{ }<br />

π = +<br />

4, 2, 2<br />

} {{ }<br />

π = −<br />

}{{}<br />

2<br />

π = +<br />

2<br />

}{{}<br />

π = −<br />

New Q. Numbers 3 3 + 3 2: π = ±1<br />

We call these new quantum numbers τρ ι − τιµυκoσ (tri-timeric)<br />

’possess<strong>in</strong>g three values’<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups: Simple and Double<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Vector Fields Ψ vs Sp<strong>in</strong>or Fields Φ<br />

If the objects Ψ do not change under the rotation ˆR(2π)<br />

ˆR(2π) Ψ = +Ψ → bosons ↔ simple groups: Example T d<br />

If the objects Φ change the sign under the rotation ˆR(2π)<br />

ˆR(2π) Φ = −Φ → fermions ↔ double groups: Example T D d<br />

Remarks - Comments<br />

Objects <strong>in</strong> classical mechanics, <strong>in</strong>teger rank tensors like boson<br />

wave-functions transform under simple po<strong>in</strong>t-groups: D 2h , T d<br />

Sp<strong>in</strong>ors - the non-collective wave functions of fermions - transform<br />

under double po<strong>in</strong>t-groups: D D 2h , T D d , OD h ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups: Simple and Double<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Vector Fields Ψ vs Sp<strong>in</strong>or Fields Φ<br />

If the objects Ψ do not change under the rotation ˆR(2π)<br />

ˆR(2π) Ψ = +Ψ → bosons ↔ simple groups: Example T d<br />

If the objects Φ change the sign under the rotation ˆR(2π)<br />

ˆR(2π) Φ = −Φ → fermions ↔ double groups: Example T D d<br />

Remarks - Comments<br />

Objects <strong>in</strong> classical mechanics, <strong>in</strong>teger rank tensors like boson<br />

wave-functions transform under simple po<strong>in</strong>t-groups: D 2h , T d<br />

Sp<strong>in</strong>ors - the non-collective wave functions of fermions - transform<br />

under double po<strong>in</strong>t-groups: D D 2h , T D d , OD h ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups: Simple and Double<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Vector Fields Ψ vs Sp<strong>in</strong>or Fields Φ<br />

If the objects Ψ do not change under the rotation ˆR(2π)<br />

ˆR(2π) Ψ = +Ψ → bosons ↔ simple groups: Example T d<br />

If the objects Φ change the sign under the rotation ˆR(2π)<br />

ˆR(2π) Φ = −Φ → fermions ↔ double groups: Example T D d<br />

Remarks - Comments<br />

Objects <strong>in</strong> classical mechanics, <strong>in</strong>teger rank tensors like boson<br />

wave-functions transform under simple po<strong>in</strong>t-groups: D 2h , T d<br />

Sp<strong>in</strong>ors - the non-collective wave functions of fermions - transform<br />

under double po<strong>in</strong>t-groups: D D 2h , T D d , OD h ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups: Simple and Double<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Vector Fields Ψ vs Sp<strong>in</strong>or Fields Φ<br />

If the objects Ψ do not change under the rotation ˆR(2π)<br />

ˆR(2π) Ψ = +Ψ → bosons ↔ simple groups: Example T d<br />

If the objects Φ change the sign under the rotation ˆR(2π)<br />

ˆR(2π) Φ = −Φ → fermions ↔ double groups: Example T D d<br />

Remarks - Comments<br />

Objects <strong>in</strong> classical mechanics, <strong>in</strong>teger rank tensors like boson<br />

wave-functions transform under simple po<strong>in</strong>t-groups: D 2h , T d<br />

Sp<strong>in</strong>ors - the non-collective wave functions of fermions - transform<br />

under double po<strong>in</strong>t-groups: D D 2h , T D d , OD h ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups: Simple and Double<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Vector Fields Ψ vs Sp<strong>in</strong>or Fields Φ<br />

If the objects Ψ do not change under the rotation ˆR(2π)<br />

ˆR(2π) Ψ = +Ψ → bosons ↔ simple groups: Example T d<br />

If the objects Φ change the sign under the rotation ˆR(2π)<br />

ˆR(2π) Φ = −Φ → fermions ↔ double groups: Example T D d<br />

Remarks - Comments<br />

Objects <strong>in</strong> classical mechanics, <strong>in</strong>teger rank tensors like boson<br />

wave-functions transform under simple po<strong>in</strong>t-groups: D 2h , T d<br />

Sp<strong>in</strong>ors - the non-collective wave functions of fermions - transform<br />

under double po<strong>in</strong>t-groups: D D 2h , T D d , OD h ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

Tetrahedral Symmetry / Instability<br />

1<br />

1<br />

1<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

158 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 88<br />

1<br />

1<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-2.34, Eo=-1.62<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Deformation<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

Tetrahedral Symmetry / Instability<br />

1<br />

2<br />

2<br />

3<br />

3<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

160 Tetrahedral Deformation<br />

70<br />

Yb 90<br />

3<br />

3<br />

2<br />

2<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-2.18, Eo= 0.40<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

Tetrahedral Symmetry / Instability<br />

1<br />

2<br />

2<br />

3<br />

3<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

162 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 92<br />

3<br />

3<br />

2<br />

2<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-0.52, Eo= 2.37<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

2<br />

3<br />

2<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

164 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 94<br />

3<br />

2<br />

3<br />

2<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 0.98, Eo= 4.20<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

2<br />

2<br />

2<br />

3<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

166 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 96<br />

2<br />

3<br />

2<br />

2<br />

3<br />

2<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 2.26, Eo= 5.81<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


3<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

2<br />

2<br />

2<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

168 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 98<br />

2<br />

3<br />

2<br />

3<br />

2<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 3.39, Eo= 7.18<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

2<br />

1<br />

2<br />

3<br />

2<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

170 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 100<br />

3<br />

2<br />

2<br />

3<br />

2<br />

1<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 4.31, Eo= 8.25<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

1<br />

2<br />

3<br />

2<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

172 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 102<br />

3<br />

2<br />

2<br />

3<br />

2<br />

1<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 4.97, Eo= 9.00<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

2<br />

1<br />

2<br />

3<br />

2<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

174 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 104<br />

1<br />

3<br />

1<br />

2<br />

2<br />

3<br />

2<br />

1<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 5.40, Eo= 9.45<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral-Symmetry Effects<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A32<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

1<br />

1<br />

1<br />

-0.30<br />

0.0 0.1 0.2 0.3 0.4<br />

156<br />

A20<br />

70<br />

Yb 86<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5<br />

5<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-4.57, Eo=-3.94<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral-Symmetry Effects<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A32<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

1<br />

1<br />

1<br />

-0.30<br />

0.0 0.1 0.2 0.3 0.4<br />

158<br />

A20<br />

70<br />

Yb 88<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-3.31, Eo=-1.71<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


2<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral-Symmetry Effects<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Tetrahedral Deformation<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

2<br />

2<br />

1<br />

Tetrahedral Symmetry / Instability<br />

2<br />

2<br />

1<br />

1<br />

-0.30<br />

0.0 0.1 0.2 0.3 0.4<br />

160 Quadrupole Deformation<br />

70<br />

Yb 90<br />

1<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-2.60, Eo= 0.34<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


2<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral-Symmetry Effects<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A32<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

2<br />

3<br />

4<br />

2<br />

Tetrahedral Symmetry / Instability<br />

4<br />

3<br />

3<br />

3<br />

3<br />

2<br />

1<br />

-0.30<br />

0.0 0.1 0.2 0.3 0.4<br />

162<br />

A20<br />

70<br />

Yb 92<br />

1<br />

1<br />

1<br />

1<br />

2<br />

2<br />

3<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-2.55, Eo= 2.32<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral-Symmetry Effects<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A32<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

4<br />

5<br />

6<br />

4<br />

Tetrahedral Symmetry / Instability<br />

6<br />

5<br />

5<br />

5<br />

5<br />

4<br />

4<br />

3<br />

-0.30<br />

0.0 0.1 0.2 0.3 0.4<br />

164<br />

A20<br />

70<br />

Yb 94<br />

3<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

2<br />

3<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-2.94, Eo= 4.19<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!