21.01.2014 Views

Synthesis of the elements in stars: forty years of progress

Synthesis of the elements in stars: forty years of progress

Synthesis of the elements in stars: forty years of progress

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1008 Wallerste<strong>in</strong> et al.: <strong>Syn<strong>the</strong>sis</strong> <strong>of</strong> <strong>the</strong> <strong>elements</strong><br />

sult <strong>in</strong> a dramatic <strong>in</strong>crease <strong>in</strong> <strong>the</strong> mass-loss rate with<br />

<strong>in</strong>creas<strong>in</strong>g lum<strong>in</strong>osity. Sto<strong>the</strong>rs and Ch<strong>in</strong> (1993a, 1993b,<br />

1996) suggest ano<strong>the</strong>r mechanism <strong>of</strong> enhanced mass loss<br />

<strong>in</strong>volv<strong>in</strong>g a classical ionization <strong>in</strong>stability <strong>in</strong> <strong>the</strong> stellar<br />

envelope. In both cases, enhanced mass loss <strong>in</strong>hibits<br />

evolution <strong>in</strong>to <strong>the</strong> Humphreys-Davidson forbidden<br />

zone. Whatever <strong>the</strong> source <strong>of</strong> <strong>the</strong> <strong>in</strong>stability, <strong>the</strong> observations<br />

show that s<strong>in</strong>gle <strong>stars</strong> <strong>in</strong>itially more massive than<br />

50M do not become giants before experienc<strong>in</strong>g a supernova<br />

explosion, and this has important ramifications<br />

for massive close b<strong>in</strong>ary star evolution.<br />

It is clear that massive <strong>stars</strong> <strong>in</strong>teract with <strong>the</strong> <strong>in</strong>terstellar<br />

medium both as energy sources and sources <strong>of</strong> isotope<br />

enrichment prior to <strong>the</strong> supernova explosion that<br />

term<strong>in</strong>ates <strong>the</strong>ir lives. Some aspects <strong>of</strong> this <strong>in</strong>teraction<br />

are explored <strong>in</strong> a recent volume by Kunth et al. (1997).<br />

Models <strong>of</strong> Galactic chemical evolution (e.g., Pagel, 1989;<br />

Matteuchi, 1989; and Taylor, 1990) rely heavily on <strong>the</strong>oretical<br />

estimates <strong>of</strong> <strong>the</strong> nucleosyn<strong>the</strong>tic yields <strong>of</strong> massive<br />

<strong>stars</strong> (e.g., Maeder, 1992; Timmes et al., 1996;<br />

Thielemann et al., 1986; Arnett 1996), but uncerta<strong>in</strong>ties<br />

still rema<strong>in</strong> (Arnett, 1995), particularly with regard to<br />

<strong>the</strong> extent <strong>of</strong> mass loss prior to <strong>the</strong> supernova explosion<br />

and with regard to <strong>the</strong> divid<strong>in</strong>g l<strong>in</strong>e <strong>in</strong> <strong>in</strong>itial mass between<br />

those <strong>stars</strong> which form BHs and <strong>the</strong>refore do not<br />

return iron-peak <strong>elements</strong> to <strong>the</strong> <strong>in</strong>terstellar medium<br />

and those which form NSs and do (Maeder, 1992;<br />

Timmes et al., 1996).<br />

After <strong>the</strong> core carbon-burn<strong>in</strong>g phase, <strong>the</strong> chemically<br />

evolved <strong>in</strong>terior <strong>of</strong> massive <strong>stars</strong> follows one <strong>of</strong> two evolutionary<br />

paths, depend<strong>in</strong>g on <strong>the</strong> <strong>in</strong>itial stellar mass and<br />

composition. For solarlike <strong>in</strong>itial composition, models <strong>of</strong><br />

<strong>in</strong>itial mass <strong>in</strong> <strong>the</strong> 11 – 13 M range experience core collapse<br />

<strong>in</strong>itiated by electron capture before <strong>the</strong>y form an<br />

‘‘Fe-Ni’’ core (see below); <strong>in</strong> more massive models, core<br />

collapse is <strong>in</strong>itiated after <strong>the</strong> formation <strong>of</strong> <strong>the</strong> Fe-Ni<br />

core. A model star <strong>of</strong> mass 11M is just at <strong>the</strong> borderl<strong>in</strong>e<br />

between <strong>stars</strong> that become TPAGB <strong>stars</strong> with stable<br />

electron-degenerate cores <strong>of</strong> ONe and <strong>stars</strong> that immediately<br />

form electron-degenerate ONe cores massive<br />

enough that electron captures on 20 Ne, 23 Na, and 24 Mg<br />

trigger a rapid contraction that cannot be halted even by<br />

explosive O and Ne burn<strong>in</strong>g (Miyaji et al., 1980; Nomoto,<br />

1984, 1987; Miyaji and Nomoto, 1987; Gutierrez<br />

et al., 1996). Nuclear reactions convert <strong>the</strong> composition<br />

<strong>of</strong> <strong>the</strong> core <strong>in</strong>to iron-peak isotopes, and <strong>the</strong> Fe-Ni core<br />

collapses dynamically to nuclear matter densities. The<br />

real analog <strong>of</strong> <strong>the</strong> 11M model and real analogs <strong>of</strong> models<br />

slightly less massive (say 10.75M ) probably live<br />

long enough as AGB <strong>stars</strong> that <strong>the</strong> ONe core becomes<br />

massive enough and <strong>the</strong>refore dense enough to evolve<br />

<strong>in</strong>to a NS (Nomoto, 1987).<br />

Model <strong>stars</strong> more massive than 13M burn carbon,<br />

neon, oxygen, and silicon quiescently and <strong>the</strong>n form a<br />

core <strong>of</strong> iron-peak isotopes <strong>in</strong> statistical equilibrium (see<br />

Clayton, 1968; Arnett 1996; and Meyer, this review, Sec.<br />

XV). Beyond <strong>the</strong> core carbon-burn<strong>in</strong>g phase (e.g., <strong>the</strong><br />

third heavy portion along <strong>the</strong> 25M track <strong>in</strong> Fig. 1),<br />

<strong>the</strong>re is essentially no motion <strong>in</strong> <strong>the</strong> H-R diagram; <strong>the</strong><br />

rapidly evolv<strong>in</strong>g core and <strong>the</strong> hydrogen-rich envelope<br />

are essentially decoupled. Contraction and heat<strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> Fe-Ni core leads to partial photodis<strong>in</strong>tegration <strong>of</strong><br />

iron-peak isotopes <strong>in</strong>to alpha particles and neutrons (B<br />

2 FH; Hoyle and Fowler, 1960; Fowler and Hoyle, 1964).<br />

Details <strong>of</strong> <strong>the</strong> subsequent dynamical collapse <strong>of</strong> <strong>the</strong><br />

core, neutronization, trapp<strong>in</strong>g <strong>of</strong> neutr<strong>in</strong>os, core bounce,<br />

and expulsion <strong>of</strong> <strong>the</strong> envelope <strong>in</strong> a type II supernova<br />

(SNII) explosion are described by many authors (e.g.,<br />

Woosley and Weaver 1986; Arnett, 1996). The supernova<br />

ejecta conta<strong>in</strong>s 56 Ni, which beta decays <strong>in</strong>to 56 Co,<br />

which <strong>in</strong> turn beta decays <strong>in</strong>to 56 Fe. Associated gamma<br />

emission from <strong>the</strong> decay <strong>of</strong> excited nuclear levels helps<br />

power <strong>the</strong> light curve. Analysis <strong>of</strong> <strong>the</strong> light curve <strong>of</strong><br />

SN1987a <strong>in</strong> <strong>the</strong> Large Magellanic Cloud (Arnett et al.,<br />

1989 and references <strong>the</strong>re<strong>in</strong>) suggests that 0.1M <strong>of</strong><br />

56 Fe is ejected <strong>in</strong>to <strong>the</strong> <strong>in</strong>terstellar medium when a star<br />

<strong>of</strong> <strong>in</strong>itial mass 20M explodes, show<strong>in</strong>g that SNeII are<br />

potent sources <strong>of</strong> iron <strong>in</strong> <strong>the</strong> Universe. That <strong>the</strong>y must<br />

also be major sources <strong>of</strong> o<strong>the</strong>r heavy <strong>elements</strong> follows<br />

from detailed models <strong>of</strong> explosions set <strong>of</strong>f <strong>in</strong> <strong>the</strong> envelopes<br />

<strong>of</strong> evolutionary models that have been carried to<br />

<strong>the</strong> stage <strong>of</strong> Fe-Ni core collapse (e.g., Thielemann et al.,<br />

1996, and references <strong>the</strong>re<strong>in</strong>).<br />

Despite much effort expended over <strong>the</strong> past 40 <strong>years</strong>,<br />

an unambiguous <strong>the</strong>oretical picture <strong>of</strong> <strong>the</strong> detachment<br />

<strong>of</strong> <strong>the</strong> neutronized, lepton-degenerate core has not yet<br />

emerged, although <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> f<strong>in</strong>al detached<br />

core is reasonably well understood (Burrows and Lattimer,<br />

1986, 1987). The details <strong>of</strong> how energy is transferred<br />

from <strong>the</strong> core <strong>in</strong> such a way as to cause expulsion<br />

<strong>of</strong> <strong>the</strong> stellar envelope and a quantitative estimate <strong>of</strong><br />

how much matter falls back onto <strong>the</strong> core are not yet<br />

known <strong>the</strong>oretically. Thus, a secure <strong>the</strong>oretical mapp<strong>in</strong>g<br />

between <strong>in</strong>itial ma<strong>in</strong>-sequence mass and f<strong>in</strong>al NS or BH<br />

mass is not presently available (although, see Timmes<br />

et al., 1996 for an encourag<strong>in</strong>g effort), and <strong>the</strong> critical<br />

<strong>in</strong>itial mass M crit which separates <strong>stars</strong> that form NS<br />

remnants from those that form BH remnants is not<br />

known. However, an understand<strong>in</strong>g <strong>of</strong> massive close b<strong>in</strong>ary<br />

evolution requires this <strong>in</strong>formation. In order to<br />

make <strong>progress</strong>, a concrete choice must be made, and, <strong>in</strong><br />

<strong>the</strong> follow<strong>in</strong>g, it will be assumed that M crit 40M ,<br />

M NS 1.4M , and M BH 10M . The choice <strong>of</strong> 1.4M <br />

for <strong>the</strong> gravitational mass <strong>of</strong> a typical neutron star is not<br />

<strong>in</strong>consistent with <strong>the</strong> average value <strong>of</strong> 1.350.27 estimated<br />

by Thorsett et al. (1993) for 17 NSs <strong>in</strong> b<strong>in</strong>ary systems.<br />

Historically, supernovae have been classified primarily<br />

on <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir spectral features, with type I<br />

SNe (SNeI) be<strong>in</strong>g hydrogen deficient and SNeII exhibit<strong>in</strong>g<br />

hydrogen l<strong>in</strong>es. The SN light curve has <strong>in</strong> recent<br />

<strong>years</strong> become important <strong>in</strong> identify<strong>in</strong>g <strong>the</strong> nature <strong>of</strong> <strong>the</strong><br />

explosion. Comparison between spectral features and<br />

light curves <strong>of</strong> <strong>the</strong>oretical models <strong>of</strong> explosions (see,<br />

e.g., Wheeler et al., 1995) suggest that SNeII are <strong>the</strong> end<br />

result <strong>of</strong> <strong>the</strong> evolution <strong>of</strong> massive <strong>stars</strong> that reta<strong>in</strong> <strong>the</strong>ir<br />

hydrogen-rich envelopes and explode as red or blue supergiants<br />

(e.g., SN1987A), and that SNeIb,c are <strong>the</strong> result<br />

<strong>of</strong> <strong>the</strong> evolution <strong>of</strong> <strong>stars</strong> that become WR <strong>stars</strong> before<br />

explod<strong>in</strong>g. In close b<strong>in</strong>aries, <strong>the</strong> primary may<br />

Rev. Mod. Phys., Vol. 69, No. 4, October 1997

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!