21.01.2014 Views

New method for feature extraction based on fractal behavior - IDRBT

New method for feature extraction based on fractal behavior - IDRBT

New method for feature extraction based on fractal behavior - IDRBT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1074 Y.Y. Tang et al. / Pattern Recogniti<strong>on</strong> 35 (2002) 1071–1081<br />

The image pixels (m; n) with distance less than<br />

<strong>on</strong>e from (i; j) are taken to be the four immediate<br />

neighbors of (i; j). Similar expressi<strong>on</strong>s exist<br />

when the eight-neighborhood is desired. A point<br />

f(x; y) will be included in the blanket <str<strong>on</strong>g>for</str<strong>on</strong>g> when<br />

b (x; y) ¡f(x; y) ¡u (x; y). The blanket deniti<strong>on</strong><br />

uses the fact that the blanket of the surface <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

radius includes all the points of the blanket <str<strong>on</strong>g>for</str<strong>on</strong>g> radius<br />

−1, together with all the points within radius<br />

1 from the surfaces of that blanket. Eq. (7) ensures<br />

that the new upper surface u is higher by at least<br />

1 from u −1 , andalso at a distance at least 1 from<br />

u −1 in the horiz<strong>on</strong>tal andvertical directi<strong>on</strong>s.<br />

The volume Vol of the blanket is computedfrom<br />

u and b :<br />

Vol = ∑ (u (i; j) − b (i; j)): (9)<br />

i;j<br />

As the volume Vol of the blanket is measuredwith<br />

radius , the area of a <strong>fractal</strong> surface can be deduced<br />

as<br />

A = Vol <br />

2<br />

or<br />

A = Vol − Vol −1<br />

: (10)<br />

2<br />

• Let A() be the area of the surface of the blanket.<br />

Based<strong>on</strong> the Minkowski dimensi<strong>on</strong>, we have<br />

A() ≈ 2−D ; if is suciently small; (11)<br />

where denotes a c<strong>on</strong>stant and D stands <str<strong>on</strong>g>for</str<strong>on</strong>g> the <strong>fractal</strong><br />

dimensi<strong>on</strong> of the image.<br />

Since the dimensi<strong>on</strong> can be regarded as a slope <strong>on</strong><br />

a log–log scale, <strong>on</strong>ly two points are needed to get<br />

the dimensi<strong>on</strong>. We use two values of to compute<br />

the <strong>fractal</strong> dimensi<strong>on</strong>, namely, we take = 1 and 2 ,<br />

then A 1 ≈ 2−D<br />

1<br />

and A 2 ≈ 2−D<br />

2<br />

. Thus, we have<br />

A 1 =A 2 ≈ 2−D<br />

1<br />

= 2−D<br />

2<br />

.<br />

Taking the logarithm of both sides yields<br />

2 − D ≈ log 2 A 1<br />

− log 2 A 2<br />

log 2 1 − log 2 2<br />

;<br />

D ≈ 2 − log 2 A 1<br />

− log 2 A 2<br />

: (12)<br />

log 2 1 − log 2 2<br />

It is usedto approximate the <strong>fractal</strong> dimensi<strong>on</strong> of the<br />

signature images, i.e.,<br />

D ≈ 2 − log 2 A() if is suciently small: (13)<br />

log 2 <br />

We call D as modied <strong>fractal</strong> signature of set F. It<br />

will be used to distinguish the dierent handwritten<br />

signatures.<br />

Several points are worth noting:<br />

1. Why do the dierent document images have dierent<br />

<strong>fractal</strong> dimensi<strong>on</strong>s? The essential distincti<strong>on</strong> of<br />

handwritten signature images is their values of A().<br />

2. The value of A() depends <strong>on</strong> the volume Vol 3 (F )<br />

of thickenedblanket F <strong>on</strong>ly.<br />

3. In summary, they can be representedas<br />

D ⇔ A() ⇔ Vol 3 (F ):<br />

C<strong>on</strong>sequently, in this paper, the volume Vol 3 (F )ofthe<br />

thickenedblanket F is applied to identify dierent handwritten<br />

signature, insteadof using the <strong>fractal</strong> dimensi<strong>on</strong>.<br />

We call such technique of approximating the <strong>fractal</strong> dimensi<strong>on</strong><br />

“Modied Fractal Signature”.<br />

3. Applicati<strong>on</strong>s<br />

From the specic point of view of shape characterizati<strong>on</strong><br />

of patterns the main aim of the <strong>fractal</strong> approach is to<br />

nd a “measure” to distinguish between curves with different,<br />

often very complicated, c<strong>on</strong>tours. The main idea<br />

is to describe the complexity of the curve through a new<br />

parameter, the <strong>fractal</strong> dimensi<strong>on</strong>, so as to ll in the gap<br />

between <strong>on</strong>e- andtwo-dimensi<strong>on</strong>al objects (<str<strong>on</strong>g>for</str<strong>on</strong>g> objects<br />

<strong>on</strong> a plane). Two applicati<strong>on</strong>s of the <strong>fractal</strong> theory are<br />

presentedin this secti<strong>on</strong>, namely: (1) the <strong>fractal</strong> technique<br />

is usedto extract the <str<strong>on</strong>g>feature</str<strong>on</strong>g>s <str<strong>on</strong>g>for</str<strong>on</strong>g> two-dimensi<strong>on</strong>al<br />

objects; (2) the <strong>fractal</strong> signature is employedto identify<br />

dierent handwritten signatures.<br />

3.1. Applicati<strong>on</strong> of <strong>fractal</strong> technique <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>feature</str<strong>on</strong>g><br />

<str<strong>on</strong>g>extracti<strong>on</strong></str<strong>on</strong>g><br />

Feature <str<strong>on</strong>g>extracti<strong>on</strong></str<strong>on</strong>g> is a crucial step in pattern recogniti<strong>on</strong>.<br />

It is resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> measuring the <str<strong>on</strong>g>feature</str<strong>on</strong>g>s of the<br />

objects in an image. Pattern recogniti<strong>on</strong> requires the <str<strong>on</strong>g>extracti<strong>on</strong></str<strong>on</strong>g><br />

of <str<strong>on</strong>g>feature</str<strong>on</strong>g>s from the regi<strong>on</strong>s of an image, andthe<br />

processing of these <str<strong>on</strong>g>feature</str<strong>on</strong>g>s with a pattern classicati<strong>on</strong><br />

technique. We employeda central projecti<strong>on</strong> <str<strong>on</strong>g>method</str<strong>on</strong>g><br />

to reduce the problem of two-dimensi<strong>on</strong>al patterns into<br />

that of <strong>on</strong>e-dimensi<strong>on</strong>al <strong>on</strong>es, and thereafter, utilize<br />

the well-established<strong>on</strong>e-dimensi<strong>on</strong>al wavelet trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

coupledwith <strong>fractal</strong> theory to extract the <strong>on</strong>e-dimensi<strong>on</strong>al<br />

pattern’s <str<strong>on</strong>g>feature</str<strong>on</strong>g> vectors <str<strong>on</strong>g>for</str<strong>on</strong>g> the purpose of pattern<br />

recogniti<strong>on</strong>. The key steps of the experimental procedure<br />

c<strong>on</strong>sist of the following:<br />

Step 1: Central projecti<strong>on</strong> of two-dimensi<strong>on</strong>al<br />

patterns: We denote each of the two-dimensi<strong>on</strong>al patterns<br />

in questi<strong>on</strong> by p(x; y). Thus, the central projecti<strong>on</strong><br />

of p(x; y) can be expressedas follows:<br />

f(x k )=<br />

M∑<br />

p(x k cos i ;x k sin i ): (14)<br />

i=0<br />

Step 2: Wavelet trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of the <strong>on</strong>e-dimensi<strong>on</strong>al<br />

patterns: Let f(x k )=c j;k , where k =0; 1;:::;2N −1 and<br />

V 0 = {c j;0 ;c j;1 ;:::;c j;2N−1 }:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!