21.01.2014 Views

New method for feature extraction based on fractal behavior - IDRBT

New method for feature extraction based on fractal behavior - IDRBT

New method for feature extraction based on fractal behavior - IDRBT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1072 Y.Y. Tang et al. / Pattern Recogniti<strong>on</strong> 35 (2002) 1071–1081<br />

investigati<strong>on</strong>s of this new subject. Since Mandelbrot [1]<br />

proposedthis technique, the subject of <strong>fractal</strong> dimensi<strong>on</strong><br />

has drawn a great deal of attenti<strong>on</strong> from mathematicians,<br />

physicists, chemists, biologists, geologists, andelectrical<br />

andcomputer engineers in various disciplines. Specically,<br />

in the area of pattern recogniti<strong>on</strong> andimage processing,<br />

the <strong>fractal</strong> dimensi<strong>on</strong> has been used <str<strong>on</strong>g>for</str<strong>on</strong>g> image<br />

compressi<strong>on</strong>, texture segmentati<strong>on</strong> and<str<strong>on</strong>g>feature</str<strong>on</strong>g> <str<strong>on</strong>g>extracti<strong>on</strong></str<strong>on</strong>g><br />

[2–5], etc. The process of pattern recogniti<strong>on</strong> requires<br />

the <str<strong>on</strong>g>extracti<strong>on</strong></str<strong>on</strong>g> of <str<strong>on</strong>g>feature</str<strong>on</strong>g>s from regi<strong>on</strong>s of the image, and<br />

the processing of these <str<strong>on</strong>g>feature</str<strong>on</strong>g>s with a pattern classicati<strong>on</strong><br />

algorithm. Many applicati<strong>on</strong>s of <strong>fractal</strong> c<strong>on</strong>cepts<br />

rely <strong>on</strong> the ability to estimate the <strong>fractal</strong> dimensi<strong>on</strong> of<br />

objects. One of the basic characteristics of a <strong>fractal</strong> is its<br />

dimensi<strong>on</strong>. A <strong>fractal</strong> object can be characterized by its<br />

dimensi<strong>on</strong> which is a way of interpretati<strong>on</strong>, determines<br />

how much “space” it occupies between arbitrary m and<br />

m+1 dimensi<strong>on</strong>al manifolds. This <str<strong>on</strong>g>feature</str<strong>on</strong>g> has been used<br />

in texture classicati<strong>on</strong>, segmentati<strong>on</strong>, shape analysis<br />

andother problems [6–8]. All these approaches face and<br />

attempt to solve two basic problems: (1) accuracy of the<br />

estimate, (2) amount of in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> needed to obtain the<br />

estimate. In this paper, we utilize a <str<strong>on</strong>g>method</str<strong>on</strong>g>called“ box<br />

counting dimensi<strong>on</strong>” to estimate the <strong>fractal</strong> dimensi<strong>on</strong><br />

of an image. All of these <str<strong>on</strong>g>feature</str<strong>on</strong>g>s rely <strong>on</strong> computing the<br />

mass probability density functi<strong>on</strong> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the central<br />

projecti<strong>on</strong> trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> andwavelet decompositi<strong>on</strong><br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> the <strong>fractal</strong> set. We analyze the box counting <str<strong>on</strong>g>method</str<strong>on</strong>g>ology<br />

from the standpoint of computing <strong>fractal</strong> <str<strong>on</strong>g>feature</str<strong>on</strong>g>s.<br />

We focus <strong>on</strong> <strong>fractal</strong> dimensi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> computing the <strong>fractal</strong><br />

signature. This c<strong>on</strong>cept can be useful in the measurement<br />

andclassicati<strong>on</strong> of pattern’s <str<strong>on</strong>g>feature</str<strong>on</strong>g>s.<br />

2. Basic theory and algorithm<br />

Fractal theory is <str<strong>on</strong>g>based</str<strong>on</strong>g><strong>on</strong> geometry anddimensi<strong>on</strong><br />

theories. Fractals are mathematical sets with a high degree<br />

of geometrical complexity, which can model many<br />

classes of time series data as well as images. The <strong>fractal</strong><br />

dimensi<strong>on</strong> is an important characteristic of <strong>fractal</strong>s because<br />

it c<strong>on</strong>tains in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> about their geometric structure.<br />

It has become an eective tool to study complex<br />

sets. There are many deniti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> the <strong>fractal</strong> dimensi<strong>on</strong>s<br />

of a <strong>fractal</strong> set [9,10]. The simplest andmost appealing<br />

way of assigning a dimensi<strong>on</strong> to a set that can yield a<br />

<strong>fractal</strong> dimensi<strong>on</strong> to certain kinds of sets is the so-called<br />

box dimensi<strong>on</strong>. In the secti<strong>on</strong>, the important c<strong>on</strong>cept and<br />

algorithm about box dimensi<strong>on</strong> and modied algorithm<br />

of <strong>fractal</strong> dimensi<strong>on</strong> will be introduced.<br />

2.1. Fractal dimensi<strong>on</strong><br />

Fundamental to most deniti<strong>on</strong>s of dimensi<strong>on</strong> is the<br />

idea of measurement at scale . For each , a set can be<br />

measuredin a way that ignores irregularities of size less<br />

than , andwe see how these measurements behave as<br />

→ 0.<br />

Suppose F is a plane curve, the measurement M (F)<br />

denotes the number of sets (with length ) which divide<br />

the set F. A dimensi<strong>on</strong> of F is determined by the power<br />

law obeyedby M (F) as → 0. If<br />

M (F) ∼ K −s ; (1)<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>stants K and s, we might say that F has dimensi<strong>on</strong><br />

s, and K can be c<strong>on</strong>sidered as “s-dimensi<strong>on</strong>al length”<br />

of F.<br />

Taking the logarithm of both sides in Eq. (1) yields<br />

the <str<strong>on</strong>g>for</str<strong>on</strong>g>mula:<br />

log 2 M (F) ≃ log 2 K − s log 2 ;<br />

in the sense that the dierence of the two sides tends<br />

to 0 with , this suggests that the box dimensi<strong>on</strong> of F,<br />

denoted by dim(F), shouldsatisfy<br />

log<br />

dim(F) = lim 2 M (F)<br />

→0 −log 2 : (2)<br />

If the limit exists, dim(F) is calledthe <strong>fractal</strong> dimensi<strong>on</strong><br />

of set F.<br />

2.2. Box counting dimensi<strong>on</strong> (BCD)<br />

Box computing dimensi<strong>on</strong> or box dimensi<strong>on</strong> is <strong>on</strong>e of<br />

the most widely used dimensi<strong>on</strong>s. Its popularity is largely<br />

due to its relative ease of mathematical calculati<strong>on</strong> and<br />

empirical estimati<strong>on</strong>.<br />

Let F be a n<strong>on</strong>-empty andboundedsubset of<br />

R n ;= {! i : i =1; 2; 3;:::} be covers of the set F. N (F)<br />

denotes the number of covers, such that<br />

N (F)=|: d i 6 |;<br />

where d i stands <str<strong>on</strong>g>for</str<strong>on</strong>g> the diameter of the ith cover. This<br />

equati<strong>on</strong> means that N (F) is the smallest number of<br />

subsets which cover the set F, andtheir diameters d i ’s<br />

are not greater than .<br />

The upper andlower bounds of the box computing<br />

dimensi<strong>on</strong> of F can be dened by the following <str<strong>on</strong>g>for</str<strong>on</strong>g>mulas:<br />

log<br />

dim B F = lim 2 N (F)<br />

→0 −log 2 ;<br />

log<br />

dim B F = lim 2 N (F)<br />

→0 −log 2 ; (3)<br />

where the overline stands <str<strong>on</strong>g>for</str<strong>on</strong>g> the upper bound of dimensi<strong>on</strong><br />

while the underline <str<strong>on</strong>g>for</str<strong>on</strong>g> lower bound.<br />

If both the upper bounddim B F andthe lower bound<br />

dim B F are equal, i.e.<br />

log<br />

lim 2 N (F)<br />

→0 −log 2 <br />

= lim log 2 N (F)<br />

→0 −log 2 ;

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!