3D System, SoC and SoP - KTH

3D System, SoC and SoP - KTH 3D System, SoC and SoP - KTH

20.01.2014 Views

Performance and cost trade-offs for SoC, SoP and 3-D integration Prof. Li-Rong Zheng Prof. Hannu Tenhunen, Roshan Weerasekera Laboratory of Electronics and Computer Systems Royal Institute of Technology (KTH) SE-164 40 Kista-Stockholm, Sweden (Tutorial Workshop, ISSCC 2007, ) KTH/ESD/HT 02/04/2008 1

Performance <strong>and</strong> cost trade-offs for<br />

<strong>SoC</strong>, <strong>SoP</strong> <strong>and</strong> 3-D integration<br />

Prof. Li-Rong Zheng<br />

Prof. Hannu Tenhunen,<br />

Roshan Weerasekera<br />

Laboratory of Electronics <strong>and</strong> Computer <strong>System</strong>s<br />

Royal Institute of Technology (<strong>KTH</strong>)<br />

SE-164 40 Kista-Stockholm, Sweden<br />

(Tutorial Workshop, ISSCC 2007, )<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 1


Outline<br />

•New Paradigms for <strong>System</strong> Integration: <strong>SoC</strong> <strong>and</strong> <strong>SoP</strong><br />

•<strong>SoP</strong> vs. <strong>SoC</strong>? (the opportunity of <strong>SoP</strong>)<br />

•Future <strong>SoP</strong> Challenges<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 2


Evolution of Integrated Circuits<br />

The <strong>System</strong> on a Chip Paradigm<br />

Yesterday’s chip is today’s functional block!<br />

<strong>System</strong>-on<br />

on-a-chip will be the final destination!<br />

20K gates<br />

Schematics<br />

& simulation<br />

50K gates<br />

Schematics<br />

& Synthesis<br />

500k gates<br />

Simulation,<br />

Emulation,<br />

Synthesis,<br />

Formal equivalence<br />

2.5 million gates<br />

New Design Paradigm<br />

<strong>SoC</strong>!<br />

<strong>SoC</strong>!<br />

3.0μ 1.0μ 0.5μ 0.2μ<br />

Source: ICE<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 3


<strong>System</strong> Implementation – Option 1: <strong>SoC</strong><br />

<br />

<strong>SoC</strong> (<strong>System</strong>-on-Chip):<br />

– A single chip integrated system or a system platform, including system hardware<br />

(digital, analog/RF) <strong>and</strong> embedded software/OS<br />

– Based on Deep Submicron (DSM) CMOS technology<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 4


<strong>System</strong> Implementation – Option 2: <strong>SoP</strong><br />

<br />

<strong>SoP</strong> (<strong>System</strong>-on-Package):<br />

– A convergent microsystem integrated (assembly) on an interconnect microboard; also a<br />

platform based system, including hardware (digital, analog/RF, MEMS) <strong>and</strong> embedded<br />

software/OS<br />

– Based on advanced packaging <strong>and</strong> assembly technologies;<br />

– Overcome formidable integration barriers without compromising individual chip or<br />

component technologies<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 5


The Electronic Package Evolution: The Future, from MCM to <strong>SoP</strong><br />

<strong>System</strong>-on-Package<br />

Multi-Chip Module<br />

• Integrated L,R,C instead<br />

of embedded L,R,C<br />

• Low inductance bonding<br />

instead of wire bonding<br />

• Technology fusion (RF,<br />

Digital, MEMS, Optical)<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 6


<strong>SoP</strong><br />

(Bi)CMOS RF<br />

ASIC<br />

Mixed-signal CMOS<br />

ASIC<br />

MEMS<br />

MCM-D interconnect<br />

technology<br />

- glass substrate, etc<br />

- Cu interconnections<br />

MCM substrate<br />

antenna<br />

MCM-D passives<br />

1nF/mm 2<br />

Q factors up to 50,<br />

frequencies up to 30 GHz<br />

lowpass<br />

3dB = 12 GHz<br />

f -3dB<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 7


Is the performance of <strong>SoC</strong> better than <strong>SoP</strong> ?<br />

???<br />

L=0.12µm<br />

Wires in <strong>SoC</strong>: small <strong>and</strong><br />

resistive, signal speed 30-<br />

70ps/mm<br />

Wires in <strong>SoP</strong>: fat <strong>and</strong> lower<br />

resistive (LC transmission lines),<br />

signal speed 10-20ps/mm<br />

Performance of <strong>SoC</strong> is not necessary better!<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 8


<strong>System</strong> Implementation – Option 3: SiP<br />

<br />

<br />

<br />

Advanced technology to incorporate<br />

multiple components into a single<br />

package.<br />

You can mix a variety of components<br />

such as CPU, logic, analog <strong>and</strong> memory<br />

functions, Heterogeneous Integration<br />

Reducing overall system size.<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 9


Research Results: Single Level Integrated Packaging Module<br />

Decoupling Capacitor High-Q Inductance<br />

Power distribution<br />

Signal distribution<br />

RF IC<br />

Digital IC<br />

Digital IC<br />

Analog IC<br />

Dielectrics (10~20μm)<br />

Base-Substrate<br />

Prototype Modules<br />

~GHz off-chip data rate<br />

per pin measured<br />

L. -R. Zheng et al, IEEE Trans-AVP, no4. 2001<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 10


<strong>3D</strong>-Integration Options<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 11


<strong>3D</strong> integration methods<br />

<strong>3D</strong> Die Stacking<br />

(<strong>System</strong> in Package)<br />

<br />

<strong>3D</strong> Wafer-Level-Processing<br />

<strong>3D</strong>-W2W bonding<br />

<strong>3D</strong>-D2W bonding<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 12


The need of Cost Analysis: Design Process<br />

<strong>System</strong> Specification<br />

Performance<br />

Estimation<br />

Cost Analysis<br />

Initial Synthesis<br />

<strong>System</strong> Partitioning<br />

2D<br />

<strong>3D</strong><br />

Implementation:<br />

Interconnection <strong>and</strong><br />

Technology Mapping<br />

Meigen Shen et.al.<br />

<strong>SoC</strong><br />

<strong>SoP</strong><br />

Chip design<br />

SiP W2W D2W<br />

Prototyping<br />

Software Design<br />

Resource <strong>and</strong><br />

Design Library<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 13


Noise: A Key Stopper in Mixed-Signal <strong>System</strong>s<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 14


Why Power Distribution – An ITRS View<br />

Chip power for future ULSI<br />

Chip technology 0.25um 0.18um 0.13um 0.10um 0.07um<br />

Chip Frequency (MHz) 450 600 800 1000 1100<br />

Max. Chip Power (W) 100 120 140 160 180<br />

Max current (A) 40.3 66.7 93.3 133.3 180.0<br />

Power Supply (V) 2.5 1.8 1.5 1.2 0.9<br />

Current density (A/cm2) 13.4 18.5 21.8 25.6 29.0<br />

Power Loss:<br />

DC voltage drop: ΔV=RI<br />

Switching noise: ΔV=L dI/dt<br />

Technology Scaling of Power Distribution<br />

Parameters<br />

Wire Pitch x 0.87<br />

Chip Edge y 1.06<br />

IR/V 1/x 1.15 y 2 /x 3 1.71<br />

(L/V)dI/dt (package) 1/x 1.15 y 2 /x 3 1.71<br />

(L/V)dI/dt (on-chip) 1/x 2 1.32 y 2 /x 4 1.96<br />

Device Per year Chip Per year<br />

The future Challenge:<br />

how to delivery 100A current at ~1V from board to chip ?<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 15


Task of Power Distribution Design: Zs< Ztarget (in Freq<br />

domain)<br />

<strong>System</strong> level power<br />

delivery network<br />

Impedance<br />

(ohms)<br />

0.025<br />

0.020<br />

0.015<br />

0.010<br />

0.005<br />

Target<br />

Impedance<br />

Zs<br />

Low-Frequency<br />

Power Regulator<br />

Mid-Frequency<br />

SCM/MCM on Board<br />

High-Frequency on-chip global<br />

<strong>and</strong> semi-global lines<br />

High-Frequency<br />

Chip on SCM/MCM<br />

0.000<br />

10<br />

0<br />

10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10<br />

Frequency (Hz)<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 16


Substrate Noise in <strong>SoC</strong><br />

Generation<br />

-+<br />

in<br />

GENERATION MECHANISMS<br />

1. Impact Ionization<br />

2. Source/Drain Coupling<br />

3. Ground Bounce<br />

Vss<br />

out<br />

Vdd<br />

p+<br />

n+<br />

- - - - +++<br />

-<br />

n+<br />

p+ p+ n+<br />

+<br />

p-well<br />

n-well<br />

P- substrate<br />

Impact<br />

Propagation<br />

Three aspects: Generation, propagation, impact<br />

TO ANALOG & RF<br />

CIRCUITS<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 17


Trade-off analysis methodology<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 18


Challenges in Trade-off Analysis<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 19


The Design Flow<br />

Summary:<br />

Step 1: Estimate Area of Each Module: IP<br />

modules, Memory, Analog/RF<br />

Step 2: Make Implementation Plans: <strong>System</strong><br />

Partition Plan, Placement Plan,<br />

Interconnect <strong>and</strong> Package Plan, Mixed-<br />

Signal Isolation Plan; (also compute the<br />

total area of each chip)<br />

Step 3: Compute Mixed-Signal Performance; if<br />

isolation YES, go to Step 4; if NOT,<br />

change a new isolation <strong>and</strong> do Step 3<br />

again.<br />

Step 4: Compute the Cost for this<br />

implementation Plan<br />

Step 5: Do the Step 2-4 for other Possible<br />

Implementation Plans<br />

Step 6: Select one low cost Implementation Plan<br />

as the Target Implementation for the<br />

<strong>System</strong><br />

Design entry<br />

( Technolgy Description, <strong>System</strong> Description,<br />

Interconnect Description,Packaging Description )<br />

Constraint<br />

(isolation,dB)<br />

<strong>System</strong> partitioning<br />

plan<br />

Placement plan<br />

Constraint<br />

satisfied?<br />

Cost estimation<br />

All partitions<br />

placements<br />

generated<br />

End<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 20<br />

1<br />

Area estimation<br />

Mixed signal system<br />

isolation estimation<br />

Yes<br />

Yes<br />

No<br />

No<br />

2<br />

3<br />

4<br />

5<br />

6


How to Estimate the Module Size?<br />

1. If It was Provided by the IP vendors or A Re-Used Module:<br />

- Use technology scaling <strong>and</strong> map to the target foundry<br />

2. Otherwise, use Rent’s Rule based Technique<br />

-The module size can be either interconnection dominated (with<br />

high interconnectivity) or transistor dominated (less<br />

interconnectivity).<br />

3. Analog/RF modules are not scalable.<br />

- Full-custom design experience are needed (estimated from<br />

expertise or obtained directly from real designs)<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 21


Performance Estimations<br />

Size estimation= (wirleng dem<strong>and</strong> , st<strong>and</strong>ard library cell)<br />

wire limited chip:<br />

A<br />

die<br />

=<br />

N<br />

g<br />

⋅ d<br />

2<br />

g<br />

f<br />

R<br />

e<br />

g avg w<br />

2<br />

d g = Asub<br />

= Nc<br />

⋅ Fp<br />

w w<br />

n<br />

P<br />

Power estimation=dyanmic power+leakage power+shor-circuit power<br />

F<br />

p<br />

F c R<br />

=<br />

F c + 1 ewn<br />

mN pP<br />

w<br />

w<br />

P<br />

dynamic<br />

2<br />

= αCV<br />

dd f Pstat Ilekage ∗Vdd<br />

tr + tf<br />

= Pdp = ∗Vdd<br />

∗ Ipeak ∗ f<br />

2<br />

Delay estimation= logic delay(critical path)+global delay<br />

T<br />

cycle<br />

T<br />

=<br />

log ic<br />

+ T<br />

global<br />

+ Tset<br />

_<br />

1 − skew<br />

up<br />

+ T<br />

latch _ delay<br />

Noise isolation in Mixed-Signal <strong>System</strong><br />

<strong>KTH</strong>/ESD/HT 02/04/2008 22


Mixed-Signal<br />

Performance Estimation: Noise Isolation<br />

Step 1: Make a Placement Plan, Interconnect <strong>and</strong> Package Plan<br />

Step 2: Make an Isolation Plan. In this paper, we considered (1) the distance<br />

(between analog-digital), guard rings, IC substrate materials, chip partition<br />

Step 3: Creat Substrate Circuits (<strong>3D</strong> meshes) <strong>and</strong> Assign L,R, C Values<br />

Step 4: Compute Substrate Noise (only the noise isolation level over a certain range of<br />

frequency, difficult to estimate the resonance peaks of the substrate noise at this stage,<br />

because the accurate power supply currents are too early to be estimated)<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 23


Noise isolation technolgy in Mixed-Singl <strong>System</strong><br />

1:Distance<br />

2:Guarding ring<br />

3:SOI<br />

Relation between isolation <strong>and</strong> distance<br />

Guard ring of heavily-doped substrate<br />

Guard ring of Lightly-doped substrate<br />

SOI technology<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 24


Equivalent Circuit for Substrate<br />

If the distance increased,<br />

we insert more meshes<br />

Kirchoffs current law at node j:<br />

∑<br />

j<br />

⎡(<br />

V − Vj)<br />

i<br />

⎢<br />

+ Cij<br />

⎣ Rij<br />

R ij<br />

= ρh ij<br />

/w ij<br />

d ij<br />

C ij<br />

=ε w ij<br />

d ij<br />

/ h ij<br />

∂V<br />

(<br />

∂t<br />

i<br />

∂Vj<br />

⎤<br />

− )<br />

⎥<br />

= 0<br />

∂t<br />

⎦<br />

If the substrate is partitioned into two chips here, set<br />

the R of this column to infinitely large <strong>and</strong> C to zero.<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 25


<strong>SoC</strong> vs. <strong>SoP</strong> Cost Models<br />

Cost Consideration in This Paper: Chip Area <strong>and</strong> Yield, Technology Fusion, Mixed-<br />

Signal Isolation, Packaging <strong>and</strong> Substrate Cost, Rework <strong>and</strong> Repair<br />

More Factors Need to be Considered in the Future: Components Design <strong>and</strong> Reuse, Test<br />

<strong>and</strong> Verification, ...<br />

<strong>SoC</strong> Cost:<br />

<strong>SoP</strong> Cost:<br />

C<br />

soc<br />

=<br />

C<br />

wafer<br />

Y<br />

d<br />

( raw,<br />

process , mask )<br />

N<br />

die<br />

( A , A )<br />

wafer<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 26<br />

die<br />

( raw,<br />

process , mask )<br />

N<br />

C wafer<br />

C<br />

∑<br />

substrate<br />

+ + C assembly + C rework<br />

Yd<br />

N die ( Awafer<br />

, Adie<br />

) Ys<br />

C sop = 1 Ya<br />

where<br />

C wafer:<br />

the cost of processed wafer, it is a function of raw substrate, fabrication process type, <strong>and</strong> mask layers;<br />

N die<br />

:the number of chip per wafer, it is a function of wafer area <strong>and</strong> die area;<br />

C assembly<br />

:the cost of chip assembly;<br />

C substrate<br />

:the substrate cost per unit module;<br />

C rework<br />

: the cost of rework;<br />

N : the number of partitions in the <strong>SoP</strong>,<br />

Y d<br />

, Y s<br />

, <strong>and</strong> Y a<br />

: yield of die, substrate, <strong>and</strong> assembly, respectively.


<strong>SoC</strong> vs. <strong>SoP</strong> Cost Models: cont’<br />

Chip Yield:<br />

where D o is the average density of electric defects, N is the number of mask layers in the fabrication process, <strong>and</strong> A is the area<br />

of chip. S is the shape factor of (what is assumed to be) the Gamma distribution of electrical defect density.<br />

Yield Improvement Due to Re-Work/Repair in <strong>SoP</strong>:<br />

The total chip area due to mixed-signal<br />

isolation <strong>and</strong> technology fusion of A, B, C, …<br />

Where α , β, γ are the factors for chip area increase due to circuits A, B, C merge<br />

Example: in UMC 0.l8µm CMOS technology, cell size of a 6T-SRAM is 4.0um 2 for logic <strong>and</strong> SRAM<br />

intensive produce, but it becomes 5.6um 2 for embedded memory produce. So, here we get α=1.4.<br />

The total mask layers due to merge of different circuits A, B, C:<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 27


Chip-Packaging co-design for mixed signal system integration<br />

DSP<br />

RISCM<br />

PU<br />

bridge<br />

PCI<br />

PCI<br />

Timer<br />

Ethernet<br />

Controller<br />

ROM<br />

Memory<br />

Controller<br />

UART Watchdog<br />

IP modules<br />

SSP<br />

SSP<br />

UART<br />

DSP<br />

API<br />

Timer<br />

RAM<br />

ROM<br />

bridge<br />

RAM<br />

API<br />

SSP<br />

SSP<br />

RISCM<br />

PU<br />

Watchdog<br />

VCO<br />

Radio<br />

ASIC<br />

Loop<br />

filter<br />

Balun<br />

Switch<br />

Antenna<br />

Filter<br />

Custom modules<br />

RF components<br />

Memory<br />

Controller<br />

Ethernet<br />

Controller<br />

Balun<br />

Radio<br />

ASIC<br />

Antenna<br />

Filter<br />

Switch<br />

VCO<br />

Loop<br />

filter<br />

M. Shen et al: this meeting<br />

COMSI: Cost-performance analysis of Mixed<br />

Signal Implementation<br />

Algorithm COMSI: Cost (Isolation _dB, f _Hz)<br />

Substrate=[lightly-doped-substrate, heavily-opedsubstrate,<br />

high-resistivity-substrate, SOI-substrate]<br />

For i=1:1:4<br />

Loop1: Change distance <strong>and</strong> obtain isolation<br />

If (isolation>Isolation_dB) then<br />

Calculate cost1(i)<br />

Exit<br />

Elsif (distance >Max_Distance) then<br />

Cost1(i)= ∞<br />

Exit<br />

End<br />

Loop2: Using guard ring than change distance<br />

If (isolation>Isolation_dB) then<br />

Calculate cost2(i)<br />

Exit;<br />

Elsif (distance >MaxDistance) then<br />

Cost2(i)= ∞<br />

Exit<br />

End<br />

End<br />

Cost= min {Cost1(i), Cost2(i)} (i=1,2,3,4)<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 28


Results <strong>and</strong> Discussions<br />

To simplify the presentation, the results will be demonstrated through<br />

two case studies in the following mixed-signal wireless system<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 29


Model Parameters Used for Case Studies<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 30


Case Study 1<br />

•The system includes 2Mbit DRAM, 200K logic, <strong>and</strong> 400K ASIC <strong>and</strong> 1mm 2 analog/RF.<br />

•Noise isolation constraint is –40dB under the maximum frequency of 1GHz.<br />

•Target design foundry is a 0.18µm CMOS, st<strong>and</strong>ard cell library, 6 wiring levels<br />

•0.56µm lower-level wire pith, peripheral in line pad <strong>and</strong> wire-bond packaging.<br />

In this case, <strong>SoC</strong><br />

integration is much<br />

cheaper !<br />

<strong>SoC</strong>!<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 31


Case Study 2<br />

The same system as in Case 1, but the memory capacity increased to 16Mbit, <strong>and</strong><br />

the isolation requirement is –80dB (up to 1GHz)<br />

<strong>SoP</strong>!<br />

In this case, <strong>SoP</strong><br />

integration (with three<br />

chips) is much cheaper !<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 32


<strong>System</strong>-on-Chip vs. <strong>System</strong>-on-Package ?<br />

Reasons for <strong>System</strong>-on-Chip:<br />

High performance (single chip integration/short interconnection)<br />

Low cost (single chip integration)<br />

Passive components (L, R, C) integration on-chip possible<br />

Mixed signal integration (analog/RF, digital, memory)<br />

Application example: single chip radio<br />

Reasons for <strong>System</strong>-on-Package:<br />

Single-chip integration is not necessary to be an optimal solution,<br />

usually not possible to yield a complete system integration<br />

- Mixed technologies in one complex system: Si, GeSi, GaAs, Ceramic, MEMS<br />

- Some passive components always stay off-chip: Balun, BF, switches, antenna<br />

- Mixed signal coupling through substrate<br />

-Low Q for on-chip passives (2-12 c.f. 20-100 for off-chip counterparts)<br />

-Application example: a single module radio<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 33


2D or <strong>3D</strong> Integration ?<br />

- Future Opportunities -<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 34


<strong>3D</strong>-Integration Options<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 35


2D vs. <strong>3D</strong> cost models<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 36


Additional Model Parameters Used<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 37


2D <strong>and</strong> <strong>3D</strong> Cost Models<br />

<strong>3D</strong>-SiP Integration<br />

<strong>3D</strong>-W2W Integration<br />

<strong>3D</strong>-D2W Integration<br />

Cost for the Package<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 38


Electrical Performance Model<br />

Wire Parameters<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 39


Example: Cost Driven Design for Bluetooth Terminal<br />

<br />

<br />

<br />

<br />

2Mbit DRAM, 200K logic, <strong>and</strong> 400K ASIC <strong>and</strong><br />

1mm2 analog/RF.<br />

Noise isolation constraint is –40dB under the<br />

maximum frequency of 1GHz.<br />

Target design foundry is a 0.18µm CMOS,<br />

st<strong>and</strong>ard cell library, 6 wiring levels<br />

0.56µm lower-level wire pith, peripheral in line<br />

pad <strong>and</strong> wire-bond packaging.<br />

Parameter<br />

<strong>SoC</strong><br />

2D-<strong>SoP</strong><br />

<strong>3D</strong>-SiP<br />

<strong>3D</strong>-W2W<br />

<strong>3D</strong>-D2W<br />

Area<br />

1<br />

2.42<br />

1.54<br />

0.72<br />

0.72<br />

Yield(%)<br />

91<br />

95<br />

95<br />

92<br />

96<br />

cost<br />

1<br />

2.47<br />

2.42<br />

0.98<br />

1.48<br />

Max. Delay (ps)<br />

443<br />

536<br />

491<br />

419<br />

419<br />

* Delay – from one corner to the farthest corner<br />

Roshan Weerasekera et.al. ”Peformance <strong>and</strong> Cost tradeoffs for 2D <strong>and</strong> <strong>3D</strong> Integration of Mixed-Signal <strong>System</strong>s”, In manuscript<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 40


Example: Cost Driven Design for Mobile Terminal<br />

<br />

<br />

<br />

<br />

16Mbit DRAM, 200K logic, <strong>and</strong> 400K ASIC <strong>and</strong><br />

1mm2 analog/RF.<br />

Noise isolation constraint is –40dB under the<br />

maximum frequency of 1GHz.<br />

Target design foundry is a 0.18µm CMOS,<br />

st<strong>and</strong>ard cell library, 6 wiring levels<br />

0.56µm lower-level wire pith, peripheral in line<br />

pad <strong>and</strong> wire-bond packaging.<br />

Parameter<br />

<strong>SoC</strong><br />

2D-<strong>SoP</strong><br />

<strong>3D</strong>-SiP<br />

<strong>3D</strong>-W2W<br />

<strong>3D</strong>-D2W<br />

Area<br />

1<br />

1.54<br />

0.97<br />

0.52<br />

0.52<br />

Yield(%)<br />

76<br />

98<br />

98<br />

86<br />

96<br />

cost<br />

1<br />

0.82<br />

0.80<br />

0.48<br />

0.53<br />

Max. Delay (ps)<br />

512<br />

554<br />

505<br />

429<br />

429<br />

* Delay – from one corner to the farthest corner<br />

Roshan Weerasekera et.al. ”Peformance <strong>and</strong> Cost tradeoffs for 2D <strong>and</strong> <strong>3D</strong> Integration of Mixed-Signal <strong>System</strong>s”, In manuscript<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 41


Summary<br />

ASIC, DSP, μP<br />

Memory<br />

Analog, RF<br />

<strong>SoC</strong> &<br />

MCM<br />

<strong>SoC</strong> &<br />

<strong>SoP</strong><br />

<strong>SoC</strong> &<br />

<strong>SoP</strong><br />

S<strong>SoC</strong><br />

<strong>SoC</strong>&<br />

<strong>3D</strong><strong>SoP</strong><br />

S<strong>SoC</strong><br />

<strong>SoP</strong><br />

MEMS<br />

OEIC<br />

year<br />

2001 2008<br />

2015?<br />

<strong>SoC</strong>: from system-on-chip to subsystem-on-chip<br />

<strong>SoP</strong>: from subsystem-on-package to system-on-package<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 42


Thank you !<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 43


List of refererences<br />

<br />

<br />

<br />

<br />

P. A. S<strong>and</strong>born <strong>and</strong> H. Moreno, Conceptual Design of Multichip Modules <strong>and</strong> <strong>System</strong>s. Kluwer Academic Publishers,<br />

1994.<br />

M. Shen, L.-R. Zheng, <strong>and</strong> H. Tenhunen, “Cost <strong>and</strong> performance analysis for mixed-signal system implementation:<br />

<strong>System</strong>-on-chip or systemon-package,” Electronics Packaging Manufacturing, IEEE Journal of,vol. 25, no. 4, pp. 262–<br />

272, October 2002.<br />

D. Ragan, P. S<strong>and</strong>born, <strong>and</strong> P. Stoaks, “A detailed cost model for concurrent use with hardware/software co-design,” in<br />

Design Automation Conference, 2002. Proceedings of IEEE/ACM, 2002, pp. 269–274.<br />

S. Kuhn, M. Kleiner, <strong>and</strong> W. Weber, “Performance modeling of the interconnect structure of a 3-dimensionally<br />

integrated risc processor/cachesystem,” in Electronic Components <strong>and</strong> Technology Conference, 1995. Proceedings.,<br />

45th, 1995, pp. 592–599.<br />

<strong>KTH</strong>/ESD/HT 02/04/2008 44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!