20.01.2014 Views

Developing 384-plex SNP marker sets for breeding and ... - icrisat

Developing 384-plex SNP marker sets for breeding and ... - icrisat

Developing 384-plex SNP marker sets for breeding and ... - icrisat

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Developing</strong> <strong>384</strong>-<strong>plex</strong> <strong>SNP</strong> <strong>marker</strong> <strong>sets</strong> <strong>for</strong><br />

<strong>breeding</strong> <strong>and</strong> genetics applications in rice<br />

Dr. Michael J. Thomson<br />

Molecular Geneticist<br />

International Rice Research Institute, Philippines<br />

m.thomson@cgiar.org<br />

2 nd National Workshop on Marker-Assisted Selection <strong>for</strong> Crop Improvement,<br />

ICRISAT, India<br />

October 27, 2010


What is the potential <strong>for</strong> molecular<br />

<strong>marker</strong> technology?<br />

• Enables novel <strong>breeding</strong> strategies<br />

o Novel genes <strong>and</strong> alleles with beneficial effects can be<br />

identified <strong>and</strong> quickly introduced into varieties<br />

o QTL pyramiding to combine essential traits<br />

o Genomic selection to increase rate of genetic gain<br />

• Increases speed <strong>and</strong> efficiency<br />

o Reduces time to remove negative linkage drag after<br />

transferring genes from unimproved sources<br />

o It can accelerate the <strong>breeding</strong> process: precise<br />

selection, improved screening, fewer generations


SSR <strong>marker</strong>s have some disadvantages<br />

• High polymorphism<br />

rate, but having<br />

many alleles makes<br />

precise scoring<br />

difficult<br />

• SSR data is difficult<br />

to merge across labs<br />

<strong>and</strong> groups<br />

• Not easy to run in a<br />

high-throughput<br />

system due to<br />

limitations in<br />

multi<strong>plex</strong> levels<br />

www.gramene.org


<strong>SNP</strong>s are now the <strong>marker</strong> of choice<br />

• <strong>SNP</strong>s are abundant<br />

across the genome<br />

• Large pools of <strong>SNP</strong>s can<br />

be used to identify <strong>sets</strong> of<br />

polymorphic <strong>marker</strong>s<br />

• <strong>SNP</strong> <strong>marker</strong>s are bi-allelic<br />

making allele calling more<br />

simple<br />

• <strong>SNP</strong> data from different<br />

systems or groups can be<br />

easily merged in a<br />

database<br />

• <strong>SNP</strong> genotyping can be<br />

automated, allowing <strong>for</strong><br />

rapid, high-throughput<br />

<strong>marker</strong> genotyping<br />

<strong>SNP</strong> locus<br />

genomic DNA<br />

<strong>SNP</strong> genotyping with allele specific oligos


Rice sequence has enabled <strong>SNP</strong> discovery<br />

High quality BAC-by-BAC<br />

O. sativa japonica (Nipponbare)<br />

(< 1 error in 10K bases)<br />

International Rice Genome Sequencing Project (IRGSP) 2005 Nature 436:793-800


Resources <strong>for</strong> <strong>SNP</strong> genotyping in rice<br />

<strong>SNP</strong><br />

discovery<br />

Nipponbare/<br />

93-11 <strong>SNP</strong>s<br />

(Feltus et al. 2004;<br />

<strong>384</strong>k <strong>SNP</strong>s)<br />

Oryza<strong>SNP</strong><br />

resequencing<br />

(20 rice varieties;<br />

160k <strong>SNP</strong>s)<br />

Next-gen<br />

resequencing<br />

(in progress;<br />

millions of <strong>SNP</strong>s)<br />

High density<br />

genotyping<br />

Association<br />

genetics<br />

44k <strong>SNP</strong> chip<br />

(S. McCouch et al.<br />

Cornell Univ.)<br />

Future high<br />

density <strong>SNP</strong><br />

chips<br />

Low density<br />

genotyping<br />

Illumina 1536<br />

(CIRAD)<br />

Illumina 1536<br />

(Cornell Univ.)<br />

Illumina BeadXpress<br />

96 <strong>and</strong> <strong>384</strong>-<strong>plex</strong><br />

(IRRI, Cornell, USDA)<br />

QTL mapping, <strong>marker</strong>-assisted <strong>breeding</strong>,<br />

genetic diversity analysis, DNA fingerprinting


IR64<br />

IAC 165<br />

M202<br />

Moroberkan<br />

Dom Sufid<br />

Cypress<br />

Pokkali<br />

Aswina<br />

Swarna<br />

Inia Tocuari<br />

Oryza<strong>SNP</strong>: 160K <strong>SNP</strong>s<br />

detected across 20 varieties<br />

McNally et al. 2009 (PNAS)<br />

Co 39 Patbyeo Gerdeh Dular Sadu-cho


Oryza<strong>SNP</strong> data available online<br />

www.oryzasnp.plantbiology.msu.edu


Illumina GoldenGate<br />

<strong>SNP</strong> genotyping<br />

Illumina Veracode Technology<br />

on the BeadXpress Reader


Genome coverage with rice <strong>SNP</strong> chips<br />

Chr<br />

<strong>384</strong>-<strong>plex</strong> (Thomson, in prep)<br />

44K (Tung et al., in prep.)<br />

1536-<strong>plex</strong> (Zhao et al. 2010)<br />

Mb


BeadXpress <strong>384</strong>-<strong>plex</strong> <strong>SNP</strong> <strong>sets</strong> <strong>for</strong> rice<br />

• 96 samples x <strong>384</strong><br />

<strong>SNP</strong> <strong>marker</strong>s per run<br />

• Less than $0.10 per<br />

<strong>marker</strong> data point<br />

Illumina BeadXpress Reader<br />

Working with Susan McCouch (Cornell<br />

University) to develop custom <strong>384</strong>-<strong>plex</strong><br />

<strong>SNP</strong> <strong>sets</strong> <strong>for</strong> different subgroups:<br />

• <strong>384</strong>-<strong>plex</strong> <strong>for</strong> indica x japonica<br />

populations<br />

• <strong>384</strong>-<strong>plex</strong> <strong>for</strong> indica <strong>and</strong> aus<br />

germplasm<br />

AA<br />

AB<br />

BB<br />

Automated <strong>marker</strong> scoring


Two custom <strong>384</strong>-<strong>plex</strong> <strong>SNP</strong> <strong>sets</strong> <strong>for</strong> optimal<br />

polymorphism rates in target germplasm<br />

Parent A Parent B Cross<br />

indica/japonica<br />

GS0011862<br />

indica-indica<br />

GS0011861<br />

93-11 Nipponbare indica x japonica 311 200<br />

IR 64 Moroberekan indica x japonica 256 191<br />

IR 64 Basmati 370 indica x aromatic 131 188<br />

IR 64 N 22 indica x aus 86 280<br />

IR 64 Dular indica x aus 80 278<br />

IR 64 Pokkali indica x indica 21 204<br />

IR 64 Mahsuri indica x indica 20 136<br />

Comparison of the number of polymorphic <strong>marker</strong>s (out of <strong>384</strong>)<br />

<strong>for</strong> 7 mapping populations across two OPAs


Diversity analysis with <strong>384</strong> indica/indica set<br />

indica<br />

Trop. japonica<br />

Temp.<br />

japonica<br />

Group V<br />

(aromatic)<br />

aus


Diversity analysis with <strong>384</strong> indica/japonica<br />

indica<br />

Temp.<br />

japonica<br />

Group V<br />

(aromatic)<br />

Trop. japonica<br />

aus<br />

• Each <strong>384</strong>-<strong>plex</strong> <strong>SNP</strong> set has<br />

inherent biases due to the <strong>SNP</strong><br />

selection process<br />

• The appropriate <strong>SNP</strong> set must<br />

be chosen <strong>for</strong> each group of<br />

germplasm <strong>and</strong> specific<br />

application


Diversity analysis <strong>for</strong> salinity tolerance<br />

118 rice<br />

varieties,<br />

including 62<br />

salt tolerant<br />

Bangladesh<br />

l<strong>and</strong>races<br />

aus<br />

Aswina<br />

HanHongKe<br />

TakRatia Kalarata<br />

Asha<br />

Hasawi<br />

Kalisaita<br />

Lalmota<br />

Binni<br />

FL478<br />

Swarna<br />

Harishankar<br />

Darial<br />

Depa Latisail<br />

Boilam<br />

BG90-2<br />

IR29<br />

PSBRc94<br />

93-11<br />

IR64<br />

IR54<br />

BRRIdhan4 5<br />

TangkaiRotan<br />

BRRIdhan2 8<br />

BRRIdhan2 9<br />

CR1009<br />

BR4<br />

BRRIdhan3 0<br />

BR10<br />

BRRIdhan4 0<br />

BR11<br />

Rajasail<br />

indica<br />

Moynamoti<br />

Nonasail<br />

Kajalsail<br />

Madhumoti<br />

Ghigoj Changa i<br />

SR26B<br />

Ashfol ChikiramPatnai<br />

Sadaba lam<br />

Akundi<br />

KutiPatnai Morichsail<br />

Pokkali-19354<br />

Patnai23<br />

NonaBokra<br />

Capsule<br />

Ashfalbalam Sadamota<br />

Kalamosa<br />

Jataibalam<br />

Pokkali-28609<br />

AusBako<br />

Dular<br />

Pokkali-15661<br />

Surjamukhi<br />

BRRIdhan4 7<br />

<strong>384</strong>-<strong>plex</strong><br />

indica/indica<br />

OPA could<br />

distinguish<br />

subgroups<br />

within indica<br />

germplasm<br />

Agrani<br />

N22<br />

JaliBoro<br />

Kaliboro<br />

Soloi<br />

FR13A Chiknol<br />

Kasalath<br />

Azucena<br />

Moroberekan<br />

japonica<br />

0.1<br />

Nipponba re<br />

Kalaboram<br />

Hanumanjata GopalBhog<br />

DomSufid<br />

Setkumra Koijuri Chapali Chinikanai<br />

Horcoach Gunshi Chapalia<br />

Dharikhachi Maidal Maitchal<br />

Kachra Hogla Ranisalute<br />

JolPaira Bamonkhir Salute<br />

Dorkumor Nonakochi Laxmikajal<br />

JamaiNadu Gadimuri<br />

Barisail<br />

Basmati370<br />

NoyonMoni<br />

Birpala<br />

Bazail<br />

Rayada<br />

aromatic<br />

Pokkali-15602<br />

Pokkali-15238<br />

Pokkaliyan-36351<br />

PokkalianBatticaloa<br />

Pokkali-117275<br />

Pokkali-8948 Pokkalian-15704<br />

Pokkalian-15507<br />

Pokkalian-47407<br />

Pokkali-IRRI<br />

Cheriviruppu<br />

Pokkali-108921<br />

Pokkaliyan-31513 Pokkali-15388<br />

Pokkali<br />

Pokkali-26869


Graphical genotyping of genetic lines<br />

<strong>384</strong>-<strong>plex</strong> mini-chips can be used to track introgressions<br />

Chr. 1 Chr. 2<br />

Chr. 3<br />

NILs<br />

N<br />

Chr. 4<br />

Chr. 5<br />

Chr. 6<br />

Chr. 7<br />

Chr. 8<br />

Chr. 9<br />

Chr. 10 Chr. 11<br />

Chr. 12<br />

Chr. 1 Chr. 2<br />

Chr. 3<br />

RILs<br />

Chr. 4<br />

Chr. 5<br />

Chr. 6<br />

Chr. 7<br />

Chr. 8<br />

Chr. 9<br />

Chr. 10 Chr. 11<br />

Chr. 12


<strong>SNP</strong> versus SSR throughput<br />

Manual PAGE genotyping:<br />

2 or 3 researchers<br />

BeadXpress genotyping:<br />

1 researcher<br />

16 PCR plates per day<br />

(8 gels morning, 8 afternoon)<br />

8 plates = 768 genotypes/day<br />

16 plates = 1536 genotypes/day<br />

QTL study: 288 lines x 100 SSRs<br />

= 300 PCR plates = 19 days<br />

96 x <strong>384</strong> <strong>SNP</strong>s in 2<br />

days = 18,432<br />

genotypes/day<br />

QTL study: 288 lines x<br />

<strong>384</strong> <strong>SNP</strong>s = 6 days


<strong>SNP</strong> <strong>marker</strong> throughput at IRRI<br />

Over 7,000 rice DNA samples<br />

(2.3 million <strong>SNP</strong> data points)<br />

genotyped in the past year<br />

170,000 data points:<br />

Outside partners<br />

510,000<br />

data points:<br />

Plant <strong>breeding</strong>,<br />

genetics, quality<br />

Other<br />

IRRI<br />

GRC<br />

1,640,000<br />

data points:<br />

Genetic resources center<br />

• Diversity analysis<br />

• DNA fingerprinting<br />

• QTL mapping<br />

• Marker-assisted <strong>breeding</strong><br />

• Testing genetic integrity<br />

of germplasm collection


Activities to develop <strong>SNP</strong> tools<br />

<strong>for</strong> <strong>breeding</strong> applications<br />

• We need to validate functional <strong>SNP</strong>s <strong>for</strong> important traits<br />

• Develop trait-specific <strong>SNP</strong>s diagnostic <strong>for</strong> desired alleles needed<br />

<strong>for</strong> <strong>breeding</strong> programs<br />

• Test functional <strong>SNP</strong>s using new high-throughput plat<strong>for</strong>ms<br />

• Identify targeted <strong>SNP</strong> haplotypes to select <strong>for</strong> specific QTL alleles<br />

• Establish a comprehensive “Rice Diversity Plat<strong>for</strong>m”<br />

• Interface with the Rice <strong>SNP</strong> Consortium to coordinate high<br />

density <strong>SNP</strong> genotyping of 2,000+ varieties <strong>and</strong> lines <strong>and</strong><br />

organize precise phenotyping ef<strong>for</strong>ts <strong>for</strong> association studies<br />

• Organize training <strong>and</strong> support <strong>for</strong> using <strong>SNP</strong>s in <strong>breeding</strong><br />

• Help design relevant tools <strong>for</strong> <strong>SNP</strong> data analysis<br />

• Offer workshops on <strong>SNP</strong> deployment <strong>and</strong> data analysis


Rice Genetic Diversity Plat<strong>for</strong>m<br />

• <strong>SNP</strong> discovery by re-sequencing<br />

• Illumina GAIIx re-sequencing of >80 varieties<br />

• High density genotyping <strong>for</strong> association studies<br />

www.ricesnp.org<br />

• Susan McCouch to develop a high density Affymetrix <strong>SNP</strong> chip<br />

• Select <strong>and</strong> purify >2,000 diverse accessions (IRRI, USDA)


Relevant in<strong>for</strong>matics tools are still needed<br />

Flapjack: http://bioinf.scri.ac.uk/flapjack/<br />

• Select optimal sub<strong>sets</strong> of <strong>SNP</strong>s from large data <strong>sets</strong><br />

• Filter data based on polymorphism rates, allele frequency,<br />

quality scores, distribution across the genome<br />

• Visualize <strong>SNP</strong> haplotypes at genomic regions<br />

• Integrate with gene annotation <strong>and</strong> expression data<br />

• Visualize donor introgressions<br />

• Develop tools to assist molecular <strong>breeding</strong> programs


Training <strong>for</strong> <strong>marker</strong> applications<br />

GAMMA Lab—a central facility <strong>for</strong> research <strong>and</strong> training:<br />

- Training <strong>for</strong> partners in national agricultural research institutes<br />

- Molecular Breeding, Rice: Research to Production courses<br />

- Future focus: <strong>SNP</strong> <strong>marker</strong> data analysis (March 2011)


For further in<strong>for</strong>mation:<br />

• Zhao et al. 2010 (PLoS ONE 5: e10780)<br />

• Illumina 1536 <strong>SNP</strong> chip on 395 O. sativa accessions<br />

• Tung et al. 2010 (RICE, online first)<br />

• Review of rice genetic diversity plat<strong>for</strong>m<br />

• Wright et al. 2010 (Bioin<strong>for</strong>matics Journal, online first)<br />

• ALCHEMY: improved algorithm <strong>for</strong> <strong>SNP</strong> allele calling<br />

• www.ricediversity.org<br />

• Susan McCouch’s diversity projects <strong>and</strong> data downloads<br />

• www.gramene.org<br />

• Genetic diversity module with <strong>SNP</strong> data <strong>sets</strong><br />

• www.ricesnp.org<br />

• Rice <strong>SNP</strong> consortium: updates on resequencing/<strong>SNP</strong> chips

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!