Molecular Breeding in Vegetable Crops- Challenges and ... - icrisat

Molecular Breeding in Vegetable Crops- Challenges and ... - icrisat Molecular Breeding in Vegetable Crops- Challenges and ... - icrisat

20.01.2014 Views

Molecular Breeding in Vegetable Crops- Challenges and Opportunities

<strong>Molecular</strong> <strong>Breed<strong>in</strong>g</strong> <strong>in</strong> <strong>Vegetable</strong> <strong>Crops</strong>-<br />

<strong>Challenges</strong> <strong>and</strong> Opportunities


India is the second largest producer of<br />

vegetables <strong>in</strong> the world….<br />

<br />

<br />

<br />

<br />

<br />

Per capita consumption of vegetables is about 174 g/day aga<strong>in</strong>st<br />

300 g/day<br />

Vitam<strong>in</strong> A <strong>and</strong> iron <strong>in</strong>take is <strong>in</strong>adequate <strong>in</strong> most states of the<br />

country<br />

Productivity of vegetables is also lower (12.7 t/ha) than average<br />

productivity of the world (16.9 t/ha)<br />

India accounts for one-third of all pesticide poison<strong>in</strong>g cases <strong>in</strong> the<br />

world <strong>and</strong> 50-60% of vegetables are contam<strong>in</strong>ated with <strong>in</strong>secticide<br />

residues<br />

Poor availability of good varieties <strong>and</strong> lack of improved production<br />

technologies<br />

AVRDC-Regional Center for South Asia


Research <strong>and</strong> Development: Four global themes<br />

Germplasm<br />

Germplasm conservation,<br />

evaluation <strong>and</strong> gene discovery<br />

<strong>Breed<strong>in</strong>g</strong><br />

Production<br />

Consumption<br />

Genetic enhancement, varietal<br />

development, selection of<br />

<strong>in</strong>digenous l<strong>in</strong>es, seed production<br />

Safe <strong>and</strong> susta<strong>in</strong>able vegetable<br />

production systems<br />

Postharvest management <strong>and</strong><br />

market opportunities; nutritional<br />

security, diet diversification <strong>and</strong><br />

human health<br />

Slide 1 (06/2010)<br />

www.avrdc.org


<strong>Crops</strong> on Focus<br />

Bulb<br />

Allium<br />

Tomato<br />

Pepper<br />

Cucurbits<br />

<strong>Vegetable</strong><br />

soybean<br />

Mungbean<br />

Crucifer


MAS for Tomato Yellow Leaf Curl<br />

Virus Resistance <strong>in</strong> tomato


TYLCVD - a major challenge for tomato<br />

production<br />

• Tomato Yellow Leaf Curl Virus Disease (TYLCVD)<br />

devastates tomato <strong>in</strong> the tropics, subtropics<br />

• 100% yield loss from early <strong>in</strong>fection<br />

Peter Hanson


Diversity of Tomato yellow leaf curl virus<br />

100% 90% 80% 70% 60% 50% 40%<br />

30%<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

TbLCJV JR<br />

ToLCJV ID<br />

AYVV CN<br />

ToLCDaV PH p162<br />

ToLCLV LA<br />

ToLCMYV MY<br />

PaLCuCNV CN<br />

ToLCKHV KH<br />

ToLCV LA LA2<br />

TbLCYuV CN Y161<br />

ToLCVV VN<br />

ToLCCNV CN G32<br />

ToLCGuV CN G2<br />

TYLCGuV CN G3<br />

ToLCTWV TW Ta<strong>in</strong>an<br />

ToLCPV PH<br />

ToLCHsV TW Hs<strong>in</strong>chu<br />

ToLCBDV BD<br />

TbCSV CN Y41<br />

ToLCPK PK<br />

ToLCGV IN Vadodara<br />

ToLCGV IN Varanasi<br />

ToLCGV NP<br />

ToLCIRV IR<br />

ToLCKV IN Karnataka<br />

TYLCTHV MM<br />

TYLCTHV CN Y72<br />

TYLCTHV TW<br />

TYLCCNV CN<br />

ToLCSLV LK fsl1<br />

ToLCBV IN<br />

ToLCV AU<br />

TYLCV JP<br />

TYLCV TR Tu6<br />

TYLCV IL<br />

TYLCV IR<br />

TYLCMLV ML<br />

TYLCMLV ET ET4<br />

TYLCMalV ES Malaga<br />

ToLCSDV SD Shambat<br />

ToLCYTV YT<br />

ToLCUGV UG ug11uc8<br />

ToLCTZV TZ TT11<br />

TYLCSV IT<br />

ToCSV ZA<br />

ToLCMLV ML<br />

ToLCNDV PK<br />

ToLCNDV IN ND mild<br />

ToLCIDV ID Lembang<br />

TYLCKaV TH Kanchanaburi<br />

TYLCKaV VN<br />

PepYLCIDV ID<br />

ToMoTV CU<br />

ToMoV USA Florida<br />

CdTV IC<br />

CdTV MX H6<br />

ToLCS<strong>in</strong>V NI Santa Lucia<br />

ToMHV CU Qui<br />

ToRMV BR Ube<br />

ToSRV BR<br />

ToCMoV BR<br />

TGMV YV<br />

ToMLCV VE<br />

TYMLCV VE<br />

ToChLPV MX<br />

ToGMoV GT<br />

WDV<br />

AVRDC- Virology<br />

based on complete<br />

DNA-A sequences<br />

● = bipartite<br />

Asia +Australia<br />

Africa<br />

Europe<br />

Americas


Sources of resistance to TYLCD found only <strong>in</strong><br />

the wild species<br />

S. habrochaites<br />

S. chilense<br />

S. peruvianum


Mapped Ty Resistance Genes <strong>in</strong> Tomato<br />

Chromosome 6 Chromosome 11 Chromosome 3 Chromosome 4<br />

Ty-1<br />

Ty-3<br />

Ty-5<br />

Ty-4<br />

Ty-2<br />

Peter Hanson


MAS helps for early selection of TYLCV<br />

resistant l<strong>in</strong>es<br />

Peter Hanson


MAS <strong>in</strong> tomato breed<strong>in</strong>g l<strong>in</strong>es<br />

Ty-2 check<br />

variety<br />

Ty-3 check<br />

variety<br />

Ty-1 check<br />

variety


MAS <strong>in</strong> Pedigree <strong>Breed<strong>in</strong>g</strong> Programs<br />

Parent 1 x Parent 2<br />

MAS<br />

F1<br />

Selection unit Selection criteria Evaluation<br />

MAS<br />

F2<br />

F3<br />

F6<br />

S<strong>in</strong>gle plant<br />

Progeny row<br />

Disease<br />

resistance<br />

Fruit-set (yield)<br />

Fruit size,<br />

Fruit shape,<br />

Fruit firmness<br />

Disease resistance:<br />

Begomovirus<br />

Bacterial wilt, others<br />

MAS<br />

F7/F8<br />

Yield trials<br />

Homozygous<br />

“pure l<strong>in</strong>es”<br />

Nutrition:<br />

lycopene, β-carotene,<br />

vitam<strong>in</strong> C, flavonoids<br />

Quality:<br />

solids, color<br />

Peter Hanson


2009 Spr<strong>in</strong>g Prelim<strong>in</strong>ary Yield Trial <strong>in</strong><br />

• To determ<strong>in</strong>e which comb<strong>in</strong>ations of<br />

Ty-1, Ty-2, Ty-3 offer high <strong>and</strong> stable<br />

begomovirus resistance<br />

Taiwan<br />

• 24 F 6 l<strong>in</strong>es that together represent<br />

most comb<strong>in</strong>ations of Ty-1, Ty-2, Ty-3<br />

• Seedl<strong>in</strong>gs exposed to Taiwan<br />

begomoviruses (ToLCTWV) <strong>and</strong><br />

(TYLCTHV)<br />

• Transplanted to field after exposure, 2<br />

reps <strong>in</strong> RCBD, 30 plants per plot<br />

• Evaluation of symptom severity 40<br />

<strong>and</strong> 75 DAT<br />

Peter Hanson<br />

• PCR test<strong>in</strong>g of 4 plants per plot for<br />

each begomovirus 40 DAT


Ty genes-pyramided breed<strong>in</strong>g l<strong>in</strong>es<br />

Ty-1+ Ty-2<br />

Ty-1+ Ty-2 + Ty-3<br />

Ty-1 + Ty-3<br />

Peter Hanson<br />

No Ty genes


Group Mean Comparisons of TY l<strong>in</strong>es, Taiwan<br />

TY Genotype<br />

No.<br />

entries<br />

Mean TY<br />

severity score<br />

Mean MY<br />

(t/ha)<br />

Ty-1+Ty-2+Ty-3 9 0.8 a 38.7 a<br />

Ty-1+Ty-3 4 0.9 a 41.8 a<br />

Ty-1+Ty-2 2 1.6 b 37.0 a<br />

Ty-2 7 2.1 c 25.4 b<br />

Susceptible 2 3.0 d 3.5 c<br />

Severe (=3) Moderate (=2) Slight (=1)<br />

Peter Hanson


AVRDC Multiple TY F 6 L<strong>in</strong>es<br />

CLN3125G<br />

Ty-1+Ty-2+Ty-3<br />

CLN3078C<br />

Ty-2+Ty-3<br />

CLN3079C<br />

Ty-2+Ty-3<br />

Peter Hanson


Explor<strong>in</strong>g new sources of TYLCV resistance<br />

genes<br />

Resistance to<br />

TYLCV <strong>in</strong> FLA456<br />

appears to be<br />

recessive


Mapp<strong>in</strong>g <strong>in</strong> RILs<br />

Phenotyp<strong>in</strong>g<br />

A set of 167 F6 Recomb<strong>in</strong>ant Inbred L<strong>in</strong>es<br />

(RILs) were evaluated for TYLCV resistance<br />

Two weeks exposure <strong>in</strong> virus<br />

screenhouse<br />

Follow up of symptom<br />

development after transplant<strong>in</strong>g


A significant QTL mapped on chromosome 4<br />

Composite Interval Mapp<strong>in</strong>g<br />

Ty5<br />

tyQTL4.1<br />

LOD – 7.6 (2)<br />

R 2 – 20%<br />

Qgene 4.3.7<br />

Joehanes & Nelson (2008)


A m<strong>in</strong>or QTL for TYLCV detected on chromosome 6<br />

Mi-1<br />

Ty-1<br />

Ty-3<br />

tyQTL6.1<br />

LOD – 2.2 (2)<br />

R 2 – 6%<br />

Qgene 4.3.7<br />

Joehanes & Nelson (2008)


MAS for tyQTL4.1(t) <strong>in</strong> the tomato breed<strong>in</strong>g l<strong>in</strong>es<br />

derived from FLA456<br />

300 bp<br />

250 bp<br />

200 bp<br />

SSR43 marker helps to predict resistant or susceptible progenies<br />

AVRDC-Tomato <strong>Breed<strong>in</strong>g</strong>


AVRDC Tomato Disease Marker<br />

Protocols (current)<br />

Disease Genes (symbol) Protocol type<br />

Begomoviruses (TYLCVD) Ty-1, Ty-2, Ty-3, Ty-5 PCR<br />

Root-knot nematode Mi PCR<br />

Fusarium wilt I2 PCR<br />

Late blight Ph-3 PCR<br />

Gray leaf spot Sm CAPS<br />

Tomato mosaic virus Tm2a hypocotyl color (ah<br />

l<strong>in</strong>ked to Tm2a)<br />

Peter Hanson


Introgressions from wild species –<br />

0.0 cM T1928<br />

6.0 cM<br />

8.0 cM<br />

10.0 cM<br />

Mi-1<br />

Ty-1<br />

C2_At4g01900, TG97<br />

cLET-5-A4<br />

L<strong>in</strong>kage Drag<br />

Tomato DNA<br />

• Ty-1/Ty-3 resistance <strong>in</strong> AVRDC<br />

l<strong>in</strong>es orig<strong>in</strong>ated from Univ. Florida<br />

(Jay Scott)<br />

16.0 cM<br />

T1563<br />

• Ty-1 <strong>and</strong> Ty-3 part of a large 32 cM<br />

region from S. chilense<br />

20.0 cM<br />

cLEG-31-P16<br />

Wild DNA<br />

• AVRDC l<strong>in</strong>es carry<strong>in</strong>g Ty-1+Ty-3<br />

likely carry entire <strong>in</strong>trogression<br />

27.0 cM<br />

Ty-3<br />

C2_At4g27700<br />

• L<strong>in</strong>es homozygous for this region<br />

may show some reduced fruit <strong>and</strong><br />

tendency for puffy fruit<br />

32.0 cM<br />

T0834<br />

Tomato DNA<br />

Peter Hanson


Problem: l<strong>in</strong>kage of Ty-2 <strong>and</strong> i-2 +<br />

(FW susceptibility)<br />

77.0 cM<br />

82.0 cM<br />

82.5 cM<br />

84.0 cM<br />

87.0 cM<br />

89.0 cM<br />

TG546<br />

cLET-5-E4<br />

C2_At1g07960<br />

TG36<br />

cLEN-11-F24<br />

T0302<br />

Ty-2<br />

Wild DNA<br />

• Ty-2 l<strong>in</strong>ked to i-2 + form of the gene<br />

(allele) which conditions<br />

susceptibility to FW (repulsion<br />

l<strong>in</strong>kage)<br />

• Use of Ty-2 br<strong>in</strong>gs along i-2 + for<br />

FW susceptibility, a w<strong>in</strong>-lose<br />

situation<br />

91.5 cM<br />

i-2 +<br />

• Crossovers between Ty-2 <strong>and</strong> I-2<br />

are rare but occur.<br />

• Objective: identify rare Ty-2/I-2<br />

recomb<strong>in</strong>ant plants <strong>and</strong> make a<br />

w<strong>in</strong>-w<strong>in</strong> situation<br />

103.0 cM<br />

TG393<br />

Peter Hanson


L<strong>in</strong>kage of Ty-3 <strong>and</strong> mi-1+ (susceptibility)<br />

0.0 cM T1928<br />

6.0 cM<br />

8.0 cM<br />

10.0 cM<br />

Tomato DNA<br />

Mi-1 +<br />

C2_At4g01900, TG97<br />

cLET-5-A4<br />

Ty-1<br />

16.0 cM<br />

S. chilense DNA<br />

T1563<br />

Mi-1 mi-1 +<br />

20.0 cM<br />

27.0 cM<br />

32.0 cM<br />

cLEG-31-P16<br />

C2_At4g27700<br />

T0834<br />

Ty-3<br />

• Mi-1 gene conditions resistance to the<br />

root-knot nematode (Meloidogyne<br />

<strong>in</strong>cognita)<br />

• Ty-1/Ty-3 resistance l<strong>in</strong>ked to the allele<br />

for susceptibility (mi-1 + )<br />

• Identify l<strong>in</strong>es with Ty-3 <strong>and</strong> Mi-1<br />

• Loci are over 20 cM apart<br />

Peter Hanson


Traits <strong>and</strong> Genes of Interest for Future MAS<br />

Trait<br />

Bacterial wilt resistance<br />

Late blight<br />

Gene/QTL mapp<strong>in</strong>g<br />

progress<br />

Important genomic<br />

regions identified<br />

Ph-2, Ph-4 genes<br />

mapped<br />

Action required<br />

/challenge<br />

Lack of polymorphic<br />

markers<br />

Identify l<strong>in</strong>ked<br />

polymorphic markers<br />

Fusarium wilt (race 3), I-3 Marker probably<br />

available <strong>in</strong> literature<br />

High lycopene<br />

High T°fruit-set (heat<br />

tolerance)<br />

Drought<br />

hp-1, og c genes mapped<br />

<strong>in</strong> literature<br />

Ongo<strong>in</strong>g evaluation of<br />

mapp<strong>in</strong>g population<br />

Important genomic<br />

regions identified<br />

Sal<strong>in</strong>ity ? ?<br />

Peter Hanson<br />

Identify l<strong>in</strong>ked<br />

polymorphic markers<br />

Lack of polymorphic<br />

markers<br />

?


Mapp<strong>in</strong>g of Bacterial Wilt Resistance QTLs <strong>in</strong><br />

Tomato<br />

Rhizoctonia solanaceraum


Jaw-fen Wang<br />

BW QTL on Chromosome 6


Jaw-fen Wang<br />

BW QTL on Chromosome 12


Mapp<strong>in</strong>g of Heat Tolerance<br />

CLN1621L x CA4 – Recomb<strong>in</strong>ant Inbred population (F5)<br />

(96 l<strong>in</strong>es)<br />

AVRDC-Tomato <strong>Breed<strong>in</strong>g</strong>


Screen<strong>in</strong>g for heat tolerance <strong>in</strong> RILs – Yield<br />

components <strong>and</strong> pollen fertility under heat stress<br />

Plant height<br />

Days to flower<strong>in</strong>g<br />

Days to maturity<br />

Flower number<br />

Fruit number<br />

Fruit set (%)<br />

Fruit size<br />

Fruit weight<br />

Yield<br />

Seed number<br />

Seed weight<br />

Dorthe Mussman <strong>and</strong> Joyce Yen


QTLs associated with heat tolerance <strong>in</strong> tomato<br />

Fruit set (%)<br />

Fruit load<br />

Pollen viability (%)<br />

Composite Interval Mapp<strong>in</strong>g<br />

Chr QTL LOD Variance (%) Additive effect Donor parent<br />

6 TES0111-SLM6-5 2.3 10.6 9.12 CLN1621L<br />

12 SLM12-31-SLM12-50 2.6 13.0 5.81 CLN1621L


Mapp<strong>in</strong>g Drought Tolerance<br />

Mapp<strong>in</strong>g population<br />

Backcross <strong>in</strong>bred<br />

l<strong>in</strong>es (BC1F3:4) of<br />

CLN2498E x LA1579<br />

fixed with Ty-2 locus<br />

(96 l<strong>in</strong>es)<br />

S. pimp<strong>in</strong>ellifolium<br />

Phenotyp<strong>in</strong>g<br />

• Plant height<br />

• Days to flower<strong>in</strong>g<br />

• Days to maturity<br />

• Fruit set<br />

• Fruit yield<br />

• Fruit weight<br />

• Chlorophyll content<br />

• Shoot dry weight<br />

Genotyp<strong>in</strong>g


Phenotyp<strong>in</strong>g: Backcross Inbred L<strong>in</strong>es<br />

Screen<strong>in</strong>g <strong>in</strong> ra<strong>in</strong>-out shelters<br />

Drought stress<br />

Control<br />

Measur<strong>in</strong>g physiological <strong>and</strong> yield traits under stress <strong>and</strong> non-stress<br />

conditions<br />

Rachael Symonds <strong>and</strong> Joyce Yen


QTLs associated with yield-related traits under drought<br />

stress <strong>and</strong> control experiments (greenhouse)<br />

Jean L<strong>in</strong> <strong>and</strong> Joyce Yen<br />

Dreb1a mapped to Chr. 6<br />

<strong>and</strong> associate with yield<br />

under drought stress


Jean L<strong>in</strong> <strong>and</strong> Joyce Yen<br />

Putative QTLs co-localize<br />

with reported wild<br />

<strong>in</strong>trogressions contribut<strong>in</strong>g<br />

drought tolerance traits


Association mapp<strong>in</strong>g for sal<strong>in</strong>ity<br />

tolerance traits <strong>in</strong> tomato<br />

Dr E. Sreenivasa Rao, BOYSCAST Fellow, IIHR,<br />

Bangalore


Salt stress affects yield components <strong>in</strong><br />

tomato<br />

Arka Meghali<br />

• Progressive<br />

salt stress<br />

until<br />

maturity<br />

• Effect on<br />

physiologic<br />

al <strong>and</strong> yield<br />

traits<br />

Control 50 mM 100 mM 200 mM NaCl<br />

V<strong>in</strong>cent Ez<strong>in</strong>


Salt tolerance exists <strong>in</strong> tomato germplasm<br />

LA1606 -<br />

S. pimp<strong>in</strong>ellifolium<br />

V<strong>in</strong>cent Ez<strong>in</strong><br />

Control 50 mM 100 mM 200 mM


Discover<strong>in</strong>g desirable alleles <strong>in</strong> germplasm:<br />

Allele m<strong>in</strong><strong>in</strong>g through Association Mapp<strong>in</strong>g<br />

SNP 1<br />

SNP 2<br />

SNP 3<br />

INDEL1<br />

INDEL2<br />

0 1300 bp<br />

<br />

SNP 4<br />

SNP 5<br />

SNP 6<br />

SNP 7<br />

<br />

Acc. 354 361 506 752 831 1017 1018 1068 1183 1189 Na<br />

1 A G 0 0 T T G A T C 4867<br />

2 A T 0 0 T T G A T C 3300<br />

3 A G 0 0 T T G A T C 3450<br />

4 A T 0 0 T T G A T C 4267<br />

5 A T 0 0 T T G A T C 9200<br />

7 T G 3 0 C C T T C A 4967<br />

10 A T 0 0 C C G T C A 6200<br />

12 A T 0 0 C C G T C C 3100<br />

15 T G 3 0 C C T T C A 4067<br />

17 T G 3 0 C C T T C A 3900<br />

20 T G ? 0 C C G T C A 4050<br />

21 T G ? 0 C C G T C A 3767<br />

25 A T 0 3 T T G A T C 3150<br />

64 A T 0 3 T T G A T C 3500<br />

69 A T 0 3 T T G A T C 2867<br />

73 A T 0 3 T T G A T C 3050<br />

75 A T 0 3 T T G A T C 3800<br />

76 A G 0 3 T T G A T C 1767<br />

115 T G ? 3 T C T T ? C 1900<br />

An effective allele of NHX1 gene,<br />

contribut<strong>in</strong>g to reduced sodium<br />

accumulation (about 430 ppm)<br />

identified <strong>in</strong> S. pimp<strong>in</strong>ellifolium<br />

collection<br />

176 A T 0 3 T C T A C C 4650 P=0.0185 R 2 = 6.75%<br />

Sreenivasa Rao<br />

SNP 8<br />

Tolerant<br />

Sensitive


A Dreb1a allele associate with various salt tolerance<br />

traits <strong>in</strong> S. pimp<strong>in</strong>ellifolium collection<br />

SNP 1<br />

0 1020 bp<br />

<br />

SNP 2<br />

INDEL1<br />

SNP 3<br />

INDEL2<br />

Accession 346 504 540 906 969 1003<br />

1 G G 1 T 0 1<br />

101 A T 1 C 0 1<br />

105 G G 1 T 1 1<br />

106 G G 0 T 0 1<br />

107 G G 1 T 0 0<br />

108 G G 1 T 0 0<br />

109 G G 1 T 0 1<br />

11 A T 1 T 0 0<br />

110 G G 1 C 0 1<br />

113 A T 1 C 0 0<br />

115 A G 0 T 1 0<br />

119 A T 1 T 0 0<br />

122 G G 1 T 0 0<br />

124 G G 1 T 0 1<br />

126 G G 1 ? ? ?<br />

131 A T 1 T 0 0<br />

132 A T 1 C 0 0<br />

INDEL3<br />

<br />

Traits<br />

Trait R 2 Actual<br />

Leaf chlorophyll content<br />

(P=0.038) 5.91% 5.30%<br />

Leaf sodium concentration<br />

(P=0.0057)<br />

Leaf potassium content<br />

(P=0.019)<br />

10.39% -769.5ppm<br />

7.04% +790ppm<br />

Survival score<br />

(P=0.061) 4.34% +0.55<br />

Shoot dry weight<br />

reduction<br />

(P=0.01) 7.05% +10.88%<br />

Fruit number<br />

(P=0.07) 3.46% +16.46<br />

Fruit yield<br />

(P=0.03) 6.15% +7.94g<br />

Sreenivasa Rao


Next step:<br />

NHX1<br />

Accession 1 Dreb1a Accession 2<br />

0 1300<br />

0 1020<br />

752bp<br />

1003bp<br />

Pyramid<strong>in</strong>g of desirable alleles on different genes<br />

NHX1<br />

0 1300<br />

752bp<br />

+<br />

Dreb1<br />

0 1020<br />

1003bp<br />

Would take 6-7 years for 2 loci


Are tailor-made comb<strong>in</strong>ations already available <strong>in</strong> the<br />

germplasm ?<br />

Accession 3<br />

0<br />

NHX1<br />

1300<br />

+<br />

Dreb1a<br />

0 1020<br />

752bp<br />

1003bp<br />

Genotype NHX1-752bp Dreb -1003bp<br />

2 0 0<br />

4 0 0<br />

7 0 0<br />

11 0 0<br />

15 0 0<br />

17 0 0<br />

20 0 0<br />

21 0 0<br />

22 3 ?<br />

25 3 1<br />

76 3 0 Better allele


Mapp<strong>in</strong>g Anthracnose resistance locus from<br />

Capsicum ch<strong>in</strong>ense<br />

<strong>Molecular</strong> markers for anthracnose resistance<br />

Resistant<br />

Susceptible<br />

Hot pepper<br />

susceptible to<br />

anthracnose<br />

CAPS marker was developed<br />

from AFLP marker <strong>and</strong> genetic<br />

mapp<strong>in</strong>g is <strong>in</strong> progress<br />

Anthracnoseresistant<br />

hot peppers<br />

Vivian Wang, Chien-an Liu, Paul Gniffkke, Hayde Galvez


Identification of bruchid resistance locus from Vigna radiata<br />

ssp sublobata for mungbean breed<strong>in</strong>g<br />

LG 5<br />

13.4<br />

5.6<br />

3.1<br />

17.5<br />

m4pcc585<br />

mg5att46<br />

mg5pat46<br />

m3pca400<br />

m4pcc417<br />

m4pcc579<br />

No. of l<strong>in</strong>es<br />

R<br />

Huei-mei Chen<br />

% of seed damage<br />

C. ch<strong>in</strong>ensis (L.)<br />

S<br />

1.4<br />

2.4<br />

1.2<br />

1.2<br />

11.1<br />

3.4<br />

1<br />

1.4<br />

1.6<br />

17.8<br />

1.2<br />

2.6<br />

7.5<br />

CAPS markers<br />

w02s12<br />

w02s6<br />

mg3pag43<br />

mg3ag431<br />

m1pgg256<br />

w02a4<br />

w02s9<br />

mg3pag42<br />

w02s10<br />

w02s11<br />

w02s2<br />

w02s4<br />

w02s3<br />

m5pca598<br />

M13PAG33<br />

mg4pga29<br />

m3pca283<br />

m1pgg258<br />

mg7pcg22<br />

m3pca314<br />

u168a6<br />

u223a7<br />

v02a4<br />

v02a3<br />

m5pca382<br />

m4pcg370<br />

m9pca371


Develop<strong>in</strong>g molecular markers<br />

for vegetable breed<strong>in</strong>g -<br />

Public-Private Partnership


Consortia to develop DNA markers<br />

• Marker resources are not<br />

available to many<br />

companies<br />

• Marker development cost is<br />

high<br />

• Shar<strong>in</strong>g of cost to develop<br />

marker resources<br />

• Initially focus on SSRs<br />

SSR<br />

SNP


Genetic l<strong>in</strong>kage map of tomato based on SSR markers – CLN2498E x<br />

LA1940 (S. pennellii)<br />

CH1<br />

CH2<br />

CH3<br />

CH4<br />

CH5<br />

CH6<br />

18.5<br />

19.7<br />

28.0<br />

28.2<br />

29.0<br />

31.2<br />

31.7<br />

31.8<br />

32.0<br />

32.4<br />

32.8<br />

33.2<br />

33.4<br />

33.7<br />

34.0<br />

34.3<br />

34.4<br />

34.5<br />

34.9<br />

35.5<br />

36.5<br />

37.8<br />

38.6<br />

42.4<br />

45.5<br />

46.0<br />

46.7<br />

51.6<br />

55.6<br />

88.0<br />

93.1<br />

104.0<br />

113.8<br />

115.7<br />

123.1<br />

124.8<br />

129.3<br />

132.2<br />

139.4<br />

144.0<br />

149.5<br />

150.0<br />

165.0<br />

TM1034<br />

TM76<br />

TM1040<br />

TM172<br />

TM1042 TM1043<br />

TM1045 TM1046<br />

TM1047<br />

TM1049 TM1050<br />

TM1051 TM1052<br />

TM1053<br />

TM1055 TM1057<br />

TM12<br />

TM9<br />

TM5<br />

TM339<br />

TM415 TM449<br />

TM340<br />

TM597<br />

TM77 TM330<br />

TM336 TM311<br />

TM56 TM377<br />

TM365<br />

TM373<br />

TM245<br />

TM152<br />

TM82<br />

TM483<br />

TM100<br />

TM131<br />

TM290<br />

TM1058 TM1059<br />

TM89<br />

TM198<br />

TM272<br />

TM224 TM1073<br />

TM1074<br />

TM99<br />

TM1061 TM1062<br />

TM144<br />

TM1075 TM1076<br />

TM491<br />

TM164<br />

TM1068 TM1077<br />

TM74<br />

TM106<br />

TM1079<br />

TM319<br />

TM1080<br />

TM1070 TM1071<br />

TM1072<br />

13.0<br />

15.2<br />

18.0<br />

18.7<br />

20.2<br />

27.0<br />

29.3<br />

32.3<br />

36.0<br />

36.5<br />

36.6<br />

37.0<br />

39.0<br />

42.0<br />

49.7<br />

52.6<br />

59.8<br />

67.9<br />

70.0<br />

72.5<br />

73.0<br />

75.3<br />

92.0<br />

92.1<br />

111.0<br />

120.0<br />

120.7<br />

126.5<br />

139.5<br />

141.0<br />

TM1082 TM1084<br />

TM133 TM165<br />

TM1112<br />

TM212<br />

TM352<br />

TM1113<br />

TM206<br />

TM3<br />

TM1087<br />

TM1088 TM1090<br />

TM1092<br />

TM1093 TM1094<br />

TM1095<br />

TM112<br />

TM1096 TM1097<br />

TM188<br />

TM405<br />

TM533<br />

TM284<br />

TM1099<br />

TM1100 TM1101<br />

TM1116<br />

TM210<br />

TM1117<br />

TM214<br />

TM1119 TM1120<br />

TM1102 TM1103<br />

TM1104<br />

TM221<br />

TM1106 TM1107<br />

TM1121 TM1122<br />

TM1108 TM1109<br />

TM1110<br />

0.0<br />

4.6<br />

30.0<br />

54.5<br />

58.0<br />

59.0<br />

60.3<br />

62.7<br />

63.2<br />

68.7<br />

69.5<br />

69.8<br />

70.0<br />

70.4<br />

70.5<br />

70.6<br />

72.0<br />

72.8<br />

73.7<br />

75.6<br />

77.0<br />

78.0<br />

81.6<br />

91.9<br />

92.0<br />

93.0<br />

96.0<br />

105.5<br />

110.0<br />

126.9<br />

128.4<br />

131.8<br />

133.0<br />

141.0<br />

160.0<br />

TM1123 TM1124<br />

TM1150<br />

TM1127 TM1128<br />

TM1130 TM1131<br />

TM1132<br />

TM1133 TM1134<br />

TM1135 TM1136<br />

TM1138<br />

TM92<br />

TM494<br />

TM539<br />

TM14<br />

TM521<br />

TM480<br />

TM127<br />

TM387<br />

TM492<br />

TM425 TM314<br />

TM337<br />

TM1139 TM1151<br />

TM80<br />

TM20<br />

TM414<br />

TM1152<br />

TM1141 TM1153<br />

TM475<br />

TM553<br />

TM1142<br />

TM543<br />

TM1154 TM1155<br />

TM216<br />

TM1143<br />

TM286<br />

TM79<br />

TM274<br />

TM1156 TM1157<br />

TM1146 TM1147<br />

TM1148 TM1149<br />

Shu-mei Huang, Vivian Wang, Lucy L<strong>in</strong>, Julie Chu<br />

6.5<br />

22.6<br />

22.7<br />

33.0<br />

33.9<br />

41.4<br />

42.7<br />

42.8<br />

43.2<br />

43.4<br />

45.3<br />

45.4<br />

47.9<br />

52.6<br />

55.0<br />

62.5<br />

66.0<br />

81.0<br />

88.3<br />

93.7<br />

119.5<br />

125.0<br />

127.0<br />

137.0<br />

TM1158 TM1159<br />

TM273<br />

TM1186<br />

TM1163 TM1164<br />

TM291<br />

TM318<br />

TM217<br />

TM499<br />

TM81<br />

TM102<br />

TM345 TM338<br />

TM380<br />

TM473<br />

TM341<br />

TM1165 TM1166<br />

TM1167<br />

TM1169 TM1170<br />

TM1171 TM1172<br />

TM75<br />

TM1175 TM1176<br />

TM1177<br />

TM1179 TM1180<br />

TM1187<br />

TM1183<br />

TM1188<br />

TM1189 TM1190<br />

7.0<br />

9.7<br />

16.0<br />

21.0<br />

30.0<br />

37.0<br />

37.2<br />

46.0<br />

51.0<br />

53.9<br />

54.5<br />

55.2<br />

55.9<br />

56.1<br />

56.5<br />

57.1<br />

57.3<br />

59.2<br />

60.0<br />

60.7<br />

84.0<br />

104.0<br />

115.0<br />

119.0<br />

TM1191 TM1192<br />

TM1193 TM1194<br />

TM95<br />

TM1195 TM1196<br />

TM1197 TM1198<br />

TM1199 TM1202<br />

TM1223<br />

TM1203 TM1204<br />

TM1206 TM1208<br />

TM1225 TM1226<br />

TM522<br />

TM1227<br />

TM1228 TM1229<br />

TM1230<br />

TM322<br />

TM2<br />

TM103<br />

TM8<br />

TM530 TM16<br />

TM18<br />

TM582<br />

TM239<br />

TM166<br />

TM525<br />

TM1209<br />

TM454<br />

TM1233<br />

TM1234 TM1235<br />

TM1210 TM1211<br />

TM1236<br />

TM1213 TM1214<br />

TM1216<br />

9.1<br />

18.5<br />

19.8<br />

22.0<br />

22.1<br />

22.3<br />

23.3<br />

30.7<br />

45.0<br />

47.0<br />

47.2<br />

63.0<br />

73.0<br />

74.1<br />

75.2<br />

97.0<br />

TM136<br />

TM1244 TM1245<br />

TM506<br />

TM428<br />

TM261 TM135<br />

TM117 TM138<br />

TM123 TM233<br />

TM58<br />

TM528<br />

TM68<br />

TM1246 TM1247<br />

TM578<br />

TM1248 TM1249<br />

TM1242 TM1243<br />

TM61<br />

TM179<br />

TM1251<br />

AVRDC-APSA<br />

Tomato SSR Marker<br />

Consortium (18<br />

companies)


Conclusion<br />

• Genomes of vegetable crops are be<strong>in</strong>g sequenced. Cucumber<br />

Genome (Nature Genetics 41: 1275-1281)<br />

• A large number of DNA markers are discovered…SSRs <strong>and</strong> SNPs,<br />

high throughput genotyp<strong>in</strong>g <strong>and</strong> phenotyp<strong>in</strong>g platforms are<br />

established<br />

• Tools – L<strong>in</strong>kage mapp<strong>in</strong>g, Association Mapp<strong>in</strong>g, Family based QTL<br />

mapp<strong>in</strong>g, Functional Genomics etc.,<br />

• Diverse crops <strong>and</strong> diverse problems <strong>in</strong> the tropics. New challenges<br />

cont<strong>in</strong>ue to emerge (Tospoviruses <strong>in</strong> tomato <strong>in</strong> India)<br />

• Strengthen wide-hybridization programs to <strong>in</strong>trogress genes from<br />

wild species<br />

• Integration of genomics <strong>in</strong> plant breed<strong>in</strong>g is the way forward<br />

49


Acknowledgements<br />

Robert de la Peña<br />

Peter Hanson<br />

Rachael Symonds<br />

Jaw-fen Wang<br />

Huei-mei Chen<br />

Paul Gniffke<br />

Andreas Ebert<br />

S. Geethanjali<br />

Lawrence Kenyon<br />

Rol<strong>and</strong> Schafleitner<br />

Mr. Chen<br />

Thank you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!